
Formal Verification of C/C++ Programs

Vladimír Štill

Masaryk University
Brno, Czech Republic

18th March 2016

Vladimír Štill Formal Verification of C/C++ Programs 18th March 2016 1 / 11



The Current Situation

Vladimír Štill Formal Verification of C/C++ Programs 18th March 2016 2 / 11



My Work on DIVINE

compression of the state space
reduces memory requirements for LLVM verification, roughly 100 − 500× for
reasonably sized programs (efficiency grows with program size)
bachelor’s thesis, published in SEFM 2015

export of explicit state space from DIVINE
useful for chaining with other tools
case study for probabilistic verification to appear in ACM SAC 2016

verification under more realistic memory models
verification closer to behaviour of real-world memory hierarchies
master’s thesis, preliminary version in MEMICS 2015, extended version submitted for
publication

extended and fixed state space reductions
up to 3× extra reduction
master’s thesis

code maintenance

Vladimír Štill Formal Verification of C/C++ Programs 18th March 2016 3 / 11



My Work on DIVINE

compression of the state space
reduces memory requirements for LLVM verification, roughly 100 − 500× for
reasonably sized programs (efficiency grows with program size)
bachelor’s thesis, published in SEFM 2015

export of explicit state space from DIVINE
useful for chaining with other tools
case study for probabilistic verification to appear in ACM SAC 2016

verification under more realistic memory models
verification closer to behaviour of real-world memory hierarchies
master’s thesis, preliminary version in MEMICS 2015, extended version submitted for
publication

extended and fixed state space reductions
up to 3× extra reduction
master’s thesis

code maintenance

Vladimír Štill Formal Verification of C/C++ Programs 18th March 2016 3 / 11



My Work on DIVINE

compression of the state space
reduces memory requirements for LLVM verification, roughly 100 − 500× for
reasonably sized programs (efficiency grows with program size)
bachelor’s thesis, published in SEFM 2015

export of explicit state space from DIVINE
useful for chaining with other tools
case study for probabilistic verification to appear in ACM SAC 2016

verification under more realistic memory models
verification closer to behaviour of real-world memory hierarchies
master’s thesis, preliminary version in MEMICS 2015, extended version submitted for
publication

extended and fixed state space reductions
up to 3× extra reduction
master’s thesis

code maintenance

Vladimír Štill Formal Verification of C/C++ Programs 18th March 2016 3 / 11



My Work on DIVINE

compression of the state space
reduces memory requirements for LLVM verification, roughly 100 − 500× for
reasonably sized programs (efficiency grows with program size)
bachelor’s thesis, published in SEFM 2015

export of explicit state space from DIVINE
useful for chaining with other tools
case study for probabilistic verification to appear in ACM SAC 2016

verification under more realistic memory models
verification closer to behaviour of real-world memory hierarchies
master’s thesis, preliminary version in MEMICS 2015, extended version submitted for
publication

extended and fixed state space reductions
up to 3× extra reduction
master’s thesis

code maintenance

Vladimír Štill Formal Verification of C/C++ Programs 18th March 2016 3 / 11



My Work on DIVINE

compression of the state space
reduces memory requirements for LLVM verification, roughly 100 − 500× for
reasonably sized programs (efficiency grows with program size)
bachelor’s thesis, published in SEFM 2015

export of explicit state space from DIVINE
useful for chaining with other tools
case study for probabilistic verification to appear in ACM SAC 2016

verification under more realistic memory models
verification closer to behaviour of real-world memory hierarchies
master’s thesis, preliminary version in MEMICS 2015, extended version submitted for
publication

extended and fixed state space reductions
up to 3× extra reduction
master’s thesis

code maintenance
Vladimír Štill Formal Verification of C/C++ Programs 18th March 2016 3 / 11



LLVM Transformations

LLVM IR can be easily transformed before the verification
can be used to extend model checker’s abilities, reduce state space

Libraries

C++ Clang LLVM IR LART LLVM IR DIVINE

Verified property: safety, LTL

OKCounterexample

case study: verification of weak memory models through LLVM transformation

Vladimír Štill Formal Verification of C/C++ Programs 18th March 2016 4 / 11



LLVM Transformations

LLVM IR can be easily transformed before the verification
can be used to extend model checker’s abilities, reduce state space

Libraries

C++ Clang LLVM IR LART LLVM IR DIVINE

Verified property: safety, LTL

OKCounterexample

case study: verification of weak memory models through LLVM transformation

Vladimír Štill Formal Verification of C/C++ Programs 18th March 2016 4 / 11



LLVM Transformations

LLVM IR can be easily transformed before the verification
can be used to extend model checker’s abilities, reduce state space

Libraries

C++ Clang LLVM IR LART LLVM IR DIVINE

Verified property: safety, LTL

OKCounterexample

case study: verification of weak memory models through LLVM transformation

Vladimír Štill Formal Verification of C/C++ Programs 18th March 2016 4 / 11



Weak Memory Models

in CPU a write performed by one thread need not be visible to other thread
immediately
writes can be reordered – with reads or with reads and writes
verifiers often omit this

Solution

the program is instrumented to simulate delayed/reordered writes
adds more nondeterminism to the program
LLVM transformation

Vladimír Štill Formal Verification of C/C++ Programs 18th March 2016 5 / 11



Weak Memory Models

in CPU a write performed by one thread need not be visible to other thread
immediately
writes can be reordered – with reads or with reads and writes
verifiers often omit this

Solution

the program is instrumented to simulate delayed/reordered writes
adds more nondeterminism to the program
LLVM transformation

Vladimír Štill Formal Verification of C/C++ Programs 18th March 2016 5 / 11



Plans

Vladimír Štill Formal Verification of C/C++ Programs 18th March 2016 6 / 11



Plans – Overview

Long Term

improve practical usability of model checking for development of parallel programs
explore the usage of static analysis for pre-processing of programs for DIVINE

Short Term (this year)

more robust compilation of programs for DIVINE
register allocation for LLVM
verification of programs with inputs using SMT (merge of SymDIVINE into
DIVINE)

Vladimír Štill Formal Verification of C/C++ Programs 18th March 2016 7 / 11



Compilation of Programs for DIVINE

currently, DIVINE facilitates a simple wrapper over clang for compilation
together with tweaked LLVM-based linker

DIVINE has to provide own implementation of C/C++/thread/. . . libraries
system configuration and even system headers can leak into DIVINE compilation
hard to integrate into nontrivial build processes (makefiles, cmake,. . . )

Solution

an isolated environment which can access only user-provided sources and DIVINE
libraries
DIVINE compiler which can be used as a drop-in replacement for GCC/clang
ideally it would produce both LLVM bitcode for DIVINE and ELF binary

allow build processes which feature code generating programs

Vladimír Štill Formal Verification of C/C++ Programs 18th March 2016 8 / 11



Compilation of Programs for DIVINE

currently, DIVINE facilitates a simple wrapper over clang for compilation
together with tweaked LLVM-based linker

DIVINE has to provide own implementation of C/C++/thread/. . . libraries
system configuration and even system headers can leak into DIVINE compilation
hard to integrate into nontrivial build processes (makefiles, cmake,. . . )

Solution

an isolated environment which can access only user-provided sources and DIVINE
libraries
DIVINE compiler which can be used as a drop-in replacement for GCC/clang
ideally it would produce both LLVM bitcode for DIVINE and ELF binary

allow build processes which feature code generating programs

Vladimír Štill Formal Verification of C/C++ Programs 18th March 2016 8 / 11



Register Allocation for LLVM

LLVM uses Static Single Assignment (registers not reused)
wastes memory in DIVINE
can prevent state merging (e.g. in optimized busy-waiting cycles)

Solution

allocate registers into slots, reuse slots
differs from register allocation in code generator of a compiler

the number of registers is not fixed
should consider program semantics

Vladimír Štill Formal Verification of C/C++ Programs 18th March 2016 9 / 11



Register Allocation for LLVM

LLVM uses Static Single Assignment (registers not reused)
wastes memory in DIVINE
can prevent state merging (e.g. in optimized busy-waiting cycles)

Solution

allocate registers into slots, reuse slots
differs from register allocation in code generator of a compiler

the number of registers is not fixed
should consider program semantics

Vladimír Štill Formal Verification of C/C++ Programs 18th March 2016 9 / 11



Verification of Programs with Inputs

programs with inputs cannot be fully verified by DIVINE
SymDIVINE can do this for simple programs

a proof-of-concept tool for verification of LLVM programs with inputs

Solution

merge SymDIVINE into DIVINE using an LLVM transformation
the program is to be changed so that it manipulates (parts of) data symbolically
this hybrid program is then executed by DIVINE which uses special algorithm to
explore state space of such programs

Vladimír Štill Formal Verification of C/C++ Programs 18th March 2016 10 / 11



Verification of Programs with Inputs

programs with inputs cannot be fully verified by DIVINE
SymDIVINE can do this for simple programs

a proof-of-concept tool for verification of LLVM programs with inputs

Solution

merge SymDIVINE into DIVINE using an LLVM transformation
the program is to be changed so that it manipulates (parts of) data symbolically
this hybrid program is then executed by DIVINE which uses special algorithm to
explore state space of such programs

Vladimír Štill Formal Verification of C/C++ Programs 18th March 2016 10 / 11



Plans – Overview

Long Term

improve practical usability of model checking for development of parallel programs
explore the usage of static analysis for pre-processing of programs for DIVINE

Short Term (this year)

more robust compilation of programs for DIVINE
register allocation for LLVM
verification of programs with inputs using SMT (merge of SymDIVINE into
DIVINE)

Thanks for your attention!

Vladimír Štill Formal Verification of C/C++ Programs 18th March 2016 11 / 11


	The Current Situation
	Plans

