Vladimir Still Petr Rockai Jifi Barnat

Parallel & Distributed
jD Systems Laboratory

.}S ParaDiSe

Faculty of Informatics

Masaryk University, Brno

October 18, 2014

C/C++
with threads

(.c/.cpp)

clang
+ DIVINE libs

LLVM bitcode

assertion, memory

Property

safety, LTL

(.bc)

model-checker

DIVINE

| Counterexample

Automatic verification of real-world parallel C & C++4 unit
tests and programs
m race conditions are hard to detect (depend on timing)
m nondeterministic test results
m one failure in several thousand runs
m explicit-state model checking can explore all possible outcomes
m produces counterexample = path to point in the program
violating the property
m should be short and simple

Thread 1 Thread 2 Thread 1 Thread 2
x:=0 | x:=0 |
oy i=x Z
X =2 | X =2 |
® x:i=y Z
assert(x == 2) assert(x == 2)

Model checking of real-world parallel C++4 programs in
DIVINE: what we have

m explicit-state model checking

m support for C and C++ including C++11, pthreads (using
Low Level Virtual Machine bitcode)

m use case: parallel unit test — detect assertion, memory
failure, mutex deadlocks and Linear Temporal Logic violations
in any possible interleaving

m gives a counterexample if property does not hold

m time and memory consuming — multiple reduction strategies
implemented

Goal of this work Thread 1 Thread 2
x =42

m improve on-the-fly exploration
efficiency

m improve counterexample
readability

m should be short
m should not contain
unnecessary context switches

m we primarily target safety
properties

BYPUMS IX3}U0

m without negatively affecting
verification of bug-free
programs assert(x!

[—
o
N—r

Bounded Context Switch Model Checking as an inspiration

m well established (especially) in symbolic model checking

m limit number of context switches to some preset value

m idea: common bugs usually require only a few context switches
m state space size is reduced

m may not find all bugs

Our contribution: Context-Switch-Directed Reachability

used as exploration heuristic for explicit-state model checking

implemented for C & C++ models in latest development
version of DIVINE

alternative to parallel breath-first-search-based reachability
explores state space in layers
explores in parallel

number of context switches can be limited (unlimited by
default)

Context-Switch-Directed Reachability: simplified example

O Layer: 0

Context-Switch-Directed Reachability: simplified example

|

Layer: 0

O @

Context-Switch-Directed Reachability: simplified example

|

/‘\/\'

o @

Layer: 0

Context-Switch-Directed Reachability: simplified example

|

/‘\/\'

C——0

Layer: 0

Context-Switch-Directed Reachability: simplified example

‘
. Layer done

T

Context-Switch-Directed Reachability: simplified example

‘
O Layer init

i

Context-Switch-Directed Reachability: simplified example

|

/.\ e

O— o @
:

Context-Switch-Directed Reachability: simplified example

|

/.\ e

—p T e
T

Context-Switch-Directed Reachability: simplified example

|

.—*t /.\/.\.
?

o @

Context-Switch-Directed Reachability: simplified example

.—*t AA.
o g °

Context-Switch-Directed Reachability: simplified example

.—*t /.\/.\.
¥

?
!

Context-Switch-Directed Reachability: simplified example

v
/°\;,\ o
o e
0

?
:

m 11 C++ test cases, both real-world bugs and crafted
m 8 with bugs
m compare new Context-Switch-Directed Reachability (= CSDR)
with breath-first-search-based parallel reachability (= reach.)

Counterexample length and number of context switches
(CS = context switch, CE = counterexample):

model CE length # of CSs in CEs

CSDR reach. CSDR reach.

barrier-1-bug 22 22 - 27 1 1-4
barrier-1-re-bug-2 68 65 — 98 4 8-18
barrier-1-re-bug 90 - 91 90 - 98 12 16 — 28
barrier-1-re-bug-test 120 120 - 123 8 14 - 31
barrier-n-bug 38 38 - 53 1 1-10
fifo-bug 165 -171 164 - 172 4 10 - 16
mutex-part-deadlock 29 23-31 8 9-15
mutex-part-deadlock-2 | 32 -78 22 - 37 9 10 - 17

Time and scalability: without counterexample

Wall Time [s] barrier-1-re Wall Time [s] fifo
Algorithm
1000 | CSDR I
12 Reachability I
800 10
600 87
6
400
4
200 5
0 - 0

Threads Threads
6 6

Time and scalability: with counterexample

Wall Time [s] barrier-1-re-bug-2 Wall Time [s] mutex-partial-deadlock-2
Algorithm

10 CSDR |

2000 | Reachability NN

120

100 7
1500

80

60 1000
40 |
500
20

Threads Threads
0 6

Conclusion

verification of parallel unit tests in C & C++

more readable counterexamples

better scalability and result stability

viable heuristic, can speed up counterexample search

little to no overhead in case of correct model

http://divine.fi.muni.cz

Conclusion
verification of parallel unit tests in C & C++
more readable counterexamples

[

[

m better scalability and result stability

m viable heuristic, can speed up counterexample search
[

little to no overhead in case of correct model

Future work
m extension to Linear Temporal Logic model checking

m extension to other input formalisms

http://divine.fi.muni.cz

Conclusion
verification of parallel unit tests in C & C++

more readable counterexamples

[

[

m better scalability and result stability

m viable heuristic, can speed up counterexample search
[

little to no overhead in case of correct model

Future work
m extension to Linear Temporal Logic model checking

m extension to other input formalisms

http://divine.fi.muni.cz Thank you.

http://divine.fi.muni.cz

