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What we do
m verification of C & C+4+ programs
m using LLVM bitcode
m support for threads, using pthreads or C++ standard threads
m support for large parts of C & C++ library
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verification is memory and time consuming
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how to optimize model-checker's memory consumption?
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need to know how it works
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explores all relevant outcomes of program:
m starts from an initial state

m looks at possible actions that can be taken in each state

m builds state space

m graph exploration



insert in hash table

@licated new state
m generated by state space

generator

seen? yes m allocated as a linear block of
new memory
no m same state (content-wise)
ignored .
C) can exist in hash table
enqueue




new state
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insert in hash table deduplicated

m attempt insertion into the
hash table

m if already present, deallocate
the new state

seen?
m proceed using the state

yes

no stored in the hash table

ignored ) .

@@ m hash table contains pointer
to the state memory

in queue
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insert in hash table

@I icated
seen?

m algorithm decides how to
‘\}:es process the state
o m detect property violation
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enqueue
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insert in hash table

m the queue contains pointers

@b\i’es (to the same memory
location as the hash table
no : does)

in queue
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insert in hash table observations

m a state is allocated in new
state

m and deallocated if it is a
duplicate

yes
no

in queue
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insert in hash table observations

- m a state is allocated in new

state
m and deallocated if it is a

ves duplicate
m most of the time, only one

no - copy of the state exists
- ® a pointer to this canonic
copy is stored in the hash

table.
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m why a hash table?
m fast insert and lookup
m simple
m memory efficient

m stored states take up almost all memory
m individual states are large
m and often similar
— unnecessary redundancy

m we need a compressed data structure with behaviour similar
to a hash table
m associative container
m capable of storing variable length keys
® can grow
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the design of a tree-compressed hash table
m a state is compressed when inserted

m roots are stored using the hash of the entire state in the root
table

m the original state can be easily reconstructed by tree traversal

m if the underlying hash table is concurrent and resizeable
so is the tree compressed table

= queue compressed (pointers to root nodes)

m the state space generator can direct the splitting of the state

= need not be binary or balanced
m but works well even without any modification to the generator

m works better for larger state spaces
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insert in| compressed hash table
m state is compressed on
- insertion into hash table
m most of the time state is
compressed
Qb\i’es B queue is compressed
no m original state is always
deallocated when
reue

enqueue compressed

in queue
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m DIVINE allocates many memory blocks

m blocks which store compressed nodes only came in limited
number of sizes

m blocks generated by the state space generator are short-lived
and came in many different sizes

m freed blocks should be reused

m the generator, the compression scheme, and the allocator all
need to know the block size
m only the allocator can store it compactly
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m allocates memory in large slabs

m used for the allocation of same-sized memory blocks
m remembers the size in each slab

= memory is addressed indirectly (slab address + offset)

m uses free-lists for memory reuse

| | block | block | block | block |
' slab header -

alloc. size |# aIIocated| # use‘d‘ |

m works well for tree-compressed nodes

m short-lived blocks need optimization
m allocated in a special slab for ephemeral memory



m 32 bit pointers — compact but limiting

m 64 bit pointers — in fact 48 bits used on x86-64
m the rest is reserver and should not be used

m additional storage in pointer would be useful

m our indirect pointers: 39 bit pointer 4+ 25 bit tag

m the tag can be used by the tree compression scheme (to
distinguish forks/leaves) and by the hash table (to help in
collision resolution)
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memory [GB]

memory usage with and without compression [logscale]
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memory usage (GB)

Name # of compression ratio
states no yes

pt_rwlock 10.7 M 68 0.88 | 77x
pt_barrier 128.5 M > 825 5.48 | 151x
collision 3.0M 48 0.64 | 74x
elevator2 33.0M > 343 2.50 | 137x
lead-uni__basic 192 M 232 0.81 | 288x
lead-uni_peterson | 12.2 M 146 0.64 | 230x
hashset-2-4-2 6.7 M 133 1.20 | 111x
hashset-3-1 6269 M | > 15110 27.51 | 549x




Conclusion
= enables verification of real-world code
m large memory savings (74-550x)
m on top of saving from 7+ reduction (50-1000x )
m decent performance (no more that 2x slower)

m full parallel verification supported with compression code
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m on top of saving from 7+ reduction (50-1000x )
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full parallel verification supported with compression code

Future work
m more efficient distributed compression

m performance optimizations
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