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Libraries \ Verified property: safety, LTL

C++ —>[ Clang ]—> LLVM IR —>[ LART ]—> LLVM IR —>[DIVINE]

Counterexample OK

m case study: verification of weak memory models through LLVM transformation
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immediately
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Solution

m the program is instrumented to simulate delayed/reordered writes
m adds more nondeterminism to the program
m LLVM transformation
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m DIVINE has to provide own implementation of C/C++/thread/... libraries
m system configuration and even system headers can leak into DIVINE compilation
® hard to integrate into nontrivial build processes (makefiles, cmake,. . .)

Solution

m an isolated environment which can access only user-provided sources and DIVINE
libraries

m DIVINE compiler which can be used as a drop-in replacement for GCC/clang
m ideally it would produce both LLVM bitcode for DIVINE and ELF binary

m allow build processes which feature code generating programs
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m wastes memory in DIVINE
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Solution

m allocate registers into slots, reuse slots
m differs from register allocation in code generator of a compiler

m the number of registers is not fixed
m should consider program semantics
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m a proof-of-concept tool for verification of LLVM programs with inputs

Solution

m merge SymDIVINE into DIVINE using an LLVM transformation
m the program is to be changed so that it manipulates (parts of) data symbolically
m this hybrid program is then executed by DIVINE which uses special algorithm to

explore state space of such programs
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Thanks for your attention!
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