Vladimir Still

)2 ParaDiSe

Parallel & Distributed

jD Systems Laboratory
Masaryk University

Brno, Czech Republic

18th March 2016

m compression of the state space

m reduces memory requirements for LLVM verification, roughly 100 — 500 for
reasonably sized programs (efficiency grows with program size)
m bachelor’s thesis, published in SEFM 2015

m compression of the state space
m reduces memory requirements for LLVM verification, roughly 100 — 500 for
reasonably sized programs (efficiency grows with program size)
m bachelor’s thesis, published in SEFM 2015
m export of explicit state space from DIVINE

m useful for chaining with other tools
m case study for probabilistic verification to appear in ACM SAC 2016

m compression of the state space
m reduces memory requirements for LLVM verification, roughly 100 — 500 for
reasonably sized programs (efficiency grows with program size)
m bachelor’s thesis, published in SEFM 2015
m export of explicit state space from DIVINE
m useful for chaining with other tools
m case study for probabilistic verification to appear in ACM SAC 2016
m verification under more realistic memory models
m verification closer to behaviour of real-world memory hierarchies

m master’s thesis, preliminary version in MEMICS 2015, extended version submitted for
publication

m compression of the state space

m reduces memory requirements for LLVM verification, roughly 100 — 500 for
reasonably sized programs (efficiency grows with program size)
m bachelor’s thesis, published in SEFM 2015

m export of explicit state space from DIVINE

m useful for chaining with other tools

m case study for probabilistic verification to appear in ACM SAC 2016
m verification under more realistic memory models

m verification closer to behaviour of real-world memory hierarchies
m master’s thesis, preliminary version in MEMICS 2015, extended version submitted for
publication

m extended and fixed state space reductions

® up to 3x extra reduction
m master’s thesis

m compression of the state space

m reduces memory requirements for LLVM verification, roughly 100 — 500 for
reasonably sized programs (efficiency grows with program size)
m bachelor’s thesis, published in SEFM 2015

m export of explicit state space from DIVINE

m useful for chaining with other tools

m case study for probabilistic verification to appear in ACM SAC 2016
m verification under more realistic memory models

m verification closer to behaviour of real-world memory hierarchies
m master’s thesis, preliminary version in MEMICS 2015, extended version submitted for
publication

m extended and fixed state space reductions

® up to 3x extra reduction
m master’s thesis

m code maintenance

B LLVM IR can be easily transformed before the verification
m can be used to extend model checker's abilities, reduce state space

Libraries \

Verified property: safety, LTL

C++ —>[Clang]—>

LLVM IR

J

DIVINE
-

—

Counterexample OK

B LLVM IR can be easily transformed before the verification
m can be used to extend model checker's abilities, reduce state space

Libraries \ Verified property: safety, LTL

C++ —>[Clang]—> LLVM IR —>[LART]—> LLVM IR —>[DIVINE]

Counterexample OK

B LLVM IR can be easily transformed before the verification
m can be used to extend model checker's abilities, reduce state space

Libraries \ Verified property: safety, LTL

C++ —>[Clang]—> LLVM IR —>[LART]—> LLVM IR —>[DIVINE]

Counterexample OK

m case study: verification of weak memory models through LLVM transformation

m in CPU a write performed by one thread need not be visible to other thread

immediately
m writes can be reordered — with reads or with reads and writes

m verifiers often omit this

m in CPU a write performed by one thread need not be visible to other thread

immediately
m writes can be reordered — with reads or with reads and writes

m verifiers often omit this

Solution

m the program is instrumented to simulate delayed/reordered writes
m adds more nondeterminism to the program
m LLVM transformation

Long Term

m improve practical usability of model checking for development of parallel programs
m explore the usage of static analysis for pre-processing of programs for DIVINE

Short Term (this year)

m more robust compilation of programs for DIVINE

m register allocation for LLVM

m verification of programs with inputs using SMT (merge of SymDIVINE into
DIVINE)

m currently, DIVINE facilitates a simple wrapper over clang for compilation
m together with tweaked LLVM-based linker
m DIVINE has to provide own implementation of C/C++/thread/... libraries

m system configuration and even system headers can leak into DIVINE compilation
® hard to integrate into nontrivial build processes (makefiles, cmake,...)

m currently, DIVINE facilitates a simple wrapper over clang for compilation
m together with tweaked LLVM-based linker

m DIVINE has to provide own implementation of C/C++/thread/... libraries
m system configuration and even system headers can leak into DIVINE compilation
® hard to integrate into nontrivial build processes (makefiles, cmake,. . .)

Solution

m an isolated environment which can access only user-provided sources and DIVINE
libraries

m DIVINE compiler which can be used as a drop-in replacement for GCC/clang
m ideally it would produce both LLVM bitcode for DIVINE and ELF binary

m allow build processes which feature code generating programs

m LLVM uses Static Single Assignment (registers not reused)
m wastes memory in DIVINE
m can prevent state merging (e.g. in optimized busy-waiting cycles)

m LLVM uses Static Single Assignment (registers not reused)
m wastes memory in DIVINE
m can prevent state merging (e.g. in optimized busy-waiting cycles)

Solution

m allocate registers into slots, reuse slots
m differs from register allocation in code generator of a compiler

m the number of registers is not fixed
m should consider program semantics

m programs with inputs cannot be fully verified by DIVINE
m SymDIVINE can do this for simple programs

m a proof-of-concept tool for verification of LLVM programs with inputs

m programs with inputs cannot be fully verified by DIVINE
m SymDIVINE can do this for simple programs
m a proof-of-concept tool for verification of LLVM programs with inputs

Solution

m merge SymDIVINE into DIVINE using an LLVM transformation
m the program is to be changed so that it manipulates (parts of) data symbolically
m this hybrid program is then executed by DIVINE which uses special algorithm to

explore state space of such programs

Long Term

m improve practical usability of model checking for development of parallel programs
m explore the usage of static analysis for pre-processing of programs for DIVINE

Short Term (this year)

m more robust compilation of programs for DIVINE
m register allocation for LLVM

m verification of programs with inputs using SMT (merge of SymDIVINE into
DIVINE)

Thanks for your attention!

	The Current Situation
	Plans

