
Model Checking of C and C++ with DIVINE 4?

Zuzana Baranová, Jǐŕı Barnat, Kataŕına Kejstová, Tadeáš Kučera,
Henrich Lauko, Jan Mrázek, Petr Ročkai, Vladimı́r Štill

Faculty of Informatics, Masaryk University
Brno, Czech Republic

divine@fi.muni.cz

Abstract. The fourth version of the DIVINE model checker provides
a modular platform for verification of real-world programs. It is built
on an efficient interpreter of LLVM code which, together with a small,
verification-oriented operating system and a set of runtime libraries, en-
ables verification of code written in C and C++.

1 Introduction

Building correct software is undoubtedly an important goal for software devel-
opers and we firmly believe that formal verification methods can help in this
endeavour. In particular, explicit-state model checking promises to put forth a
deterministic testing procedure for non-deterministic problems (such as parallel
programs or tests which use fault injection). Moreover, it is quite easy to in-
tegrate into common test-based workflows. The latest version of DIVINE aims
to make good on these promises by providing an efficient and versatile tool for
analysis of real-world C and C++ programs.

2 DIVINE 4 Architecture

The most prominent feature of DIVINE 4 is that the runtime environment for the
verified program (i.e. support for threads, memory allocation, standard libraries)
is not part of the verifier itself, but instead it is split into several components,
separated by well-defined interfaces (see Figure 1). The three most important
components are: the DIVINE Virtual Machine (DiVM), which is an interpreter
of LLVM code and provides basic functionality such as non-determinism and
memory management; the DIVINE Operating System (DiOS), which takes care
of thread management and scheduling; and finally libraries, which implement
standard C, C++ and POSIX APIs. The libraries use syscalls to communicate
with DiOS and hypercalls to communicate with DiVM.

The verification core below DiVM is responsible for verification of safety
and liveness properties and uses DiVM to generate the state space of the (non-
deterministic) program.

? This work has been partially supported by the Czech Science Foundation grant No.
15-08772S and by Red Hat, Inc.

User’s program + libraries

C/C++ standard libraries, pthreads

DiOS

DiVM

Verification core

hypercalls

syscalls

DIVINE

Fig. 1. Overview of the architecture of DIVINE 4. The shaded part consists of LLVM
code which is interpreted by DiVM.

2.1 DIVINE Virtual Machine (DiVM)

The basic idea of DiVM is to provide the bare minimum required for efficient
model checking of LLVM-based programs. To this end, it executes instructions,
manages memory, implements non-deterministic choice, and (with the help of
program instrumentation) keeps track of visible actions performed by the pro-
gram. To the verification core, DiVM provides support for saving and loading
snapshots of the program state and for generating successors of a given program
state.

DiVM is not intended to execute the user’s program in isolation; instead, it is
expected that there will be a runtime environment on top of DiVM. This environ-
ment is expected to supply a scheduler, a procedure invoked by DiVM to explore
the successors of a given program state. The scheduler’s primary responsibility is
thread management. It can, for example, implement asynchronous thread inter-
leaving by managing multiple stacks and non-deterministically choosing which
to execute. This design allows DiVM to be small, minimising the space for errors
in this crucial part of the verifier. Moreover, it allows for greater flexibility, since
it is usually much easier to program for DiVM then to change DiVM itself.

DiVM uses a graph to represent the memory of a program: nodes correspond
to memory objects and edges to pointers between these objects. Each program
state corresponds to one such graph. When exploring the state space, those
graphs are stored, hashed and compared directly (i.e. they are not converted to
byte vectors).

More details about DiVM, including an experimental evaluation, can be found
in [5].

2.2 DIVINE Operating System (DiOS)

DiOS supplies both a scheduler, which is invoked by DiVM, and a POSIX-like
environment for the libraries and the user program. To this end, DiOS exposes
a syscall interface to libc, in a manner similar to common operating systems.
Currently, DiOS supports syscalls which cover an important subset of the POSIX
file system interface (provided by the integrated virtual file system). Additional
syscalls make thread management and DiOS configuration possible.

2.3 State Space Reductions

To be able to verify nontrivial C or C++ programs, DIVINE 4 employs heap
symmetry reduction and τ reduction [4]. The latter reduction targets parallel
programs and is based on the observation that not all actions performed by
a given thread are visible to other threads. These local, invisible actions can
be grouped and executed atomically. In DIVINE, actions are considered visible
if they access shared memory. As DiVM has no notion of threads, the shared
status of a memory object is partially maintained by DiOS. However, DiVM
transparently handles the propagation of shared status to objects reachable from
other shared objects.

It is desirable that threads are only switched at well-defined points in the
instruction stream: in particular, this makes counterexamples easier to process.
For this reason, DIVINE instruments the program with interrupt points prior to
verification. DiVM will then only invoke the scheduler at these explicit interrupt
points, and only if the program executed a shared memory access since the
previous interrupt.

To further reduce the size of the state space of parallel programs, DIVINE
performs heap symmetry reduction. That is, heaps that differ only in concrete
values of memory addresses are considered identical for the purpose of verifi-
cation. On top of that, DIVINE 4 also employs static reductions which modify
the LLVM IR. However, it only uses simple transformations which are safe for
parallel programs and which cause minimal overhead in DiVM.

2.4 C and C++ Language Support

For practical verification of C and C++ code, it is vital that the verifier has
strong support for all language features and for the standard libraries of these
languages, allowing the user to verify unmodified code. DIVINE achieves this by
integrating ported implementations of existing C and C++ standard libraries.
Additionally, an implementation of the POSIX threading API was developed
specifically for DIVINE. These libraries together provide full support for C99
and C++14 and their respective standard libraries.

As DiVM executes LLVM instructions and not C or C++ directly, the pro-
gram needs to be translated to LLVM IR and linked with the aforementioned
libraries. This is done by an integrated compiler, based on the clang C/C++
frontend library. How a program is processed by DIVINE is illustrated in Fig-
ure 2. The inputs to the build are a C or C++ program and, optionally, a
specification of the property to be verified. The program is first compiled and
linked with runtime libraries, producing an LLVM IR module. This module is
then instrumented to facilitate τ reduction (see Section 2.3) and annotated with
metadata required for exception support [6]. The instrumented IR is then passed
to the verification algorithm, which uses DiVM to evaluate it. Finally, the ver-
ification core (if provided with sufficient resources) either finds an error and
produces a counterexample, or concludes that the program is correct.

C++ code property and options

compiler

runtime

LLVM IR instrumentation DiVM IR

verification core

ValidCounterexample

divine verify

Fig. 2. Verification workflow of the divine verify command when it is given a C++
file as an input. Boxes with rounded corners represent stages of input processing.

2.5 Property Specification

DIVINE 4 supports a range of safety properties, namely detection of assertion
violations, arithmetic errors, memory errors (e.g. access to freed or otherwise
invalid memory), use of uninitialised values in branching, and pthreads locking
errors.

The libraries shipped with DIVINE can simulate memory allocation failures
and spurious wake-ups on pthreads conditional variables. The allocation failure
simulation can be disabled on DIVINE’s command line.

Monitors and Liveness More complex properties can be specified in the form
of monitors, which are executed synchronously by DiOS every time a visible
action (as determined by τ reduction) occurs. This allows such monitors to ob-
serve globally visible state changes in the program, and therefore to check global
assertions or liveness properties, (using a Büchi accepting condition). Moreover,
it is also possible to disallow some runs of the program, i.e. the monitor can
specify that the current run of the program should be abandoned and ignored.

In order to check LTL properties in DIVINE, the LTL formula has to be
translated to a Büchi automaton encoded as a monitor in C++. This translation
can be done automatically by an external tool, dipot,1 which internally uses
SPOT [1] to process the LTL formula.

2.6 Interactive Program Simulator

Model checkers traditionally provide the user with a counterexample: a trace
from the initial state to the error state. However, with real-world programs, the
presentation of this trace is critical: the user needs to be able to understand
the complex data structures which are part of the state, and how they evolve
along the error trace. To help with this task, DIVINE now contains an interactive

1 available from https://github.com/xlauko/dipot

#include <cstdio>

#include <cassert>

void foo(int *array) {
for (int i = 0; i <= 4; ++i) {

printf("writing at %d\n", i);

array[i] = 42;

}
}

int main() {
int x[4];

foo(x);

assert(x[3] == 42);

}

Fig. 3. Example C++ code which creates an array x of size 4 (on the stack) and then,
in function foo, writes into this array. foo does, however, attempt to write one element
past the array, which would normally overwrite the next entry on the stack but not
cause an immediate program failure. In DIVINE, this error is detected and reported.

simulator that can be used to perform the steps of the program which led to the
error and to inspect values of program variables at any point in the execution [3].

2.7 Major Changes Compared to DIVINE 3

Compared to DIVINE 3, the new version comes with several improvements. From
architectural point of view, the most important changes are the introduction of
DiVM and DiOS and the graph-based representation of program memory [5].
From user perspective, the most important changes include better support for
C++ and its libraries, an improved compilation process which makes it easier
to compile C and C++ programs into LLVM IR, an interactive simulator of
counterexamples, and support for simulation of POSIX-compatible file system
operations.

3 Using DIVINE

DIVINE is freely available online2, including source code, a user manual, and
examples which demonstrate the most important features of DIVINE. In addition
to the source code, it is also possible to download a pre-built binary for 64bit
Linux, or a virtual machine image with DIVINE installed (available in 2 formats,
OVA for VirtualBox, and VDI for QEMU and other hypervisors). If you choose
to build DIVINE from source code, please refer to the user manual3 for details.

Consider the code from Figure 3, saved in file test.cpp. Assuming DI-
VINE is installed4 the code can be verified by simply executing divine verify

test.cpp. DIVINE will report an invalid write right after the end of the x array.
You can observe that the output of printf is present in the error trace part
of DIVINE’s output. Moreover, toward the end, the output includes stack traces
of all running threads. In this case, there are two threads, the main thread of
the program and a kernel thread, in which the fault handler is being executed.

2 https://divine.fi.muni.cz/2017/divine4/
3 https://divine.fi.muni.cz/manual.html
4 the binary has to be in a directory which is listed in the PATH environment variable

If we wanted to inspect the error state in more detail, we could use DIVINE’s
simulator. First, we need a way to identify the error state: the counterexample
contains a line which reads choices made: 0^182; the sequence of numbers
after the colon is a sequence of non-deterministic choices made by DIVINE. We
can now run divine sim test.cpp and execute trace 0^182 (replacing the
sequence of choices with the ones actually produced by divine). This makes
the simulator stop after the last non-deterministic choice before the error. The
actual location of the error can be inspected by executing stepa, which tells
DIVINE to perform a single atomic step (unless an error occurs, in which case
it stops as soon as the error is reported). Now the frame of the error handler
can be inspected, although it is more useful to move to the frame which caused
the error by executing the up command. At this point, local variables can be
inspected by using show.

Please consult the user manual for more detailed information on using DI-
VINE. Additionally, divine help and the help command in the simulator pro-
vide short descriptions of all available commands and switches.

4 Conclusion and Future Work

In this paper, we have introduced DIVINE 4, a versatile explicit-state model
checker for C and C++ programs, which can handle real-world code using an
efficient LLVM interpreter which has strong support for state space reductions.
The analysed programs can make use of the full C99 and C++14 standards,
including the standard libraries.

In the future, we would like to take advantage of the new program represen-
tation and versatility of DiVM to extend DIVINE with support for programs with
significant data non-determinism, taking advantage of abstract and/or symbolic
data representation, building on ideas introduced in SymDIVINE [2].

References

1. A. Duret-Lutz, A. Lewkowicz, A. Fauchille, T. Michaud, E. Renault, and L. Xu.
Spot 2.0 — a framework for LTL and ω-automata manipulation. In ATVA, volume
9938 of LNCS, pages 122–129. Springer, October 2016.

2. J. Mrázek, P. Bauch, H. Lauko, and J. Barnat. SymDIVINE: Tool for Control-
Explicit Data-Symbolic State Space Exploration. In SPIN, pages 208–213. Springer,
2016.

3. P. Ročkai and J. Barnat. A Simulator for LLVM Bitcode. Preliminary version,
ArXiv: 1704.05551, 2017.

4. P. Ročkai, J. Barnat, and L. Brim. Improved State Space Reductions for LTL
Model Checking of C & C++ Programs. In NFM, volume 7871 of LNCS, pages
1–15. Springer, 2013.

5. P. Ročkai, V. Štill, I. Černá, and J. Barnat. DiVM: Model Checking with LLVM
and Graph Memory. Preliminary version, ArXiv: 1703.05341, 2017.

6. V. Štill, P. Ročkai, and J. Barnat. Using Off-the-Shelf Exception Support Compo-
nents in C++ Verification. Preliminary version, ArXiv: 1703.02394, 2017.

