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Abstract

Autonomous control systems use various sensors to decrease the amount of un-
certainty under which they operate. While providing partial observation of the
current state of the system, sensors require resources such as energy, time and
communication. We consider discrete systems with non-deterministic transi-
tions and multiple observation modes. The observation modes provide different
information about the states of the system and are associated with non-negative
costs. We consider several control problems. First, we aim to construct a control
and observation mode switching strategy that guarantees satisfaction of a finite-
time temporal property given as a formula of syntactically co-safe fragment of
LTL (scLTL) and at the same time, minimizes the worst-case cost accumulated
until the point of satisfaction. Second, the bounded version of the problem is
considered, where the temporal property must be satisfied within given finite
time bound. Last, we provided means to allow express specification as more al-
ternative tasks with priority rules and strategy is synthesized according to the
rules. We present correct and optimal solutions to all proposed problems and
demonstrate their usability on a case study motivated by robotic applications.
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CHAPTER 1
Introduction

Embedded systems used in transportation, medical and other safety critical ap-
plications typically operate under uncertainty. The source of the uncertainty can
be of two types. The internal uncertainty is bounded to the system’s control in-
puts such as noisy actuators in mobile robots. The external uncertainty arises
from the system’s interaction with the environment such as other robots or peo-
ple operating in the same space. In order to lower the amount of uncertainty,
sensors are deployed to provide information about the current state of the sys-
tem. Individual sensors and their combinations may provide varying, partial
observation of the current state of the system. At the same time, their deploy-
ment requires resources such as energy, time or communication.

The field of sensor scheduling studies the problem of the deployment of sen-
sors in order to optimize estimation of a signal connected to the system’s state.
There is a wide range of results, e.g., for linear systems [VZA`10], hybrid sys-
tems [FTR08] and for applications in robot motion planning [OGM`15]. The
field of information gathering assumes a fixed set of sensors and aims to find a
control strategy for the system that optimizes estimation of the signal. Recently, a
problem combining optimization with temporal objectives has been considered
in information gathering for discrete systems [JSB13].

Partial observability has been extensively studied for discrete systems in ar-
tificial intelligence and game theory. The main focus is typically on partially ob-
servable Markov decision processes (POMDPs) that model both partial obser-
vation and probabilistic uncertainties. The optimization objectives include ex-
pected total cost over finite horizon [CCGK15a], and expected average or dis-
counted total cost over infinite horizon [KLC98, PGT03]. Besides optimization
objectives, many systems also operate under temporal constraints. Recently, tem-
poral logics such as Linear Temporal Logic (LTL) or Computation Tree Logic
(CTL) have been increasingly used to specify temporal properties of systems
such as reachability, safety, stability of response. It might happen that the objec-
tive is not feasible without violating some of the temporal constraint. The aim
is then to find the least violating strategy according to the priority assigned to
constraints [THK`13,CCT`13].

The overview of results for partially observable stochastic games (with PO-
MDPs as a subclass) with respect to various classes of temporal objectives can be
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1. Introduction

found in [CDH13]. It is important to note that most of the problems of quantita-
tive nature formulated for POMDPs are undecidable to solve precisely or even
to approximate [CDH13, MHC03]. All the above results consider systems with
one fixed observation mode that can be seen as a deployment of a single sensor.

Comparing to the aforementioned fields of study, in this work we focus on a
problem that combines the optimal and temporal control for systems with mul-
tiple observation modes. We present a discrete system for modeling the above
setting referred to as a non-deterministic transition system (NTS) with observation
modes. The non-determinism can be used to model both the internal and external
uncertainty of the system whereas observation modes capture the sensing capa-
bilities. In every step of an execution of the system, one decides which mode of
partial observation to activate. Activation of each observation mode is associated
with a non-negative cost. An example of a robotic system with limited energy re-
sources and multiple sensing capabilities is a planetary rover. In [OGM`15], the
authors design an optimal schedule for the use of a localization system in a rover
that minimizes energy consumption while at the same time guarantees safe path
following. While sensor readings are typically continuous, in this work we as-
sume that the set of readings that affect decision-making can be represented by
a finite set, e.g., sets of values satisfying the same constraints.

We consider the following three problems. First, the aim is to construct a
control and observation mode switching strategy for an NTS with observation
modes that (i) guarantees satisfaction of a finite-time temporal property given
as a formula of syntactically co-safe fragment of LTL (scLTL) and (ii) minimizes
the worst-case cost accumulated until the point of satisfaction. The second prob-
lem considers the bounded version of the above problem, where the temporal
property is required to be satisfied in at most k ě 1 steps. Last, we generalized
the first problem by providing means for building more complex formulas. Pri-
orities can be assigned to building blocks of formula and strategy which takes
into account priorities is then constructed.

Leveraging techniques from automata-based model checking and graph the-
ory, we present correct and optimal solutions to all mentioned problems. We jus-
tify our restriction to objectives over finite time horizon since more intriguing
problems, e.g., involving infinite-time temporal properties and cost functions,
and probabilistic models, turns out to be undecidable. At the same time, tempo-
ral properties over finite horizon offer lower computational and strategy com-
plexity compared to the general class of temporal properties and cover many
interesting properties typically considered, e.g., in robotic applications [KYV01,
JSB13,UWB14].

To the best of our knowledge, discrete systems with multiple modes were first
considered only recently in [CMH08,CM11], where the authors focus on control
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1. Introduction

with respect to properties in infinite time horizon. The most related work to ours
is [BG11] that considers a variation of POMDPs, where at each step the user can
either choose to use the partial information or pay a fixed cost and receive the
full information about the current state of the system. The authors discuss the
problems of minimizing the worst-case or expected total cost before reaching a
designated goal state with probability 1. While the former problem has optimal,
polynomial solution, the latter proves undecidable.

The main contribution of this work is introducing a new model that extends
the one in [BG11] in the sense that we allow multiple observation modes with
varying costs. We design correct and optimal strategies to control such models
to guarantee an scLTL formula while minimizing the corresponding cost, over
bounded or unbounded time horizon.
The thesis is structured as follows. In Chapter 2 we offer a quick introduction
to control synthesis. Next, in the Chapter 3 we introduce a formalism, NTS with
observation modes, for modeling robotic systems operating under uncertainty. In
Chapter 4 is presented a fragment of LTL, co-safe LTL, which is specification lan-
guage for which we can guarantee satisfaction in a finite time. Examined prob-
lems are formulated in Chapter 5 and corresponding solutions are provided in
Chapter 7. Last, in Chapter 8 we demonstrate usability of proposed algorithms
on a case study motivated by robotic applications.
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CHAPTER 2
Preliminaries

In this chapter we first familiarize the reader with the basic terminology used
throughout this thesis. After that, we give a brief, intuitive introduction to con-
trol and planning. Real world motivation for studying proposed problems are
provided.

2.1 Notation

For a set X, we use X˚ to denote the set of all finite sequences of elements of X.
The Xω denotes the set of all infinite sequences.

Given a sequence σ “ x0 . . . xn P X˚. Prefix of σ is every word x0 . . . xi, where
0 ď i ď n. Suffix of σ is every word xi . . . xn, where 0 ď i ď n. Prefix (suffix) σ1 of
σ is a strict prefix (strict suffix) iff σ ‰ σ1. Similarly is the above defined for infinite
sequences.

A finite sequence σ “ x0 . . . xn P X˚ has length |σ| “ n` 1, σpiq “ xi is the
i-th element and σi “ σpiq . . . σpnq is the suffix starting with the i-th element, for
0 ď i ď n.

Similarly, for an infinite sequence ρ “ x0x1 . . . P Xω, ρpiq “ xi for all i ě 0. A
prefix of a finite sequence σ or an infinite sequence ρ is any sequence σp0q . . . σpkq
for 0 ď k ď |σ| or ρp0q . . . ρpkq for k ě 0, respectively.

2.2 Introduction to Control Synthesis

Robotics addresses automated physical devices with sensing, actuation, compu-
tation and moving capabilities. These devices are usually characterized by high
dimensional control space. In a real world applications are devices sometimes
too complex to be sufficient to specify their behavior directly. While they oper-
ate with low-level instructions, such as to set impulse to a motor or to get data
from sensor, it becomes a fundamental need to automatically convert a high-
level specification to this low-level description determining robot’s behavior.
This automated process of converting a high-level specification to the low-level
description is referred as control synthesis and resulting description is usually
called scheduler, controller or strategy .
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2. Preliminaries

Robot Strategy

sensing

actuation

belief actualization

Figure 2.1: Control Flow

The problem of control synthesis is the counterpart to formal verification. Whe-
reas the aim of formal verification is to prove correctness of a given system with
respect to some property, i.e., to verify that all runs of the system satisfy the
property, the aim of control synthesis is to partially design the system such that
it meets the requirements, i.e., create a strategy restricting runs of the system to
those satisfying the property.

Strategy can be seen as a function, which on the basis of information from
sensors and inner belief about the state of controlled system, determines how to
act. The robot control loop is depicted in the Figure 2.2. If the strategy meets the
requirements we say it is feasible.

Often it is also desirable to minimize resource consumption, such as energy
or time. If the strategy is the best among all feasible strategies with respect to
quality criterion, we call it optimal. Sometimes it is difficult to even formulate the
right criterion to optimize and even if it is formulated, it may be undecidable to
find an optimal strategy.

Despite the fact both environment and the robot itself are of continuous na-
ture, they are frequently modeled by discrete state systems. States of system may
capture robot’s internal configuration as well as configuration of external objects.
It is then natural to express a possible change of the world by specifying ensu-
ing states. It can be done e.g., by listing all possible successors of each state. Also
probability distribution above successors could be provided.

Example 1. In [OGM`15], the authors present the space rover as an example of the
autonomous system which requires a cautious proceeding. The aim of the robot is to follow
the previously learned track (referred as the safe corridor). To be able to navigate itself in
space, the robot is equipped with a camera for visual localization and wheel odometry
sensors aiding motor controllers. The authors focus on synthesis of perception strategy
which saves perception-related energy. Figure 2.2 shows the space rover together with an
example of energy-optimal perception plan.

5



2. Preliminaries

Figure 2.2: The space rover and an example of energy-optimal perception plan
from [OGM`15]. The task of the robot is to stay in the safe corridor, decorated
in green.
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CHAPTER 3
Formal Model

The main motivation for the problem formulated in this work is a robotic system,
e.g., an autonomous car driving in an urban-like environment, that involves un-
certainty originating, e.g., from the motion of the robot such as noisy actuators
of the car or from interaction with dynamic elements in the environment such
as pedestrians on streets. Typically, the system is equipped with a set of sensors,
where each sensor provides a partial information about the uncertainties. As a
suitable formal model for described setting we use non-deterministic transition
system with observation modes.

The chapter is organized as follows. First, in Section 3.1, we introduce non-
deterministic transition system (NTS), which can be used to model the motion
capabilities of the robot in a partitioned environment and its interaction with
the dynamic elements. This model is used when a robot is influenced by non-
controllable inputs and it is hard to estimate frequency or exact impact of these
inputs. Even if we have full knowledge about factors playing a considerable role
in the future development of system, still it may be so complex that its future
state cannot be predicted to any great degree of certainty.

In Section 3.2 we introduce NTS with observation modes in order to be able to
capture sensing abilities of the robot. NTS with observation modes is partially
observable system where accuracy of observation depends on the active obser-
vation mode. An observation mode represents a set of deployed sensors.

Finally, in Section 3.3, we formally define strategy for NTS with observation
modes. The definition follows the fact that robot’s behavior must be determined
by so far made observations.

3.1 Non-deterministic Transition System

Definition 1 (NTS). A non-deterministic transition system (NTS) is a tuple 𝒩 “

pS, A, T, sinit, AP, Lq, where

∙ S is a non-empty finite set of states,

∙ A is a non-empty finite set of actions,

∙ T : Sˆ A Ñ 2S, is a transition function,

7



3. Formal Model

∙ sinit P S is the initial state,

∙ AP is a set of atomic propositions,

∙ L : S Ñ 2AP is a labeling function.

A run of a NTS is an infinite sequence s0s1 . . . P Sω such that for every i ě 0
there exists a P A with si`1 P Tpsi, aq. A finite run is a finite prefix of a run of the
NTS.

States of NTS can represent both, the inner configuration of the robot, e.g.,
robot’s position or rotation of robotic arm, as well as the state of the world sur-
rounding the robot, e.g., position and states of other objects. Dependencies be-
tween states are expressed by transition relation. We can capture both internal
and external events in transition relation.

In general, for every state there are several possible successors and we do
not have any certainty about ensuing state. Non-deterministic choice represents
events which cannot be controlled by robot itself. Usually, NTS is used in a way,
where individual actions represent alternatives which can be controlled by the
system, e.g., movements of a robot. On the other hand non-determinism which
occurs after taking an action represents non-controllable effects, such as external
events or inaccuracy of system’s abilities, e.g., pedestrian might enter the road,
robot after move is not precisely where it intends to be.

Without loss of generality we suppose that states cannot be distinguished
based on available actions, i.e., for each two states the set of available actions
coincides.

3.2 NTS with Observation Modes

In practice, to deal with system’s uncertainty, sensors are used to provide in-
formation about the current state of the system. For example, in mobile robotics
sensors can be used to help determine robot’s position or to detected pedestrians
in streets. We formalize this concept by basically giving decomposition of state
space to equivalence classes with respect to some observation (such as a color or
temperature). Usually some kind of resources are required to obtain information
from sensors, such as time for communication or energy.

Definition 2 (NTS with observation modes). A NTS with observation modes is a
tuple p𝒩 , O, Mq, where

∙ 𝒩 “ pS, A, T, sinit, AP, Lq is NTS,

∙ O is a non-empty finite set of observations,

8



3. Formal Model

∙ M is a non-empty finite set of observation modes. Every observation mode m P M
is associated with an observation function γm : S Ñ 2O and a cost gm P R`0 .

The observation modes of the NTS then represent possible subsets of sensors
and the cost of an observation mode corresponds to the amount of resources
such as energy or communication needed to deploy the chosen set of sensors for
a single step. During executions of the system, only the observations associated
with the current state of the NTS and the chosen observation mode are available.
Hence, the current state of the system might not be uniquely recognized.

Example 2. Consider an NTS 𝒩 “ pS, A, T, sinit, AP, Lq, where S “ ts1, . . . , s7u,
A “ ta, bu, sinit “ s1 and the transition function is as depicted in Fig. 3.1. We let AP “
t‹,Nu and the labeling function is indicated in Fig. 3.1, i.e., Lps6q “ t‹u, Lps5q “ tNu
and Lpsiq “ H for every i ‰ 5, 6. Consider three observation modes M “ tm1, m2, m3u

for 𝒩 such that their respective observation functions γ1, γ2, γ3 report neither the shape
nor the color, only the shape and both the shape and the color of the state as shown in
Fig. 3.1. Hence, the set of observations is

O “ twhite, blue, red,
circle, rectangle, diamondu

For example, for state s2 the observation functions are defined as γ1ps2q “ H, γ2ps2q “

trectangleuγ3ps2q “ trectangle, blueu. The costs of the observation modes are g1 “

0, g2 “ 1, g3 “ 2.

s1start

s2

s3

s4

s5

s6

s7

a
a

a

a
b

a
b

a
b

a

a

a

Figure 3.1: Example of an NTS with observation modes. For full description see
Example 2.

A run of a NTS with observation modes is an infinite sequence ρ “ ps0, m0q

ps1, m1q . . . P pS ˆ Mqω such that s0s1 . . . is a run of the NTS. A finite run σ “

ps0, m0q . . . psn, mnq P pS ˆ Mq˚ of the NTS with observation modes is a finite

9



3. Formal Model

prefix of a run. A pair ps, mq P S ˆ M of a state and an observation mode is
called a configuration.

Given a finite run σ “ ps0, m0q . . . psn, mnq, we define the cost of σ as follows

gpσq “
n
ÿ

i“0

gmi . (3.1)

The observational trace of a run ρ “ ps0, m0qps1, m1q . . . is the sequence γpρq “
γm0ps0qγm1ps1q . . . P p2Oqω and the propositional trace of ρ is the sequence Lpρq “
Lps0qLps1q . . . P p2APqω. The observational and propositional traces of finite runs
are defined analogously.

Intuitively, the observational trace of a run ρ is a sequence of observations
observed during the run. The propositional trace is a sequence of atomic propo-
sitions which held during the run.

3.3 Strategy

The robot behavior is determined by specifying the action to make and sensors
to deploy while it has the choice. The decision has to be uniquely determined
by observations made so far since the robot has no other means to observe its
status and outside conditions.

Definition 3 (Strategy). Given a NTS with observation modes p𝒩 , O, Mq, a (observa-
tion-based control and observation scheduling) strategy is a function C : p2Oq˚ Ñ Aˆ
M that defines the action and the observation mode to be applied in the next step based
only on the sequence of past observations.

Remark 1. Note that this definition does not capture the case when one wants to use
repeatedly different multiple observation modes in one state of NTS. Nevertheless, we can
simulate this behavior with our model by adding self loop transition above every state of
the NTS (under some unique action).

We use σC and ρC to denote finite and infinite runs of the NTS 𝒩 induced by
a strategy C, respectively. Note that for every configuration ps, mq, the strategy C
induces a non-empty set of runs ρC with ρCp0q “ ps, mq.

10



CHAPTER 4
Formal Specification

Given a model of robot’s abilities and its possible interaction with outside world,
it is necessary to formally describe desired properties of a system to meet design
intentions. In terms of a formal model it means to identify runs which are con-
sidered as “good” and “bad” runs.

Means used to formal description of desirable properties vary depending on
the used model. In connection with non-deterministic transition system tempo-
ral logic is often used, e.g., Linear Temporal Logic (LTL) or Computation Tree
Logic (CTL), allowing to specify temporal properties of systems such as reacha-
bility, safety, stability of response.

In this chapter we introduce Complementary Safe Linear Temporal Logic (co-
safe LTL) as a high-level specification language. It is fragment of linear temporal
logic (LTL) including those formulas which satisfaction can be guarantee in a
finite time.

4.1 Complementary Safe LTL

Linear Temporal Logic (LTL) is a modal logic with modalities referring to ti-
me [Pnu77]. Formulas of LTL are interpreted over infinite words such as the
propositional traces generated by runs of a NTS with observation modes.

In formal verification, safety fragment of LTL is widely studied, for which the
problem of verification is reduced on reachability problem. The violation of the
safety LTL formula can be demonstrably shown with using a finite witness of
violation. Dually, for the control synthesis problem is often co-safe fragment of
LTL considered. Co-safe fragment of LTL, or co-safe LTL, contains all LTL for-
mulas such that every satisfying infinite word has a good finite prefix [KYV01].
A good finite prefix is a finite word such that every its extension to an infinite
word satisfies the formula.

A class of co-safe LTL formulas that are easy to characterize are syntactically
co-safe LTL formulas [Sis94]. We focused on this class of formulas since for gen-
eral LTL formula the problem of deciding whether it is safety (co-safety) formula
is PSPACE-complete in the size of formula [Sis94].

11



4. Formal Specification

Definition 4 (scLTL). Syntactically co-safe LTL (scLTL) formulas over AP are the LTL
formulas formed as follows:

ϕ :: p |  p | ϕ^ ϕ | ϕ_ ϕ | X ϕ | ϕ U ϕ | F ϕ,

where p P AP,^ (conjunction) and_ (disjunction) are Boolean operators, and X (next),
U (until) and F (future or eventually) are temporal operators.

Remark 2. To express properties over bounded time horizon, bounded temporal opera-
tors Uďk, Fďk are often used in the literature. Note that these can be encoded using the
operators from Definition 4.

Definition 5 (Satisfaction relation of scLTL). The satisfaction relation |ù is recur-
sively defined as follows. For a word w P p2APqω, we let:

w |ù p ô p P wp0q,
w |ù  p ô p R wp0q,
w |ù ϕ1 ^ ϕ2 ô w |ù ϕ1 and w |ù ϕ2,
w |ù ϕ1 _ ϕ2 ô w |ù ϕ1 or w |ù ϕ2,
w |ù X ϕ ô w1 |ù ϕ,
w |ù ϕ1 U ϕ2 ô there exists i ě 0 : wi |ù ϕ2,

and for all 0 ď j ă i : wj |ù ϕ1
w |ù F ϕ ô there exists i ě 0 : wi |ù ϕ.

Even though scLTL formulas have infinite-time semantics, their satisfaction
is guaranteed in finite time through the concept of good finite prefixes described
earlier. Given an scLTL formula ϕ, by gfppϕq we denote a language of all good
finite prefixes of ϕ. For every scLTL formula ϕ, the language gfppϕq is regu-
lar [KYV01]. Thus, for every scLTL formula ϕ one can construct a finite automata
which accepts the language gfppϕq. The construction of DFA is described in Sec-
tion 4.2.

A run ρ of a NTS with observation modes satisfies an scLTL formula ϕ, de-
noted as ρ |ù ϕ, if a propositional trace Lpρq |ù ϕ or, equivalently, if there exists a
finite prefix ρϕ of ρ such that Lpρϕq is a good finite prefix for the formula ϕ. We
refer to prefixes ρϕ as the good finite prefixes of the run ρ for the formula ϕ. We
say that a strategy C satisfies ϕ starting from a configuration ps, mq if ρC |ù ϕ for
every run ρC such that ρCp0q “ ps, mq.

4.2 Translating scLTL Formula to Finite Automata

In this section we describe translation of an scLTL formula to a finite automata, as
presented in [KYV01], such that resulting automata accepts exactly those words
which satisfy the formula.

12



4. Formal Specification

Definition 6 (Büchi automata). A non-deterministic Büchi automata (NBA) is a tuple
𝒜 “ pQ, 2AP, δ, Q0, Fq, where

∙ Q is a non-empty finite set of states,

∙ 2AP is the alphabet,

∙ δ : Qˆ 2AP Ñ 2Q is a transition function,

∙ Q0 Ď Q is the set of initial states,

∙ F Ď Q is a non-empty set of accepting states.

A run of a NBA is an infinite sequence q0q1 . . . P Qω such that q0 P Q0 and for
every i ě 0, there exists X P 2AP such that qi`1 P δpqi, Xq. A run q0q1 . . . is called
accepting if for infinitely many i P N we have qi P F. A word w is accepted
by NBA if it induces an accepting run. We define the set Lp𝒜q to be the set of
exactly those words which are accepted by DFA 𝒜. A subset of states Q1 Ď Q is
called universal whenever holds Lp𝒜1q “ p2APqω, where 𝒜1 “ pQ1, 2AP, δ, Q0, Fq.
Intuitively, set of states is called universal if all words are accepted when is set
as a set of initial states.

Definition 7 (DFA). A deterministic finite automata (DFA) is a tuple 𝒜 “ pQ, 2AP,
δ, q0, Fq, where

∙ Q is a non-empty finite set of states,

∙ 2AP is the alphabet,

∙ δ : Qˆ 2AP Ñ Q is a transition function,

∙ q0 P Q is the initial state,

∙ F Ď Q is a non-empty set of accepting states.

A run of a DFA is a finite sequence q0q1 . . . qn P Q˚ such that for every i ě 0,
there exists X P 2AP such that qi`1 “ δpqi, Xq. Every finite word w P p2APq˚

induces a run of the DFA. A run is called accepting if its last state is an accepting
state. A word w is accepted by the DFA if it induces an accepting run. We define
the set Lp𝒜q to be the set of exactly those words which are accepted by DFA 𝒜.

13



4. Formal Specification

Translation of formula ϕ proceeds in the following steps:

∙ Let 𝒜 “ pQ, 2AP, δ, Q0, Fq be NBA for ϕ constructed using standard tech-
niques, e.g., the one described in [BK08].

∙ Construct DFA 𝒜1 “ p2Q, 2AP, δ1, tQ0u, F1q from 𝒜 using subset construc-
tion [BK08]. The set of accepting states F1 is consisting of all universal sets
of 𝒜.

Given NBA 𝒜. Let Q be a set of states of 𝒜. The universality problem for
Q1 Ď Q is known to be PSPACE-complete. It is proved that maximum size of
resulted DFA is doubly exponential with respect to the translated scLTL for-
mula [KYV01].

Example 3. Consider the set of atomic propositions AP “ t‹u. An example of an scLTL
formula over AP is ϕ “ F ‹. A corresponding minimal DFA 𝒜 for ϕ is shown in Fig. 3.

q0start q1

H

t‹u

H, t‹u

Figure 4.1: A minimal DFA for the scLTL formula ϕ “ F ‹.

Remark 3. In general is the size of DFA 𝒜ϕ which accepts all good finite prefixes of
ϕ is doubly exponential. However, an automata which accept at least one good prefix of
every computation that does satisfy ϕ can be computed in single exponential time (so
called fine automata) [KYV01]. For many applications it is sufficient to compute with
this automata. However, for purposes of this work it is inevitable to construct DFA which
accepts exactly all good finite prefixes.
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CHAPTER 5
Problem Formulation

In this chapter we formulate problems treated in this work. The main motivation
for the problem formulated in this work is a robotic system, e.g., a space rover
driving in a dynamic environment, equipped with a high energy consumption
sensors. Desirable is to economically control the robot to fulfill the given task.

First, in Section 5.1, the aim is to construct a strategy for an NTS with obser-
vation modes such that a satisfaction of assigned task, given as scLTL formula, is
guaranteed and at the same time it is perception-optimal. Next, in Section 5.2, we
consider the bounded version of the above problem. Last, in Section 5.3, we gen-
eralized the problem from Section 5.1 by providing operators allowing to build
complex missions from tasks and at the same time supporting specification of
priority rules for parts of the mission.

5.1 Optimal Task Control

We assume that the system is given a temporal objective in the form of an scLTL
formula ϕ over the set of atomic propositions AP. From now on we refer to an
scLTL formula as a task and we use TaskspAPq to denote the set of all tasks over
AP.

Our aim is to synthesize a strategy such that any possible run meets the task,
i.e., we want to automatically create a plan which specifies a set of sensors to be
deployed and an action to be taken in every step. At the same time it is desired to
optimize the use of sensors for the worst case run. Since we cannot predict non-
controllable inputs to any degree of certainty, it seems to be reasonable approach
to target the optimization of the worst case.

Definition 8 (Task cost). Given a task ϕ, an initial configuration ps, mq and a strategy
C that satisfies the task ϕ, we define the following cost function:

VpC, ps, mq, ϕq “ max
ρC,ρCp0q“ps,mq

min
ρϕ,ρϕρ1“ρC

gpρϕ
q. (5.1)

Intuitively, the cost VpC, ps, mq, ϕq of a strategy C with respect to the task ϕ
and the configuration ps, mq is the worst-case cumulative cost of the (earliest)
satisfaction of ϕ using C starting from configuration ps, mq.
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5. Problem Formulation

Problem 1 (Optimal task control). Given

∙ a NTS with observation modes p𝒩 , O, Mq, where 𝒩 “ pS, A, T, sinit, AP, Lq,

∙ an initial observation mode minit P M,

∙ a task, i.e., an scLTL formula, ϕ over AP,

find an observation-based control and observation scheduling strategy C such that

1. C satisfies ϕ starting from the configuration psinit, minitq,

2. the cost VpC, psinit, minitq, ϕq is minimized over all strategies satisfying ϕ start-
ing from the configuration psinit, minitq.

5.2 Bounded Optimal Task Control

It might be desired to fulfill the task completion within some bound on number
of steps taken in the transition system. Note that if the system satisfy the task
then there exists a finite bound such that the completion of the task is always
guaranteed within this bound.

Problem 2 (Bounded optimal task control). Given

∙ NTS with observation modes p𝒩 , O, Mq, where 𝒩 “ pS, A, T, sinit, AP, Lq,

∙ an initial observation mode minit P M,

∙ a task ϕ over AP,

∙ a finite bound k ě 0,

find an observation-based control and observation scheduling strategy C such that

1. C satisfies ϕ starting from the configuration psinit, minitq in at most k steps, and,

2. the cost VpC, psinit, minitq, ϕq is minimized over all strategies satisfying ϕ start-
ing from the configuration psinit, minitq in at most k steps.

Example 4. Consider the NTS with observation modes introduced in Example 2 with
initial observation mode m1 and the task from Example 3 that requires to reach the state
labeled with ‹ , i.e., state s6.

Note that only in states s2, s3, s4 there is more than one action allowed and hence it
suffices to discuss strategies based on their decision in these states. No strategy C with
CpHq “ pa, m1q, i.e., a strategy that applies action a starting from the initial state s1
and activates observation mode m1 in the next state, can guarantee satisfaction of the
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5. Problem Formulation

formula. The reason is that the three states s2, s3, s4 cannot be told apart using mode m1
and both actions a, b always in at least one case lead to state s7 from which s6 cannot be
reached.

Consider strategy C1 that recognizes the shape of the three states s2, s3, s4, i.e.,

C1pHq “ pa, m2q,
C1pHtrectangleuq “ pa, m1q,

C1pHtdiamonduq “ pb, m1q.

Strategy C1 guarantees a visit to s6 in at most 3 steps and its cost VpC1, psinit, m1q, ϕq “
1.

Alternatively, consider strategy C2 that recognizes both the shape and the color of the
three states s2, s3, s4, i.e.,

C1pHq “ pa, m3q,
C1pHtrectangle, blueuq “ pb, m1q,

C1pHtrectangle, reduq “ pa, m1q,
C1pHtdiamond,whiteuq “ pb, m1q.

Strategy C2 guarantees a visit to s6 in 2 steps and its cost VpC2, psinit, m1q, ϕq “ 2.
Strategy C1 is the solution to the optimal scLTL control Problem 1 as its cost is lower
than the cost of C2. However, if we consider the bounded optimal scLTL control Problem 2
with k “ 2, then C2 is the solution as C1 may need more than 2 steps to reach s6.

5.3 Optimal Mission Control

In this section we focus on instances when either desired behavior cannot be
completely guaranteed, e.g., due to environment constraints, or when there are
more permissible tasks. In the former case, it still might be useful to partially
fulfill some of the requirements. In the latter case, we can search for a compro-
mise between fulfillment of the most valuable tasks and the cost paid for sensor
usage.

To be able to prioritize some task before other we assign to each task a re-
ward expressing how much is valuable to fulfill it. With the alternating operator
we let user to specify which possibilities are enabled. Concatenation operator is
provided to facilitate the expression of requirements.

Definition 9 (Mission). A mission over AP is a regular expression [BK08] excluding
a Kleene star over the set of all tasks TaskspAPq over AP, i.e., an expression formed as
follows:

φ :“ ϕ | φ` φ | φ ¨ φ,

where ϕ P TaskspAPq is a task, ` (alternation) and ¨ (concatenation) are operators.
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5. Problem Formulation

Every mission φ, as a regular expression, describes a set seqpφq Ď TaskspAPq˚

of finite sequences of tasks, defined recursively as follows:

seqpϕq “ tϕu
seqpφ1 ` φ2q “ seqpφ1q Y seqpφ2q,
seqpφ1 ¨ φ2q “ seqpφ1q ¨ seqpφ2q.

Recall that for a task ϕ is gfppϕq the set of all good finite prefixes of ϕ. We
define mgfppϕq as the set of the minimal good finite prefixes of ϕ:

mgfppϕq “ tp P gfppϕq | no strict prefix of p is in gfppϕqu.

Definition 10 (Satisfaction relation of mission). An infinite word w P p2APqω sat-
isfies a mission φ, denoted as w |ù φ, if there exists a sequence π P seqpφq, where
|π| “ n, and indices 0 “ i0 ă i1 ă . . . ă in such that for every 0 ď j ă n, the finite
word wpijq . . . wpij`1 ´ 1q P mgfppπpjqq.

Note that the satisfaction relies on the finite word wp0q . . . wpin`1´ 1q and on
a sequence π that maps onto it. Just like a task, every mission can be character-
ized by a set of good finite prefixes. Since the language of good finite prefixes is
regular, we can represent every mission as DFA as we did in the case of tasks.
The proof is given in Section 7.3.1.

A run ρ of a NTS with observation modes satisfies a mission φ, denoted as
ρ |ù φ, if a propositional trace Lpρq |ù φ or, equivalently, if there exists a finite
prefix ρφ of ρ such that Lpρφq is a good finite prefix for the formula φ. We refer to
prefixes ρφ as the good finite prefixes of the run ρ for the mission φ. We say that
a strategy C satisfies φ starting from a configuration ps, mq if ρC |ù φ for every
run ρC such that ρCp0q “ ps, mq.

As we mentioned above, we associate a non-negative reward with every task
while composing a mission. It expresses how much valuable the satisfaction of
some part of the mission is. It is meaningful in combination with the alternation
operator where the strategy can choose to fulfill a particular part of the mission.

Definition 11 (Mission cost). Given a mission φ, an initial configuration ps, mq, a
strategy C that satisfies the mission φ and a reward function r : TaskspAPq Ñ R`0 .
Consider the following definition of a mission cost:

VrpC, ps, mq, φq “ max
ρC,ρCp0q“ps,mq

min
πPseqρC pφq,ρC|ùπ

gpπ, ρCq, (5.2)

where

gpπ, ρCq “ ´

|π|
ÿ

i“0

rpπpiqq ` min
ρπ ,ρπρ1“ρC

gpρπ
q,
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5. Problem Formulation

Intuitively, the cost VrpC, ps, mq, φq of a strategy C is the worst-case price for a
run under strategy C. The price of a run is computed as the cumulative cost for
sensor usage minus reward gained during the run.

Problem 3 (Optimal mission control). Given

∙ NTS with observation modes p𝒩 , O, Mq, where 𝒩 “ pS, A, T, sinit, AP, Lq,

∙ an initial observation mode minit P M,

∙ a mission φ over AP,

∙ a reward function r : TaskspAPq Ñ R,

find an observation-based control and observation scheduling strategy C such that

1. C satisfies φ starting from the configuration psinit, minitq,

2. the cost VrpC, psinit, minitq, φq is minimized over all strategies satisfying φ start-
ing from the configuration psinit, minitq.

Remark 4. The reason for not allowing Kleene star in missions is to ensure that there
exists an optimal solution for the problem that we intend to solve. Moreover, later we
also discuss relaxed version of this problem allowing Kleene star which turns out to be
undecidable.

Example 5. Consider the NTS with observation modes introduced in Example 2 with
initial observation mode m1, the tasks ϕ1 “ F ‹ with reward 1, ϕ2 “ FN with reward 3
and finally ϕ3 “  NU ‹ also with reward 3. We compose a mission φ “ ϕ1` ϕ2` ϕ3.
One can see that the task ϕ2 is not feasible since due to non-determinism no strategy can
guarantee avoidance of the state s4 and the state s5 is not reachable from there.

Consider strategy C1 from Example 4 that recognizes the shape of the three states
s2, s3, s4. Strategy C1 guarantees a visit to s6, i.e., to fulfill task ϕ1 and hence to complete
the mission φ. We cannot guarantee avoidance of the state s5, i.e., we cannot guarantee
to fulfill the task ϕ3, since we cannot distinguish the state s2 from the state s3. Hence
cost VrpC1, psinit, m1q, φq is equal to 0.

Further, consider strategy C2 from Example 4 that recognizes both the shape and the
color of the three states s2, s3, s4. Strategy C2 guarantees an avoidance of the state s5 and
at the same time in guarantee a visit to s6. Hence its cost is VrpC2, psinit, m1q, ϕq “ ´1.

Strategy C2 is the solution to the Problem 3 as its cost is lower than the cost of C1.
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5. Problem Formulation

5.4 General Mission

As the next step following formulated problems could be to consider more gen-
eral form of mission. In Section 5.3 we defined mission as regular expression
excluding Kleene star over tasks. We might also be interested in full-featured
regular expression over tasks, i.e., including also Kleene star.

Definition 12 (General Mission Control). A general mission over AP is a regular
expression over the set of all tasks TaskspAPq, i.e., an expression formed as follows:

φG :“ ϕ | φG ` φG | φG ¨ φG | φ˚G,

where ϕ P TaskspAPq is a task,` (alternation),¨ (concatenation) and ˚ (Kleene star) are
operators.

In the same way as every mission φ describes a set seqpφq, the general mission
describes a set seqpφGq. We need only declare how is defined seqpφ˚Gq:

seqpφ˚Gq “ seqpφGq
˚

The satisfaction relation is also defined in a similar way as for mission using
sets seqp¨q. Also mission cost Vrp¨q, see Equation 5.2, can be easily adopted for
general missions.

In Remark 4 we pointed the fact that the reason to not allowing Kleene star is
to ensure the existence of the optimal solution for Problem 3. In order to define
well the problem, we relax former requirements and in a new setting we are
interested in finding a surely winning strategy which ensures the cost is at most
some given bound.

Problem 4 (General mission control). Given

∙ NTS with observation modes p𝒩 , O, Mq, where 𝒩 “ pS, A, T, sinit, AP, Lq,

∙ an initial observation mode minit P M,

∙ a general mission φG over AP,

∙ a reward function r : TaskspAPq Ñ R,

∙ a real value bound b

find an observation-based control and observation scheduling strategy C such that

1. C satisfies φG starting from the configuration psinit, minitq,

2. the cost VrpC, psinit, minitq, φGq is at most b
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CHAPTER 6
Related Work

In this chapter, we provide a quick overview of the research in the field of the
control synthesis closely related to the problems treated in this work. The aim
of this chapter is not to provide exhausting survey through the literature, rather
it more presents in detail referred works and works which are mostly related to
ours to the best of our knowledge. We address several papers varying so by used
formalism for modeling of the system, so by examined objectives to achieve. For
each paper, we state the most significant differences from our work.

6.1 Optimizing Single Sensor Usage

In this section we present papers where authors deal with problem of minimiz-
ing usage of single sensor in order to achieve the established goal.

6.1.1 Space Rover

First, we present the work [OGM`15] which served mostly as an inspiration for
our work. We have already provided quick insight into the problem in Exam-
ple 1. A problem of reducing a robot’s energy consumption while following
a trajectory by turning off the main localization subsystem and switching to a
lower-powered, less accurate odometry source. Robot is allowed to make small
deviation from original trajectory, but it ought to stay in so called safe corridor.

More formally, the possible robot placement is represented as a belief Markov
Decision Process [TBF05] (belief MDP) and the amount of released energy is
represented by a cost function over edges of the system. States in the belief MDP
represent possible deflection from robot trajectory at the given point, i.e., the
robot has only partial information about current position. At every time step the
robot has a choice to either localize or not. If the robot choose to localize itself,
it is given a precise information about the current trajectory deviation, i.e., it
obtains a precise information about its location. The aim is to synthesize a plan
minimizes the energy consumption attributed to the localization system and at
the same time provide a probabilistic guarantee to stay in the safe corridor.

To approach the proposed problem, the authors present two algorithms. First
simple algorithm let sensors turned off as long as the probability of going out of
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the safe corridor is sufficiently small. This probability can be directly estimated
from the current state of belief MDP. If the robot is exposed to the apprecia-
ble chance of leaving the corridor, it turns on the main localization system and
returns to the original track. In the second algorithm, they leverage dynamic
programming techniques and the exact solution is not as relevant for our work.

Despite the fact this work considers similar problem as ours, presented re-
sults are not applicable in this work. First, they consider single type of sensor
and at any instant time they can reveal exact state of the system. Second, they
suppose a belief MDP to be in a highly specialize form (for details see the original
paper) so it is not applicable to wide range problems studied in this work.

6.1.2 Minimal Disclosure in POMDP

Partially Observable Markov Decision Processes (POMDP) is well studied partially
observable generalization of MDP [Put94]. It can be seen also as probabilistic
counterpart to NTS with observation modes presented in this work. In [BG11],
the authors tackle the problem of the minimal information a user needs to achieve
a simple goal. In brief, given a POMDP with single observation mode able to re-
veal the exact current state and a Goal state, the aim is to find an optimal strategy
which guarantee visit to a Goal with probability 1. They consider two optimality
criteria, (i) minimize number of steps made in the worst case run, (ii) Minimize
expected number of steps during the run.

They show that problem with the first criterion is EXPTIME-complete whereas
the problem considering the second criterion turns out to be undecidable, nor
there exists approximative algorithm which solves it.

Despite the fact POMDP is basically a generalization of NTS with observation
modes, the paper [BG11] cannot be seen as an extension of our work. Reason is
apparent, they consider only single observation mode which allowing to reveal
full information.

6.2 Optimizing Multiple Sensor Usage

In this section we mention two papers [CMH08,CM11], where the authors focus
on control of discrete systems with multiple observation modes with respect to
properties in infinite time horizon. We focus only on the work [CMH08].

Both presented papers are from the field of game theory, where is widely
studied problem of games with imperfect information. In the context of presented
papers, a game structure can be seen as a NTS with observation modes defined in
Section 3.2. A game is played as follows, in each turn, Player 1 chooses an ac-
tion to take together with an observation mode to deploy and Player 2 resolves
non-determinism by choosing the successor state. So far, most works make the
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assumption of fixed partial information, i.e., in terms of NTS with observation
modes, there is only one observation mode available.

6.2.1 Synthesis With Budget Constraints

The motivation for the paper [CMH08] is design and implementation of con-
trollers for resource-constrained embedded systems, where a controller may not
have enough power, time, or bandwidth to obtain data from all sensors in each
round.

As mentioned above, a game of imperfect information with multiple observa-
tion modes is used to model the problem. A given fixed budget cost is associated
with making an observation, and a controller can make only a limited number of
observations in each round so that the total cost of the used observation modes
does not exceed a given fixed budget.

The authors study several problems. The general problem is formulated as
follows, given a game with imperfect information, a budget constraint B, and ω-
regular objective [BL90], the aim is to find out the minimum budget with which a
controller can achieve its goals. There are several optimization criteria discussed
in the work, e.g., to minimize a long-run average sensing cost or to minimize
the worst case cost paid at any single round. Also different types of ω-regular
objectives are considered.

Since problems examined in the paper operate with infinite runs and opti-
mization criterion is defined also over infinite horizon, we don’t see a straight-
forward way how to apply presented results in this work.

23



CHAPTER 7
Problem Solution

In this chapter we present solutions to problems proposed in Chapter 5. All pre-
sented solutions follows the same principle, presented in detail in Section 7.1.

7.1 Optimal Task Control

In this section, we describe the algorithm to solve Problem 1 in detail. To ap-
proach the problem, we leverage automata-based model checking techniques
that analyze the state space using graph algorithms. First, we construct a syn-
chronous product of the NTS 𝒩 and a a DFA𝒜ϕ for the task ϕ, where the runs of
the NTS satisfying the formula can be easily identified through accepting states
of the DFA. Next, to account for the non-determinism and partial observation,
we use a belief construction over the product that determines the set of possi-
ble current states of the product given any finite sequence of past observations.
Using graph algorithms, we construct a strategy for the belief product that guar-
antees a visit of an accepting state and minimizes a function derived from the
costs of the associated observation modes. Finally, we map the strategy from
the belief product to the original NTS and prove that the resulting strategy is a
solution to presented problem.

7.1.1 Product

Definition 13 (Product). Let 𝒩 “ pS, A, T, sinit, AP, Lq be a NTS and 𝒜 “ pQ, 2AP,
δ, q0, Fq be a DFA. The synchronous product is a tuple

𝒫 “ 𝒩 ˆ𝒜 “ pSˆQ, A, T𝒫 , psinit, q0q, AP, F𝒫q,

where

∙ SˆQ is the set of states,

∙ A is the alphabet,

∙ T𝒫 : S ˆ Q ˆ A Ñ 2SˆQ is a transition function such that a state ps1, q1q P
T𝒫pps, qq, aq if and only if s1 P Tps, aq and δpq, Lpsqq “ q1,
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∙ psinit, q0q is the initial state,

∙ F𝒫 “ tps, qq | q P Fu is the set of product accepting states.

Note that the product can be seen as an NTS with a set of accepting states.
This allows us to adopt the definitions of an infinite and finite runs for the prod-
uct as well as a notion of an accepting finite run.

We abuse the notation by using γα to denote the observation function of a
sensor α P Θ as well as its extension to S ˆ Q, i.e., γαpps, qqq “ γαpsq for all
ps, qq P SˆQ.

Example 6. In Fig. 7.1, we depict the product constructed for the NTS with observation
modes presented in Example 2 and the DFA from Example 3.

ps1, q0qstart

ps2, q0q

ps3, q0q

ps4, q0q

ps5, q0q

ps6, q0q

ps7, q0q

ps7, q1q

a

a

a

a

b

a

b

a

b

a

a

a

a

Figure 7.1: Product of the NTS from Example 2 and the DFA from Example 3.

7.1.2 Weighted Belief Product

The belief construction over the product follows the standard principles used for
partially observable systems. Besides keeping track of the states that the product
can currently be in, we also keep track of the observation mode deployed in the
current state.

Definition 14 (Weighted belief product). Given a product𝒫 “ pSˆQ, A, T𝒫 , psinit,
q0q, AP, L𝒫 , F𝒫q built over the NTS with observation modes p𝒩 , O, Mq with the initial
observation mode minit, we define the weighted belief product

ℬ “ pB, A, Tℬ, binit, O, Fℬ, wq

over 𝒫 , where
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∙ B Ď 2SˆQ is the set of all belief states, where a belief state b P B is a set of product
states such that there exists an observation mode m P M such that all states in b
have the same observations in mode m,

∙ A “ AˆM is the set of belief actions of the form a “ pa, mq, where a P A is an
action of 𝒫 and m P M is an observation mode,

∙ Tℬ : B ˆ A Ñ 2B is the transition function such that a belief state b1 P
Tℬpb, pa, m1qq if and only if b1 is the set of all product states that can be reached in
one step from a state in b using action a and have the same observations in mode
m1,

∙ binit “ tpsinit, q0qu is the initial state,

∙ Fℬ “ tb | b Ď F𝒫u is the set of accepting belief states,

∙ w : BˆA Ñ R`0 is the weight function such that wpb, pa, mqq “ gm.

Weighted belief product can be seen as a NTS with a set of accepting states
and a weight function on transitions. We adopt definitions of finite and infinite
runs of the belief product and an accepting finite run.

Corollary 1. From the definition of the weighted belief product ℬ it follows that every
finite run of ℬ corresponds to exactly one finite sequence of observations in p2Oq˚ and at
the same time, every finite sequence of observations in p2Oq˚ corresponds to at most one
finite run of ℬ.

Example 7. In Fig.. 7.2, we depict part of the weighted belief product constructed for
the NTS with observation modes presented in Example 2 and the DFA from Example 3.

Definition 15 (Strategy). Given a weighted belief product ℬ “ pB, A, Tℬ, binit, O,
Fℬ, wq, a strategy for ℬ is a function C : B˚ Ñ A.

We call a strategy C memoryless if it can be defined as a function C : B Ñ A.
If the context is clear, we use σC and ρC to denote finite and infinite runs of ℬ
induced by a strategy C, respectively.

7.1.3 Strategy for the Weighted Belief Product

In this section, we propose an algorithm that constructs a memoryless strategy
for the weighted belief product that guarantees a visit to an accepting state (if
such a strategy exists) and minimizes the worst-case cumulative weight. We
prove that such a strategy then maps to a strategy for the original NTS with
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tps1, q0qustart tps2, q0q, ps3, q0q, ps4, q0qu

tps2, q0q, ps3, q0qu

tps4, q0qutps2, q0qutps3, q0qu

pa, m0q, 0

pa, m1q, 1

pa, m
1 q, 1pa, m

2 q, 2

pa,m
2 q, 2

pa,m
2
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Figure 7.2: Part of the weighted belief product for the NTS with observation
modes presented in Example 2 and the DFA from Example 3. The costs of indi-
vidual belief actions are written in bold.

observation modes that solves Problem 1. The algorithm can be seen as a combi-
nation of the standard algorithm for computing winning states in non-determin-
istic systems [BK08] and Dijkstra’s algorithm for computing shortest paths in a
weighted graph [CSRL01].

In the algorithm, we incrementally compute a value wtgpbq (weight-to-go)
for every belief state b that is the minimum worst case weight of reaching an
accepting state starting from b. Initially, the value is 0 for accepting belief states
and8 otherwise. We use Wi to denote the set of belief states for which the value
wtgpbq ‰ 8 after i-th iteration. In i-th iteration, we consider the belief state
bmin P BzWi´1 and its action abmin that leads to the set Wi´1 and minimizes
the worst-case sum of the weight of the action and the value wtg of a successor
state. The algorithm terminates when the initial belief state binit is added to the
set Wi or when there exists no state b P BzWi with an action leading to Wi. If
the resulting set Wi contains the initial belief state, the strategy consisting of the
above actions for each belief state in Wi is returned. The algorithm is summarized
in Algorithm 1.

Proposition 1 (Correctness). Algorithm 1 results in a strategy C for the weighted belief
product such that every run under C that starts in binit eventually visits an accepting
belief state, if such a strategy exists.

Proof. The property can be proved by induction on the iteration counter i and
proving that starting from the state bi P Wi, bi R Wi´1, strategy C guarantees a
visit to an accepting belief state in at most i steps.
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Algorithm 1 Constructing a strategy for the weighted belief product that maps
to a solution of Problem 1.
Require: ℬ “ pB, A, Tℬ , binit, O, Fℬ , wq
Ensure: memoryless strategy C for the belief product ℬ

1: W0 :“ Fℬ
2: @b P W0 : wtgpbq :“ 0
@b P pBzW0q : wtgpbq :“ 8

3: i :“ 1
4: while binit R Wi and exist b P BzWi´1 and a P A such thatH ‰ Tℬpb, aq Ď Wi´1 do
5: bmin :“ K amin :“ K ∆min :“ 8
6: for every b P BzWi´1 and a P A such thatH ‰ Tℬpb, aq Ď Wi´1 do
7: ∆ :“ max

b1PTℬpb,aq
twpb, aq `wtgpb1qu

8: if ∆ ă ∆min then
9: bmin :“ b amin :“ a ∆min :“ ∆

10: end if
11: end for
12: Wi :“ Wi´1 Y tbminu

13: Cpbminq :“ amin
14: wtgpbminq :“ ∆min
15: i :“ i` 1
16: end while
17: if binit P Wi then
18: return C
19: else
20: return no suitable strategy exists
21: end if

Proposition 2 (Optimality). Let C be the strategy resulting from Algorithm 1. Then
among all strategies that guarantee a visit to an accepting belief state, C minimizes the
value

VℬpC, binitq “ max
ρC,ρCp0q“binit

min
ρaccρ1“ρC

wpρacc, Cq (7.1)

where ρacc is a finite run ending in an accepting state and

wpρacc, Cq “
|ρacc|´2
ÿ

i“0

w
`

ρacc
piq, Cpρacc

p0q . . . ρacc
piqq

˘

.

Intuitively, the value VℬpC, bq of a strategy C with respect to a belief state b is the worst-
case cumulative weight of the (earliest) visit to an accepting state using C starting from
b.
Proof. We show by induction that after every iteration i ě 1, it holds that VℬpC,
biq “ wtgpbiq for all states bi P Wi, i.e., the strategy C realizes the values wtgpbiq,
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and that the strategy C minimizes the value Vℬp¨, biq among all strategies that
guarantee visit to an accepting state.

Assume that the strategy C is computed in n iterations of the “while” cycle
in line 4, i.e., Wn is the resulting fixed point set. Consider a belief state bi that
was added to the set Wn in i-th iteration, i.e., bi R Wi´1, bi P Wi. Assume that
for all j ă i it holds that C minimizes the value Vℬp¨, bjq for every bj P Wj and
that VℬpC, bjq “ wtgpbjq. Trivially, C minimizes the value for all accepting belief
states b P Fℬ as VℬpC, bq “ 0 “ wtgpbq. We show that C then also minimizes the
value Vℬp¨, biq over all strategies and VℬpC, biq “ wtgpbiq.

Assume by contradiction that there exists a (possibly not memoryless) strat-
egy C1 for ℬ such that VℬpC1, biq ă VℬpC, biq. As C is optimal for all bj, j ă i, it
must hold that

VℬpC1, bjq “ wtgpbjq “ VℬpC, bjq. (7.2)
Let b R Wi´1 be a belief state such that there exists a run σC1 under C1 that leads
from bi through b to an accepting belief state and Tℬpb, C1pσb

C1qq Ď Wi´1, where
σb

C1 is a prefix of σC1 ending in the state b. Note that such b must exist since C1

guarantees a visit to an accepting state and Fℬ Ď Wi´1 (be aware that b can be
bi itself). Since the cumulative weight wpσb

C1 , C1q is non-negative and the action
Cpbiqminimizes the value in line 7, it holds that the cumulative weight wpσC1 , C1q
is higher or equal to the cumulative weight of any run σC under C starting in bi
leading to an accepting belief state. Hence VℬpC1, biq ě VℬpC, biq and strategy C
is optimal.

7.1.4 Strategy for NTS

Let Cℬ be the strategy for the weighted belief product ℬ resulting from Al-
gorithm 1. Consider the following (observation-based control and observation
scheduling) strategy C for the NTS 𝒩 with observation modes M. For a finite
sequence of observations σO P p2Oq˚, we define

CpσOq “ Cℬpbq, (7.3)
where b is the last state of the finite run σℬ of the belief product that corresponds
to σO as described in Corollary 1, if such run exists.
Theorem 1. Let Cℬ be the strategy for the weighted belief product ℬ resulting from
Algorithm 1. Then the strategy C for the NTS with observation modes constructed ac-
cording to Equation 7.3 is a solution to Problem 1.
Proof. The correctness with respect to the task ϕ follows directly from Proposi-
tion 1. The optimality of C follows from Proposition 2 and the fact that

VpC, sinit, minitq, ϕq “ VℬpCℬ, binitq.
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7.1.5 Complexity

Given an scLTL formula ϕ, the number of states of a corresponding minimal
DFA 𝒜 is in general doubly exponential in the size of the formula. However,
compared to the size of the NTS, the size of the automata typically does not play
a crucial role in the overall complexity. The product 𝒫 of the NTS 𝒩 and 𝒜 is
then of size𝒪p|S|ˆ |Q|q. The belief productℬ involves a subset construction over
the product, hence its size is in 𝒪p2|S|ˆ|Q|q. In order to minimize the complexity
in practice, only the reachable states of both the product and the belief prod-
uct are constructed. With a proper choice of a data structure storing the belief
product ℬ, Algorithm 1 runs in time 𝒪p|B| ¨ log |B| ` |A| ¨ dnq, where dn is the
degree of non-determinism of the NTS 𝒩 , i.e., the maximum number of possible
successors given a state and an action. Note that while the algorithms are poly-
nomial with respect to their input, i.e., the belief product, they are exponential
in the size of the original NTS.

7.2 Bounded Optimal Task Control

In this section we describe the algorithm to solve Problem 2. In order to solve the
problem, we proceed as follows. As in the case for the general problem, we first
construct the product 𝒫 of the NTS 𝒩 with a DFA 𝒜 for the scLTL formula ϕ
and the corresponding belief productℬ as proposed in Section 7.1.1 and 7.1.2, re-
spectively. To compute a strategy for the belief product from Section 7.1.3, we use
an alternation of Algorithm 1 presented below and summarized as Algorithm 2.
Intuitively, as Algorithm 1 builds on the principles of Dijkstra’s algorithm, Algo-
rithm 2 follows the idea behind Bellman-Ford algorithm for solving the bounded
shortest path problem in weighted graphs [CSRL01]. We prove properties of the
resulting strategy Cℬ for the belief product and argue that when mapped to the
original system as described in Section 7.1.4, we obtain a correct and optimal
solution to Problem 2.

7.2.1 Strategy for the Weighted Belief Product

In this section, we give description of an algorithm that constructs a strategy for
the weighted belief product that guarantees a visit to an accepting belief state
within k steps (if such a strategy exists) and minimizes the worst-case cumulative
weight.

Instead of computing the weight-to-go value wtgpbq for a single well-chosen
belief state b at a time as in Algorithm 1, in Algorithm 2 we update the value in
parallel for all states in every iteration. We show that the set Wi which is the set
of all belief states for which wtgpbq ‰ 8 after i-th iteration, consists of all belief
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states b that can reach an accepting belief state in at most i steps and with the
worst-case cumulative weight wtgpbq. The algorithm terminates after k, but at
most |B| ´ 1, iterations. If the resulting set Wi contains the initial belief state, the
strategy consisting of the chosen actions for each belief state in Wi is returned.

Algorithm 2 Constructing a strategy for the weighted belief product and the
given bound that maps to a solution of Problem 2.
Require: ℬ “ pB, A, Tℬ , binit, O, Fℬ , wq, bound k ě 1
Ensure: strategy C for the belief product ℬ

1: W0 :“ Fℬ
2: @b P W0 : wtgpbq :“ 0
@b P pBzW0q : wtgpbq :“ 8

3: i :“ 1
4: while i ď k do
5: for every b P B do
6: ab

min :“ K ∆b
min :“ wtgpbq

7: for every a P A such thatH ‰ Tℬpb, aq Ď Wi´1 do
8: ∆ :“ max

b1PTℬpb,aq
twpb, aq `wtgpb1qu

9: if ∆ ă ∆b
min then

10: ab
min “ a ∆b

min :“ ∆
11: end if
12: end for
13: end for
14: Wi :“ Wi´1
15: for every state b P B do
16: Cpbq :“ ab

min
17: wtgpbq :“ ∆b

min
18: if wtgpbq ă 8 then
19: Wi :“ Wi Y tbu
20: end if
21: end for
22: i :“ i` 1
23: end while
24: if binit P Wi then
25: return C
26: else
27: return no suitable strategy exists for given bound
28: end if

Proposition 3 (Correctness). Algorithm 2 results in a strategy C for the weighted
belief product such that every run under C that starts in binit visits an accepting belief
state in at most k steps, if such a strategy exists.
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Proof. The property can be proved by induction on the iteration counter i and
proving that starting from any state bi P Wi, strategy C guarantees a visit to an
accepting belief state in at most i steps.

Proposition 4 (Optimality). Let C be the strategy resulting from Algorithm 2. Then
among all strategies that guarantee a visit to an accepting belief state in at most k steps,
C minimizes the value in Equation 7.1.

Proof. Let Ci and wtgi denote the strategy and the weight-to-go computed by
Algorithm 2 before start of the pi ` 1q-th iteration. We show by induction that
after every iteration i ě 1, it holds that VℬpCi, biq “ wtgipbiq for all states bi P

Wi, and that strategy Ci minimizes the value Vℬp¨, biq among all strategies that
guarantee visit to an accepting state in at most i steps.

Assume that for all j ă i it holds VℬpCj, bjq “ wtgjpbjq for all states bj P

Wj, and that strategy Cj minimizes the value Vℬp¨, bjq among all strategies that
guarantee visit to an accepting state in at most j steps. Trivially, C0 minimizes
the value for all accepting belief states b P Fℬ as VℬpC0, bq “ 0 “ wtg0pbq. We
show that Ci then minimizes the value Vℬp¨, biq over all strategies that guarantee
visit to an accepting state in at most i steps and VℬpCi, biq “ wtgipbiq.

Assume by contradiction that there exists a strategy C1 for ℬ such that VℬpC1,
biq ă VℬpCi, biq and guarantee visit to an accepting state for all bi P Wi in at
most i steps. Recall that Wi´1 contains exactly those states that guarantee visit
to an accepting state in at most i ´ 1 steps (see proof of Proposition 3). Let bi
be an arbitrary belief state from Wi. Since C1 is winning in at most i steps, it
holds Tℬpbi, C1pbiqq Ď Wi´1. From the induction hypothesis and the fact the ac-
tion Cipbiq minimizes the value in line 7 it follows that VℬpC1, biq ě wtgipbiq “

VℬpCi, biq implying strategy Ci is optimal strategy among all strategies that guar-
antee visit to an accepting state in at most i steps.

7.2.2 Strategy for NTS

We construct a strategy for the NTS from a strategy for the belief product in the
same way as we did in the solution of the Problem 1.

Theorem 2. Let Cℬ be the strategy for the weighted belief product ℬ resulting from
Algorithm 2. Then the strategy C for the NTS with observation modes constructed ac-
cording to Equation 7.3 is a solution to Problem 2.

Proof. The correctness with respect to the task ϕ follows directly from Proposi-
tion 3 and the optimality of C follows from Proposition 4 and the fact that

VpC, sinit, minitq, ϕq “ VℬpCℬ, binitq.
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7.2.3 Complexity

The size of a minimal DFA for ϕ, the product and the belief product are discussed
in Section 7.1.4. Similarly as for Algorithm 1, with a proper choice of a data struc-
ture storing the belief product ℬ, Algorithm 2 runs in time 𝒪pk ¨ |B| ¨ |A| ¨ dnq,
where dn is the degree of non-determinism of 𝒩 , i.e., the maximum number
of possible successors given a state and an action. Here, the value |B| ¨ |A| ¨ dn
serves as the upper bound on the number of all edges in the belief product. Note
that Algorithm 2 can be terminated prematurely if the current iteration i of the
while loop in line 4 did not imply any change in the function wtg or if i ě |B| ´ 1
as every strategy for the belief product that guarantees a visit to an accepting
belief state must do so in at most |B| ´ 1 steps due to non-determinism.

Remark 5. Note that Algorithm 2 can be used not only to solve the bounded Problem 2,
but also the general Problem 1 by considering k “ |B| ´ 1. However, this solution to
Problem 1 has higher computational complexity in practice than the one presented in
Section 7.1 using Algorithm 1.

7.3 Optimal Mission Control

In this section we describe the algorithm to solve Problem 3 in detail. Similarly
as in previous cases, we first construct the product of the NTS and a DFA cor-
responding to the mission. We show how to construct a DFA for the mission so
that it accepts exactly those words which satisfy the mission. Moreover we add
to DFA a labeling function in order to keep track of the satisfied tasks.

Also the weighted belief product is constructed as in previous cases, but we
slightly modify the construction for the technical reasons. The algorithm we pre-
sented in Section 7.1 is then run on the modified belief product.

7.3.1 Constructing a Mission DFA

We show that given a mission φ, the DFA, which accepts exactly those words
which satisfy the mission, can be constructed. We perform some steps during
the construction, which are not necessary for proving regularity of mission lan-
guage, however, they are needed for solution of Problem 3. While constructing
DFA for mission we attach every state a label – a real value representing collected
reward.

Before the construction itself, we unfold a mission (see Definition 17), so it is
in a form of sum of concatenation of tasks. DFA is then constructed from the
unfolded version.

The proof proceeds as follows, first we show how to unfold a mission (Defi-
nition 18) and we prove that the result is equal to the original one with respect
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to the satisfiability (stated as Lemma 1). Last, we translate the unfolded mission
to a labeled DFA (Definition 19). We take an advantage of the fact that for every
task ϕ the language mgfppϕq is regular (Lemma 2).

Definition 16 (Labeled DFA). A labeled DFA is a tuple 𝒜 “ pQ, 2AP, δ, q0, F, L𝒜q,
where pQ, 2AP, δ, q0, F, L𝒜q is a DFA according to Definition 7 and L𝒜 : Q Ñ R is a
labeling function.

We adopt for labeled DFA the all notation used for DFA.

Definition 17 (Unfolded mission). Let φ be a mission over AP, we say φ is unfolded

if it is in the form of sum of concatenation of tasks, i.e., φ “
k
ř

i“1
φi, where φi “

ni
ś

j“1
ϕj,

where ϕj P TaskspAPq.

Definition 18 (Transformation to unfolded mission). Let φ be a mission over AP,
the unfolded mission φ1 for φ is defined according to the structure of φ as follows:

∙ φ P TaskspAPq, then φ1 “ φ,

∙ φ “ φ1 ` φ2, then φ1 “ φ11 ` φ12, where φ11, φ12 are unfolded missions of φ1 and
φ2 respectively,

∙ φ “ φ1 ¨ φ2, let φ11 “
k
ř

i“1
φ11i be an unfolded mission of φ1, φ12 “

l
ř

j“1
φ12j be an

unfolded mission of φ2, then

φ1 “
k
ÿ

i“1

l
ÿ

j“1

φ11i ¨ φ
1
2j.

From now on we refer to φ1 as to the unfolded mission for a mission φ.

Lemma 1. Let φ be a mission over AP, then for every run ρ P p2APqω holds

ρ |ù φ ðñ ρ |ù φ1, (7.4)

where φ1 is the unfolded mission for φ according to Definition 18.

Proof. We prove by induction with respect to the structure of φ stronger state-
ment claiming that for every φ and φ1 holds seqpφq “ seqpφ1q which implies
validity of the Equation 7.4.

Assume that for every φ with syntactical depth up to some k hold seqpφq “
seqpφ1q. We show that then also for a mission φ with syntactical depth up to k` 1
holds seqpφq “ seqpφ1q. A mission φ can only have one of the following forms:
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∙ φ is a task, then equality Equation 7.4 trivially holds,

∙ φ “ φ1 ` φ2, then according to Definition 18 is φ1 “ φ11 ` φ12. Recall
seqpφq “ seqpφ1q Y seqpφ2q. When taking into the account also the in-
duction hypothesis then it holds seqpφq “ seqpφ1q Y seqpφ2q “ seqpφ11q Y
seqpφ12q “ seqpφ1q.

∙ φ “ φ1 ¨ φ2, let φ11 “
k
ř

i“1
φ11i and φ12 “

l
ř

j“1
φ12j, then φ1 “

k
ř

i“1

l
ř

j“1
φ11i ¨ φ

1
2j ac-

cording to Definition 18. Recall that seqpφ1 ¨ φ2q is defined to be seqpφ1q ¨

seqpφ2q. Taking into the account the induction hypothesis we get seqpφ1q

“ seqpφ11q “
k
Ť

i“1
seqpφ11iq, similarly seqpφ2q “ seqpφ12q “

l
Ť

j“1
seqpφ12jq. We

have seqpφ1q “
k
Ť

i“1

l
Ť

j“1
seqpφ11iq ¨ seqpφ12jq which is thanks to the concatena-

tion’s right distributivity over union equal to the
k
Ť

i“1
seqpφ11iq ¨

l
Ť

j“1
seqpφ12jq

which is from the induction hypothesis and Definition 18 equal to seqpφ1q ¨

seqpφ2q “ seqpφq.

Lemma 2. For every task ϕ is a language mgfppϕq regular.

Proof. Recall that for every task ϕ there is a DFA 𝒜ϕ “ pQ, Σ, δ, q0, Fq which
accepts all its good finite prefices [KYV01]. Without lost of generality suppose it
is minimal. Furthermore, if pϕ is a good finite prefix of ϕ, then every its infinite
extension satisfies ϕ and thus every finite word with prefix pϕ is also a good finite
prefix of ϕ. It concludes that every accepting state q f is such that δpq f , aq “ q f
for every a P Σ and therefore there is exactly one accepting state (since 𝒜ϕ is
minimal).

Let DFA 𝒜mgfppϕq “ pQ, Σ, δ1, q0, Fq be a modification of 𝒜ϕ, where

δ1pq, aq “
"

K if q P F
δpq, aq otherwise

Then Lp𝒜mgfppϕqq “ mgfppϕq and hence mgfppϕq is a regular language. The lan-
guage equality follows from the fact, that we "cut" self-loop above the accepting
state, i.e., we "throw" from gfppϕq every word which has prefix in gfppϕq differs
from itself.
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Definition 19 (Mission DFA). Let AP be a set of atomic propositions, φ be an unfolded

mission over AP, i.e., φ “
k
ř

i“1
φi, where φi “

ni
ś

j“1
ϕj, where ϕj P TaskspAPq. Let

r : TaskspAPq Ñ R be a reward function.

∙ For every mission φi “
ni
ś

j“1
ϕj which is concatenation of tasks we construct la-

beled DFA 𝒜φi as follows. Let 𝒜mgfppϕjq
“ pQj, 2AP, δj, q0j , Fjq be the minimal

DFA for the language mgfppϕjq for all j ă ni and let 𝒜gfppϕni q
“ pQni , 2AP, δni ,

q0ni
, Fniq be the minimal DFA for gfppϕniq. Without loss of generality suppose

that set of states are disjoint for every two automata. We define 𝒜φi “ p
Ť

jďni

Qj

z
Ť

1ăjďni

tq0ju, 2AP, δ, q01 , Fni , Lq, where the transition function δ is defined for all

a P 2AP as

– δpq01 , aq “ δ1pq01 , aq,
– δpq, aq “ δjpq, aq, where q P QjzFjztq0ju for every j ď ni,
– δpq, aq “ δj`1pq0j`1 , aq, where q P Fj for every j ă ni,
– δpqni , aq “ δnipqni , aq for all qni P Fni .

Labelling function L is defined as

Lpqq “

#

ř

jďni

rpϕjq if q P F

0 otherwise

∙ Let 𝒜φi “ pQi, 2AP, δi, q0i , Fi, Liq be an automata for concatenation a mission
φi, automata for φ is given as 𝒜 “ p

Ś

iďk
Qi, 2AP, δ, pq01 , . . . , q0kq,

Ś

iďk
Fi, Lq, where

δ is defined as for standard parallel composition and labelling function is

Lpq1, . . . , qnq “ maxtLpq1q, . . . , Lpqnqu.

Proposition 5. Let φ be an unfolded mission and 𝒜φ a labeled DFA for φ. Then for
every infinite word w holds

w |ù φ ðñ w P Lp𝒜φq (7.5)

Proof. Validity follows immediately from the soundness of standard technique
for parallel composition and from the fact we concatenate automata for the min-
imal good finite prefixes which have the unique final state with no outgoing
transitions(see proof of Lemma 2).
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7.3.2 Mission Product

Product of an NTS and a labeled DFA is defined similarly as product of an NTS
and a DFA presented in Section 7.1.1. We add labeling function to conserve DFA
labels.

Definition 20 (Labeled Product). Let 𝒩 “ pS, A, T, sinit, AP, Lq be a NTS and 𝒜 “

pQ, 2AP, δ, q0, F, L𝒜q be a labeled DFA. The labeled synchronous product is a tuple
pSˆQ, A, T𝒫 , psinit, q0q, AP, F𝒫 , L𝒫q such that

1. pSˆQ, A, T𝒫 , psinit, q0q, AP, F𝒫q is a synchronous product of 𝒩 and pQ, 2AP,
δ, q0, Fq,

2. L𝒫 : SˆQ Ñ R is a labeling function defined as L𝒫ps, qq “ L𝒜pqq.

7.3.3 Mission Weighted Belief Product

The weighted belief product is modificated in order to capture rewards collected
during the run. The new final state is added with transitions leading into it from
the former final states. New added transitions are weighted with the negation
of the worst case cumulated reward, i.e., the lowest value of the label of product
states.

Definition 21 (Mission Weighted Belief Product). Given a labeled product 𝒫 “

pSˆQ, A, T𝒫 , psinit, q0q, AP, F𝒫 , L𝒫q built over the NTS with observation modes p𝒩 ,
O, Mqwith the initial observation mode minit. Let ℬ “ pB, A, Tℬ, binit, O, Fℬ, wq be the
weighted belief product over 𝒫 according to Definition14.

The mission belief product ℬ1 over 𝒫 is given as follows:

ℬ1 “ pBY tb f u, AY ta f u, T1ℬ, binit, O, tb f u, w1q,

where

∙ b f is the newly added accepting state s.t. b f R B,

∙ a f R A is the newly added action leading from the former accepting states to b f ,

∙ T1ℬ : Bˆ pAY ta f uq Ñ 2B is the transition function defined as

T1ℬpb, aq “
"

Tℬpb, aq b P B, a P A
tb f u b P Fℬ, a “ a f

∙ w1 : Bˆ pAY ta f uq Ñ R is the weight function defined as

w1pb, aq “

#

wpb, aq b P B, a P A
´min

sPb
L𝒫psq b P Fℬ, a “ a f
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7.3.4 Strategy

In order to solve Problem 3 we first apply Algorithm 1 to construct a strategy for
a mission weighted belief product and then we map a resulting belief strategy
back to an original NTS as Equation 7.3 describes.
Proposition 6 (Correctness). Algorithm 1 results in a strategy C for the mission
weighted belief product such that every run under C that starts in binit visits an ac-
cepting belief state, if such a strategy exists.
Proof. The soundness of Proposition 6 follows immediately from soundness of
Proposition 1.
Proposition 7 (Optimality). Let C be the strategy resulting from Algorithm 1 for a
mission weighted belief product. Then among all strategies that guarantee a visit to an
accepting belief state, C minimizes the value in Equation 7.1.
Proof. The proof of Proposition 7 follows the proof of Proposition 2. Since only
negative edges are those leading to a new added state, and it has no outgoing
transition, all arguments used in the proof Proposition 2 retains valid.
Theorem 3. Let Cℬ be the strategy for the mission weighted belief product ℬ resulting
from Algorithm 1. Then the strategy C for the NTS with observation modes constructed
according to Equation 7.3 is a solution to Problem 3.
Proof. The correctness with respect to the mission φ follows directly from Propo-
sition 6. The optimality of C follows from Proposition 7 and the fact that

VrpC, sinit, minitq, φq “ VℬpCℬ, binitq.

7.3.5 Complexity

The complexity for solution of Problem 3 can be derived from complexity of
Problem 1 since we use in both cases Algorithm 1. However, note that by un-
folding a mission we create a formula which can have an exponential size with
respect to the original one.

7.4 Optimal General Mission Control

It can be shown that even decide whether Problem 4 has solution is undecid-
able. The proof is given by reduction from the halting problem for two-counter
(Minsky) machines. The proof uses ideas similar to those presented in ??. The
following result has been done by Tomáš Zábojník and is included in this work
just to provide a complete picture.
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CHAPTER 8
Case Study

8.1 Implementation

We implemented the algorithms from Section 7.1, Section 7.2 and Section 7.3
in C++11. In this section, we demonstrate their use on a case study motivated
by examples in [CCGK15b,SCL`15,THK`13]. All executions were performed on
Windows 7 with 2.4 GHz Intel Core i5 450M processor and 4 GB DDR3 memory.

Implementation is accessible on GitHub repository https://github.com/
tesarova/optimal-sensor-util where the description of the usage and some
examples presented in this work are also provided.

8.2 Task

Consider a mobile robot moving in an environment partitioned into a grid of
5ˆ 5 equally sized regions. The grid contains a starting, a target and possibly
multiple dangerous regions, where the robot is detected and captured. The robot
knows the locations of the starting and the target regions but it does not know
the exact locations of dangerous regions. Nevertheless, the robot knows that the
grid takes one of the three forms depicted in Fig. 8.1. The robot moves determin-
istically in (up to) four directions corresponding to the movement in the four
compass directions. To learn the presence of dangerous regions in it’s immedi-
ate surroundings, the robot can deploy one of the two sensors in Fig. 8.2. The
first sensor partitions the neighboring area into quadrants and reports the set of
all quadrants that contain at least one dangerous region. The second sensor re-
ports the exact regions in robot’s immediate surroundings that are dangerous. In
every step, the robot can decide which sensor to activate, if any. The costs of de-
ployment of the two sensors is 1 and 2, respectively. The cost can be interpreted
as the amount of resources needed for the use of each sensor. Alternatively, it
may model the amount of information received by the enemy in dangerous re-
gions. The goal of the robot is to reach the target region from the starting region
without being detected, while minimizing the cost.
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1 2 3

Figure 8.1: The environment of a mobile robot partitioned into a grid of 5ˆ 5
equally sized regions. The three grids correspond to three possible placements
of dangerous regions, shown in red. The locations of the starting region, in green,
and the target region, in blue, are known and hence their placement is the same
in all three grids.

The NTS with observation modes that models the above system has 76 states
S “ tsinit, sijk | 1 ď i ď 3, 1 ď j, k ď 5u and 5 actions A “ ta,N, S,E,Wu. States
sijk correspond to the regions in the three grids, where 1 ď i ď 3 is the grid
identifier and 1 ď j, k ď 5 determine the row and column coordinate, respec-
tively. For example, s111 is the top left corner of the first grid. The initial state
sinit has only one transition Tpsinit, aq “ ts111, s211, s311u that corresponds to the
enemy choosing one of the three grids in Fig. 8.1. The transitions of all sijk are
deterministic and correspond to moving in compass directions N, S,E,W. The
set AP “ tdang, targetu and the labeling function is such that Lpsinitq “ H and
Lpsijkq indicates the target and dangerous regions as in Fig. 8.1. The set of ob-
servations is O “ tN, S, W, E, NW, NE, SW, SE, detu. The NTS has 3 observation modes
corresponding to not activating any sensor, activating the first sensor and ac-
tivating the second sensor, respectively. The respective observation functions
γ1, γ2, γ3 are defined in Fig. 8.2 and g1 “ 0, g2 “ 1, g3 “ 2. Note that in ev-
ery step of an execution of the system, we know the robot’s position in the grid
precisely, only the identifier of the grid is unknown.

The scLTL formula specifying the robot’s task is p dangqU target and the
corresponding minimal DFA 𝒜 has 3 states. The product 𝒫 of 𝒩 and 𝒜 has 208
states and 667 (possibly non-deterministic) transitions, and was constructed in
less than 0.1 seconds. The weighted belief product ℬ has 375 states and 2634
transitions, and was constructed in 1.5 seconds.

The strategy for the robot is as follows. In the starting region, use the first
sensor. If the reported observations are SE and SW, then the robot is in grid 1 from
Fig. 8.1. If the set of reported observations is empty, the robot is moving either in
grid 2 or grid 3. In the former case, do not deploy any sensors anymore and move
in directions E, S, S, S, S,W to reach the target region. In the latter case, do not use
any sensor anymore and move in directions S,E,E,E,E, S, S, S,W,W,N,W,W, S.
The worst-case cost of the strategy is 1 and the maximum number of transitions
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Figure 8.2: Two sensors that provide information about the presence of danger-
ous regions in robot’s immediate surroundings. We also show the names of the
corresponding observations learned by the robot. For the first sensor in (a), the
surrounding area is divided into quadrants and the sensor reports all quadrants
containing a dangerous region. For the second sensor in (b), the exact set of dan-
gerous regions is reported. For example, let (c) show the immediate surround-
ings of the robot with it’s current position in the middle and dangerous regions
in red. The first sensor reports the set of observations tNW, NE, SE, detu and the
second sensor reports tN, SE, detu.

performed by the robot to reach the target region is 14, i.e., in the NTS 𝒩 it is 15
including the first step for choosing the grid.

Next, we used Algorithm 2 to solve the bounded version of the problem for
bounds k ă 15, where the task must be satisfied faster than using the strategy
above. For all choices of k below, the algorithm terminated in less than 3 seconds.
For k ď 8, there does not exist a suitable strategy. For k “ 13 and k “ 14, the
optimal strategy has the same structure as the one resulting from Algorithm 1
with the following exception. If the robot learns that it moves either in grid 2
or 3, the sequence of directions is S,E,E,E,E, S, S,W,W,W,W, S. The maximum
number of steps needed to reach the target region is 13 and the worst-case cost
of the strategy is 1.

Finally, for 9 ď k ď 12 there exists a solution and the corresponding optimal
strategy for the robot is as follows. From the starting region, move in directions E
and then S without deploying any sensor. Then move in direction E and activate
the second sensor. If the reported observations are S and SE then the robot is
moving in grid 1. In such a case, do not use any sensors anymore and move in
directions W, S, S, S,W to reach the target region. Similarly, if the observations
are S an N then the robot is in grid 2, do not use any sensors anymore and move
in directions W, S, S,W, S. Finally, if the observations are SW, SE and N then the
robot is in grid 3, do not use any sensors and move in directions S, S, S,W,W.
While the maximum number of steps needed to reach the target region is 9, the
worst-case cost of the strategy is 2.
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8.3 Mission

We consider a military rescue mission inspired by the case study presented in
[THK`13]. Friendly units F1, F2 were captured on the enemy’s territory. Unit F1
is guarded by the target T. The aim of the robot is to release friendly units and
to transport them safely to the friendly base. In order to liberate friendly unit F1,
robot must first destroy the target T whereas the friendly unit F2 can be liberated
directly.

The robot does not have precise information about dangerous regions in en-
emy territory. Nevertheless, it knows that placement of objects is one of those
described in Fig. 8.3. In order to orientate in the enemy’s territory, the robot is
equipped with sensors as described in Figure 8.2.

The territory is modeled as a grid 6x6 analogously as in Section 8.2. However,
in this example we model a danger implicitly, i.e., there are no outgoing transi-
tions from the region with a danger. We also encode in the transition system the
requirement that in order to release friendly unit F1, first a region with the target
must be visit. The system has 217 states, S “ tsinit, psijk, Tq | 1 ď i ď 3, 1 ď j, k ď
5, T P t0, 1uu and 5 actions A “ ta,N, S,E,Wu. States psijk, Tq correspond to the
regions in the three grids, where 1 ď i ď 3 is the grid identifier,1 ď j, k ď 6
determine the row and column coordinate, respectively and T is a bool vari-
able indicating whether the target has been already destroyed. If the target is
destroyed then the transitions to the region with friendly unit F1 are enabled.
Observation modes for the system are as described in Figure 8.2, i.e., only sur-
rounding danger can be detected.

There is an atomic proposition attached to every position in the grid repre-
senting the presented objects. Whenever there is the friendly unit F1 (F2) in a
region, we append the proposition F1 (F2) to that region. We label the region
where the friendly base is presented with the atomic proposition base.

It is desired to save both the friendly units from enemy’s territory, however,
the deployment of the sensors increase the chance of being detected. So we create
a separate task for each unit representing how much it is valuable to save each
unit, or alternatively, how much is it worth to risk the detection. Consider the
task ϕ12 “ F F1 ^ F F2 with reward 3 and ϕ2 “ F F2 with reward 1.

We compose a mission φ for the robot as follows:

φ “ pϕ12 ` ϕ2q ¨ base

One can see that if the robot wants to save F1, it needs to deploy sensors at
least two times in the worst case. First at the very beginning, since only “safe”
action is E. After taking this action robot cannot move nowhere to not be exposed
by danger being destroyed. So it has to deploy sensor at least to be able to distin-
guish the grid 3 from the grid 1 and the grid 2. No matter which sensor it use, it
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1 2 3

Figure 8.3: The environment of a mobile robot partitioned into a grid of 6ˆ 6
equally sized regions. The three grids correspond to three possible placements
of dangerous regions, shown in red. The locations of the starting region, in green,
friendly units F1, F2 (marked by corresponding letters), the target guarding F1,
marked with letter T, and the friendly base region, in blue, are known and hence
their placement is the same in all three grids.

cannot distinguish grid 1 from grid 2 and so it has to use the sensor second time
to guarantee to safely reach and destroy the target T. Hence, we can conclude
that an optimal strategy can turn on the cheaper sensor in the first step. One
can see that it is sufficient to use again, for the second time, the cheaper sensor
to distinguish the grid 1 from the grid 2 and so the optimal strategy for saving
both friendly units has the mission cost Vrp¨q “ ´1 (we pay 2 for sensors and
gain a reward 3).

Consider now the second case, i.e., try to find the strategy which does not
save the friendly unit F1. Note, that no such a strategy can have lower mission
cost then the one mentioned above, since for saving only friendly unit F2 we are
given reward 1 which covers the price for deploying sensors in the first step and
so we cannot go below zero, i.e., for every strategy which does not release F1 is
the mission cost at least Vrp¨q “ 0.
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CHAPTER 9
Conclusion

We consider non-deterministic transition systems with multiple observation mo-
des with fixed non-negative costs. We present correct and optimal algorithms to
solve two optimal temporal control problems. The first aims to construct a con-
trol and observation mode switching strategy that guarantees satisfaction of a
finite-time temporal property given as a formula of scLTL (a task) and minimizes
the worst-case cost accumulated until the point of satisfaction. We also consider
the bounded version of the problem with a bound on the time of satisfaction.
Both algorithms are demonstrated on a case study motivated by robotic appli-
cation.

Next we show a more general version of previous problems, when tempo-
ral property is given as a regular expression excluding Kleene star over tasks (a
mission). Each task, as a building block, can be reward and the aim is to mini-
mize the worst-case cost similarly as in case of task minus collected reward while
guarantee satisfaction of a mission.

We also discussed extension of formulated problems, when we allow to use
also Kleene star as operator for building a mission and we aim to find strategy
which guarantee to fulfill the mission with the cost not worse than some given
bound. This problem turns out to be undecidable.
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