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Automatic verification of real-world parallel C & C++4 unit
tests and programs
m race conditions are hard to detect (depend on timing)
m nondeterministic test results
m one failure in several thousand runs
m explicit-state model checking can explore all possible outcomes
m produces counterexample = path to point in the program
violating the property
m should be short and simple
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Model checking of real-world parallel C++4 programs in
DIVINE: what we have

m explicit-state model checking

m support for C and C++ including C++11, pthreads (using
Low Level Virtual Machine bitcode)

m use case: parallel unit test — detect assertion, memory
failure, mutex deadlocks and Linear Temporal Logic violations
in any possible interleaving

m gives a counterexample if property does not hold

m time and memory consuming — multiple reduction strategies
implemented



Goal of this work Thread 1  Thread 2
x =42

m improve on-the-fly exploration
efficiency

m improve counterexample
readability

m should be short
m should not contain
unnecessary context switches

m we primarily target safety
properties
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Bounded Context Switch Model Checking as an inspiration

m well established (especially) in symbolic model checking

m limit number of context switches to some preset value

m idea: common bugs usually require only a few context switches
m state space size is reduced

m may not find all bugs



Our contribution: Context-Switch-Directed Reachability

used as exploration heuristic for explicit-state model checking

implemented for C & C++ models in latest development
version of DIVINE

alternative to parallel breath-first-search-based reachability
explores state space in layers
explores in parallel

number of context switches can be limited (unlimited by
default)



Context-Switch-Directed Reachability: simplified example

O Layer: 0
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Context-Switch-Directed Reachability: simplified example
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Context-Switch-Directed Reachability: simplified example
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m 11 C++ test cases, both real-world bugs and crafted
m 8 with bugs
m compare new Context-Switch-Directed Reachability (= CSDR)
with breath-first-search-based parallel reachability (= reach.)

Counterexample length and number of context switches
(CS = context switch, CE = counterexample):

model CE length # of CSs in CEs

CSDR reach. CSDR  reach.

barrier-1-bug 22 22 - 27 1 1-4
barrier-1-re-bug-2 68 65 — 98 4 8-18
barrier-1-re-bug 90 - 91 90 - 98 12 16 — 28
barrier-1-re-bug-test 120 120 - 123 8 14 - 31
barrier-n-bug 38 38 - 53 1 1-10
fifo-bug 165 -171 164 - 172 4 10 - 16
mutex-part-deadlock 29 23-31 8 9-15
mutex-part-deadlock-2 | 32 -78 22 - 37 9 10 - 17




Time and scalability: without counterexample
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Time and scalability: with counterexample
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Conclusion

verification of parallel unit tests in C & C++

more readable counterexamples

better scalability and result stability

viable heuristic, can speed up counterexample search

little to no overhead in case of correct model
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