
Techniques for Memory-Efficient Model Checking
of C and C++ Code

Petr Ročkai Vladimír Štill Jiří Barnat

Masaryk University
Brno, Czech Republic

SEFM 2015

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 1 / 15



DIVINE

What we do
verification of C & C++ programs
using LLVM bitcode
support for threads, using pthreads or C++ standard threads
support for large parts of C & C++ library

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 2 / 15



Introduction

C/C++
with threads
(.c/.cpp)

LLVM bitcode
(.bc)

Property
assertion, memory

safety, LTL

DIVINE
model checker

OK Counterexample

clang
+ DIVINE libs

model checking programs with DIVINE

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 3 / 15



Introduction

C/C++
with threads
(.c/.cpp)

LLVM bitcode
(.bc)

Property
assertion, memory

safety, LTL

DIVINE
model checker

OK Counterexample

clang
+ DIVINE libs

programmer gives inputs: source code and specification

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 3 / 15



Introduction

C/C++
with threads
(.c/.cpp)

LLVM bitcode
(.bc)

Property
assertion, memory

safety, LTL

DIVINE
model checker

OK Counterexample

clang
+ DIVINE libs

the program is compiled into LLVM bitcode

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 3 / 15



Introduction

C/C++
with threads
(.c/.cpp)

LLVM bitcode
(.bc)

Property
assertion, memory

safety, LTL

DIVINE
model checker

OK Counterexample

clang
+ DIVINE libs

DIVINE explores all relevant interleavings

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 3 / 15



Introduction

C/C++
with threads
(.c/.cpp)

LLVM bitcode
(.bc)

Property
assertion, memory

safety, LTL

DIVINE
model checker

OK Counterexample

clang
+ DIVINE libs

verification results

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 3 / 15



Introduction

C/C++
with threads
(.c/.cpp)

LLVM bitcode
(.bc)

Property
assertion, memory

safety, LTL

DIVINE
model checker

OK CounterexampleOut of memory

clang
+ DIVINE libs

verification is memory and time consuming

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 3 / 15



Introduction

C/C++
with threads
(.c/.cpp)

LLVM bitcode
(.bc)

Property
assertion, memory

safety, LTL

DIVINE
model checker

OK CounterexampleOut of memory

clang
+ DIVINE libs

how to optimize model-checker’s memory consumption?

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 3 / 15



Introduction

C/C++
with threads
(.c/.cpp)

LLVM bitcode
(.bc)

Property
assertion, memory

safety, LTL

DIVINE
model checker

OK CounterexampleOut of memory

clang
+ DIVINE libs

need to know how it works

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 3 / 15



Explicit-State Model Checking

explores all relevant outcomes of program:

starts from an initial state

x = 0; y = 0

builds state space

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 4 / 15



Explicit-State Model Checking

explores all relevant outcomes of program:
starts from an initial state

x = 0; y = 0

builds state space

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 4 / 15



Explicit-State Model Checking

explores all relevant outcomes of program:
starts from an initial state
looks at possible actions that can be taken in each state

x = 0; y = 0

x = 1; y = 0 x = 0; y = 1

x := 1 y := 1

builds state space

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 4 / 15



Explicit-State Model Checking

explores all relevant outcomes of program:
starts from an initial state
looks at possible actions that can be taken in each state

x = 0; y = 0

x = 1; y = 0 x = 0; y = 1

x = 1; y = 1

x := 1 y := 1

y := 1 x := 1

builds state space

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 4 / 15



Explicit-State Model Checking

explores all relevant outcomes of program:
starts from an initial state
looks at possible actions that can be taken in each state

x = 0; y = 0

x = 1; y = 0 x = 0; y = 1

x = 1; y = 1

x := 1 y := 1

y := 1 x := 1

builds state space

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 4 / 15



Explicit-State Model Checking

explores all relevant outcomes of program:
starts from an initial state
looks at possible actions that can be taken in each state

x = 0; y = 0

x = 1; y = 0 x = 0; y = 1

x = 1; y = 1

x := 1 y := 1

y := 1 x := 1

builds state space
graph exploration

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 4 / 15



State Processing in DIVINE

new state

deduplicated

seen?

ignored
enqueue

in queue

insert in hash table

no

yes

new state

generated by state space
generator
allocated as a linear block of
new memory
same state (content-wise)
can exist in hash table

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 5 / 15



State Processing in DIVINE

new state

deduplicated

seen?

ignored
enqueue

in queue

insert in hash table

no

yes

deduplicated

attempt insertion into the
hash table
if already present, deallocate
the new state
proceed using the state
stored in the hash table
hash table contains pointer
to the state memory

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 5 / 15



State Processing in DIVINE

new state

deduplicated

seen?

ignored
enqueue

in queue

insert in hash table

no

yes

seen?

algorithm decides how to
process the state
detect property violation

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 5 / 15



State Processing in DIVINE

new state

deduplicated

seen?

ignored
enqueue

in queue

insert in hash table

no

yes

enqueue

push the state into the
exploration queue

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 5 / 15



State Processing in DIVINE

new state

deduplicated

seen?

ignored
enqueue

in queue

insert in hash table

no

yes

in queue

the queue contains pointers
(to the same memory
location as the hash table
does)

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 5 / 15



State Processing in DIVINE

new state

deduplicated

seen?

ignored
enqueue

in queue

insert in hash table

no

yes

observations

a state is allocated in new
state

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 5 / 15



State Processing in DIVINE

new state

deduplicated

seen?

ignored
enqueue

in queue

insert in hash table

no

yes

observations

a state is allocated in new
state
and deallocated if it is a
duplicate

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 5 / 15



State Processing in DIVINE

new state

deduplicated

seen?

ignored
enqueue

in queue

insert in hash table

no

yes

observations

a state is allocated in new
state
and deallocated if it is a
duplicate
most of the time, only one
copy of the state exists
a pointer to this canonic
copy is stored in the hash
table.

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 5 / 15



Hash Table

why a hash table?
fast insert and lookup
simple
memory efficient

stored states take up almost all memory
individual states are large
and often similar

→ unnecessary redundancy

we need a compressed data structure with behaviour similar
to a hash table

associative container
capable of storing variable length keys
can grow

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 6 / 15



Hash Table

why a hash table?
fast insert and lookup
simple
memory efficient

stored states take up almost all memory
individual states are large
and often similar

→ unnecessary redundancy

we need a compressed data structure with behaviour similar
to a hash table

associative container
capable of storing variable length keys
can grow

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 6 / 15



Hash Table

why a hash table?
fast insert and lookup
simple
memory efficient

stored states take up almost all memory
individual states are large
and often similar

→ unnecessary redundancy

we need a compressed data structure with behaviour similar
to a hash table

associative container
capable of storing variable length keys
can grow

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 6 / 15



Tree Compression

uses redundancy between states:

original states (black = associated data)

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 7 / 15



Tree Compression

uses redundancy between states:

original states + tree decomposition

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 7 / 15



Tree Compression

uses redundancy between states:

three types of tree nodes

roots

forks

leaves

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 7 / 15



Tree Compression

uses redundancy between states:

three types of tree nodes: leaves – parts of original state

roots

forks

leaves

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 7 / 15



Tree Compression

uses redundancy between states:

three types of tree nodes: forks – connect larger parts of state

roots

forks

leaves

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 7 / 15



Tree Compression

uses redundancy between states:

three types of tree nodes: roots – fork + associated data

roots

forks

leaves

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 7 / 15



Tree Compression

uses redundancy between states:

nodes are deduplicated using hash tables, one for each type

roots

forks

leaves

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 7 / 15



Tree Compression

uses redundancy between states:

nodes are deduplicated using hash tables, one for each type

roots

forks

leaves

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 7 / 15



Tree Compression

uses redundancy between states:

nodes are deduplicated using hash tables, one for each type

roots

forks

leaves

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 7 / 15



Tree Compression

uses redundancy between states:

nodes are deduplicated using hash tables, one for each type

roots

forks

leaves

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 7 / 15



Tree Compression

uses redundancy between states:

nodes are deduplicated using hash tables, one for each type

roots

forks

leaves

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 7 / 15



Tree Compression

uses redundancy between states:

nodes are deduplicated using hash tables, one for each type

roots

forks

leaves

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 7 / 15



Tree Compression

uses redundancy between states:

nodes are deduplicated using hash tables, one for each type

roots

forks

leaves

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 7 / 15



Tree Compression

uses redundancy between states:

nodes are deduplicated using hash tables, one for each type

roots

forks

leaves

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 7 / 15



Tree Compression

uses redundancy between states:

nodes are deduplicated using hash tables, one for each type

roots

forks

leaves

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 7 / 15



Tree Compression

uses redundancy between states:

nodes are deduplicated using hash tables, one for each type

roots

forks

leaves

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 7 / 15



Tree Compression

uses redundancy between states:

nodes are deduplicated using hash tables, one for each type

roots

forks

leaves

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 7 / 15



Tree Compression

uses redundancy between states:

nodes are deduplicated using hash tables, one for each type

roots

forks

leaves

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 7 / 15



Tree Compression

uses redundancy between states:

nodes are deduplicated using hash tables, one for each type

roots

forks

leaves

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 7 / 15



Tree Compression

uses redundancy between states:

nodes are deduplicated using hash tables, one for each type

roots

forks

leaves

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 7 / 15



Tree Compression

uses redundancy between states:

nodes are deduplicated using hash tables, one for each type

roots

forks

leaves

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 7 / 15



Tree Compression

the design of a tree-compressed hash table
a state is compressed when inserted
roots are stored using the hash of the entire state in the root
table
the original state can be easily reconstructed by tree traversal

if the underlying hash table is concurrent and resizeable
so is the tree compressed table

queue compressed (pointers to root nodes)

the state space generator can direct the splitting of the state
need not be binary or balanced
but works well even without any modification to the generator

works better for larger state spaces

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 8 / 15



Tree Compression

the design of a tree-compressed hash table
a state is compressed when inserted
roots are stored using the hash of the entire state in the root
table
the original state can be easily reconstructed by tree traversal

if the underlying hash table is concurrent and resizeable
so is the tree compressed table

queue compressed (pointers to root nodes)

the state space generator can direct the splitting of the state
need not be binary or balanced
but works well even without any modification to the generator

works better for larger state spaces

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 8 / 15



Tree Compression

the design of a tree-compressed hash table
a state is compressed when inserted
roots are stored using the hash of the entire state in the root
table
the original state can be easily reconstructed by tree traversal

if the underlying hash table is concurrent and resizeable
so is the tree compressed table

queue compressed (pointers to root nodes)

the state space generator can direct the splitting of the state
need not be binary or balanced
but works well even without any modification to the generator

works better for larger state spaces

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 8 / 15



Tree Compression

the design of a tree-compressed hash table
a state is compressed when inserted
roots are stored using the hash of the entire state in the root
table
the original state can be easily reconstructed by tree traversal

if the underlying hash table is concurrent and resizeable
so is the tree compressed table

queue compressed (pointers to root nodes)

the state space generator can direct the splitting of the state
need not be binary or balanced
but works well even without any modification to the generator

works better for larger state spaces

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 8 / 15



Tree Compression

the design of a tree-compressed hash table
a state is compressed when inserted
roots are stored using the hash of the entire state in the root
table
the original state can be easily reconstructed by tree traversal

if the underlying hash table is concurrent and resizeable
so is the tree compressed table

queue compressed (pointers to root nodes)

the state space generator can direct the splitting of the state
need not be binary or balanced
but works well even without any modification to the generator

works better for larger state spaces

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 8 / 15



State Processing with Compression

new state

deduplicated

seen?

ignored
enqueue

in queue

insert in compressed hash table

no

yes

state is compressed on
insertion into hash table

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 9 / 15



State Processing with Compression

new state

deduplicated

seen?

ignored
enqueue

in queue

insert in compressed hash table

no

yes

state is compressed on
insertion into hash table
most of the time state is
compressed

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 9 / 15



State Processing with Compression

new state

deduplicated

seen?

ignored
enqueue

in queue

insert in compressed hash table

no

yes

state is compressed on
insertion into hash table
most of the time state is
compressed
queue is compressed

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 9 / 15



State Processing with Compression

new state

deduplicated

seen?

ignored
enqueue

in queue

insert in compressed hash table

no

yes

state is compressed on
insertion into hash table
most of the time state is
compressed
queue is compressed
original state is always
deallocated when
compressed

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 9 / 15



Memory Allocation: Scheme

DIVINE allocates many memory blocks
blocks which store compressed nodes only came in limited
number of sizes
blocks generated by the state space generator are short-lived
and came in many different sizes
freed blocks should be reused

the generator, the compression scheme, and the allocator all
need to know the block size

only the allocator can store it compactly

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 10 / 15



Memory Allocation: Scheme

DIVINE allocates many memory blocks
blocks which store compressed nodes only came in limited
number of sizes
blocks generated by the state space generator are short-lived
and came in many different sizes
freed blocks should be reused

the generator, the compression scheme, and the allocator all
need to know the block size

only the allocator can store it compactly

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 10 / 15



Memory Allocation: Scheme

DIVINE allocates many memory blocks
blocks which store compressed nodes only came in limited
number of sizes
blocks generated by the state space generator are short-lived
and came in many different sizes
freed blocks should be reused

the generator, the compression scheme, and the allocator all
need to know the block size

only the allocator can store it compactly

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 10 / 15



Memory Allocation: DIVINE’s Allocator

allocates memory in large slabs
used for the allocation of same-sized memory blocks
remembers the size in each slab

memory is addressed indirectly (slab address + offset)
uses free-lists for memory reuse

slab
block block block block . . .

slab header
alloc. size # allocated # used

works well for tree-compressed nodes

short-lived blocks need optimization
allocated in a special slab for ephemeral memory

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 11 / 15



Memory Allocation: DIVINE’s Allocator

allocates memory in large slabs
used for the allocation of same-sized memory blocks
remembers the size in each slab

memory is addressed indirectly (slab address + offset)
uses free-lists for memory reuse

slab
block block block block . . .

slab header
alloc. size # allocated # used

works well for tree-compressed nodes

short-lived blocks need optimization
allocated in a special slab for ephemeral memory

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 11 / 15



Memory Allocation: DIVINE’s Allocator

allocates memory in large slabs
used for the allocation of same-sized memory blocks
remembers the size in each slab

memory is addressed indirectly (slab address + offset)
uses free-lists for memory reuse

slab
block block block block . . .

slab header
alloc. size # allocated # used

works well for tree-compressed nodes

short-lived blocks need optimization

allocated in a special slab for ephemeral memory

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 11 / 15



Memory Allocation: DIVINE’s Allocator

allocates memory in large slabs
used for the allocation of same-sized memory blocks
remembers the size in each slab

memory is addressed indirectly (slab address + offset)
uses free-lists for memory reuse

slab
block block block block . . .

slab header
alloc. size # allocated # used

works well for tree-compressed nodes

short-lived blocks need optimization
allocated in a special slab for ephemeral memory

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 11 / 15



Memory Allocation: Pointer Size

32 bit pointers – compact but limiting
64 bit pointers – in fact 48 bits used on x86-64

the rest is reserver and should not be used
additional storage in pointer would be useful
our indirect pointers: 39 bit pointer + 25 bit tag
the tag can be used by the tree compression scheme (to
distinguish forks/leaves) and by the hash table (to help in
collision resolution)

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 12 / 15



Results: C and C++ models

 0

 10

 20

 30

 40

 50

 60

 70

20 40 60 80 100

memory [GB]

M states

memory usage with and without compression

no
yes

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 13 / 15



Results: C and C++ models

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

0.125 0.25 0.5 1 2 4 8 16 32 64

memory [GB]

M states

memory usage with and without compression [logscale]

no
yes

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 13 / 15



Results: C and C++ models

memory usage (GB)
Name # of compression ratio

states no yes
pt_rwlock 10.7 M 68 0.88 77×
pt_barrier 128.5 M > 825 5.48 151×
collision 3.0 M 48 0.64 74×
elevator2 33.0 M > 343 2.50 137×
lead-uni_basic 19.2 M 232 0.81 288×
lead-uni_peterson 12.2 M 146 0.64 230×
hashset-2-4-2 6.7 M 133 1.20 111×
hashset-3-1 626.9 M > 15 110 27.51 549×

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 14 / 15



Conclusion, Future Work

Conclusion
enables verification of real-world code
large memory savings (74-550×)
on top of saving from τ+ reduction (50-1000×)
decent performance (no more that 2× slower)
full parallel verification supported with compression code

Future work
more efficient distributed compression
performance optimizations

http://divine.fi.muni.cz Thank you!

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 15 / 15

http://divine.fi.muni.cz


Conclusion, Future Work

Conclusion
enables verification of real-world code
large memory savings (74-550×)
on top of saving from τ+ reduction (50-1000×)
decent performance (no more that 2× slower)
full parallel verification supported with compression code

Future work
more efficient distributed compression
performance optimizations

http://divine.fi.muni.cz Thank you!

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 15 / 15

http://divine.fi.muni.cz


Conclusion, Future Work

Conclusion
enables verification of real-world code
large memory savings (74-550×)
on top of saving from τ+ reduction (50-1000×)
decent performance (no more that 2× slower)
full parallel verification supported with compression code

Future work
more efficient distributed compression
performance optimizations

http://divine.fi.muni.cz Thank you!

Ročkai, Štill, Barnat Techniques for Memory-Efficient Model Checking SEFM 2015 15 / 15

http://divine.fi.muni.cz

