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DIVINE

What we do
verification of C & C++ programs
using LLVM bitcode
support for threads, using pthreads or C++ standard threads
support for large parts of C & C++ library
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Introduction

C/C++
with threads
(.c/.cpp)

LLVM bitcode
(.bc)

Property
assertion, memory

safety, LTL

DIVINE
model checker

OK Counterexample

clang
+ DIVINE libs

model checking programs with DIVINE
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+ DIVINE libs
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with threads
(.c/.cpp)

LLVM bitcode
(.bc)

Property
assertion, memory

safety, LTL

DIVINE
model checker

OK CounterexampleOut of memory

clang
+ DIVINE libs

how to optimize model-checker’s memory consumption?
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Explicit-State Model Checking

explores all relevant outcomes of program:

starts from an initial state

x = 0; y = 0

builds state space
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x = 0; y = 0

x = 1; y = 0 x = 0; y = 1

x = 1; y = 1

x := 1 y := 1

y := 1 x := 1

builds state space
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State Processing in DIVINE

new state

deduplicated

seen?

ignored
enqueue

in queue

insert in hash table

no

yes

new state

generated by state space
generator
allocated as a linear block of
new memory
same state (content-wise)
can exist in hash table

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 5 / 15



State Processing in DIVINE

new state

deduplicated

seen?

ignored
enqueue

in queue

insert in hash table

no

yes

deduplicated

attempt insertion into the
hash table
if already present, deallocate
the new state
proceed using the state
stored in the hash table
hash table contains pointer
to the state memory
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State Processing in DIVINE

new state

deduplicated

seen?

ignored
enqueue

in queue

insert in hash table

no

yes

seen?

algorithm decides how to
process the state
detect property violation
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State Processing in DIVINE

new state

deduplicated

seen?

ignored
enqueue

in queue

insert in hash table

no

yes

enqueue

push the state into the
exploration queue
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State Processing in DIVINE

new state

deduplicated

seen?

ignored
enqueue

in queue

insert in hash table

no

yes

in queue

the queue contains pointers
(to the same memory
location as the hash table
does)
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State Processing in DIVINE

new state

deduplicated

seen?

ignored
enqueue

in queue

insert in hash table

no

yes

observations

a state is allocated in new
state
and deallocated if it is a
duplicate
most of the time, only one
copy of the state exists
a pointer to this canonic
copy is stored in the hash
table.
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Hash Table

why a hash table?
fast insert and lookup
simple
memory efficient

stored states take up almost all memory
individual states are large
and often similar

→ unnecessary redundancy

we need a compressed data structure with behaviour similar
to a hash table

associative container
capable of storing variable length keys
can grow
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Tree Compression

uses redundancy between states:

original states (black = associated data)
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forks
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Tree Compression

uses redundancy between states:

three types of tree nodes: forks – connect larger parts of state

roots

forks

leaves
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Tree Compression

uses redundancy between states:
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Tree Compression
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Tree Compression

the design of a tree-compressed hash table
a state is compressed when inserted
roots are stored using the hash of the entire state in the root
table
the original state can be easily reconstructed by tree traversal

if the underlying hash table is concurrent and resizeable
so is the tree compressed table

queue compressed (pointers to root nodes)

the state space generator can direct the splitting of the state
need not be binary or balanced
but works well even without any modification to the generator

works better for larger state spaces
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State Processing with Compression

new state

deduplicated

seen?

ignored
enqueue

in queue

insert in compressed hash table

no

yes

state is compressed on
insertion into hash table
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State Processing with Compression

new state

deduplicated

seen?

ignored
enqueue

in queue

insert in compressed hash table

no

yes

state is compressed on
insertion into hash table
most of the time state is
compressed
queue is compressed
original state is always
deallocated when
compressed
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Memory Allocation: Scheme

DIVINE allocates many memory blocks
blocks which store compressed nodes only came in limited
number of sizes
blocks generated by the state space generator are short-lived
and came in many different sizes
freed blocks should be reused

the generator, the compression scheme, and the allocator all
need to know the block size

only the allocator can store it compactly
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Memory Allocation: DIVINE’s Allocator

allocates memory in large slabs
used for the allocation of same-sized memory blocks
remembers the size in each slab

memory is addressed indirectly (slab address + offset)
uses free-lists for memory reuse

slab
block block block block . . .

slab header
alloc. size # allocated # used

works well for tree-compressed nodes

short-lived blocks need optimization
allocated in a special slab for ephemeral memory
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Memory Allocation: Pointer Size

32 bit pointers – compact but limiting
64 bit pointers – in fact 48 bits used on x86-64

the rest is reserver and should not be used
additional storage in pointer would be useful
our indirect pointers: 39 bit pointer + 25 bit tag
the tag can be used by the tree compression scheme (to
distinguish forks/leaves) and by the hash table (to help in
collision resolution)
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Results: C and C++ models
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Results: C and C++ models

memory usage (GB)
Name # of compression ratio

states no yes
pt_rwlock 10.7 M 68 0.88 77×
pt_barrier 128.5 M > 825 5.48 151×
collision 3.0 M 48 0.64 74×
elevator2 33.0 M > 343 2.50 137×
lead-uni_basic 19.2 M 232 0.81 288×
lead-uni_peterson 12.2 M 146 0.64 230×
hashset-2-4-2 6.7 M 133 1.20 111×
hashset-3-1 626.9 M > 15 110 27.51 549×
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Conclusion, Future Work

Conclusion
enables verification of real-world code
large memory savings (74-550×)
on top of saving from τ+ reduction (50-1000×)
decent performance (no more that 2× slower)
full parallel verification supported with compression code

Future work
more efficient distributed compression
performance optimizations

http://divine.fi.muni.cz Thank you!
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