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unlimited support from him and his family.

iii



iv



Abstract

Modern engineering systems such as autonomous ground and aerial vehicles, em-
bedded medical devices and human-robot collaborative teams evolve quickly due
to industrial needs as well as academic and public competitions. As these systems
are typically safety-critical, there is an equally growing need for formal approaches
to their specification, design and verification.

Motivated by mobile robotics, in this work we focus on the problem of path
planning, where the goal is to synthesize a low-resolution high-level path or a
control strategy for a complex dynamic system that satisfies a given specification.
We focus on specification expressed as a formula of Linear Temporal Logic (LTL)
over the state space of the system. We embrace the standard hierarchical approach
to employing formal methods in path planning. The approach consists of first
modeling the system using a discrete model, synthesizing a control strategy for
the model and finally implementing the control rules in the original system. We
employ formal methods such as automata-based model checking and game theory
to design control synthesis algorithms with strong mathematical guarantees.

In the first part of the thesis, we assume that a discrete model of the system
is already given and we focus on the second, synthesis step of the hierarchical
approach. We design algorithms for deterministic as well as probabilistic systems
to synthesize strategies that guarantee satisfaction of an LTL formula, while at
the same time optimize a value function over (possibly) dynamic and partially
observed values appearing in states of the system and interpreted either as re-
wards or penalties. In the second part, we consider the more general problem of
synthesizing a control strategy for a stochastic linear dynamic system with respect
to an LTL formula. We design an iterative abstraction-refinement algorithm that
builds an abstraction of the system using a 21/2-player game, solves the game
obtaining a partial solution and then builds a new, more precise abstraction using
a deep analysis of the game. All designed algorithms were implemented and are
demonstrated and evaluated on illustrative case studies.

Keywords: control strategy synthesis, linear temporal logic, transition sys-
tem, Markov decision process, 21/2-player game, linear stochastic system, optimal
control, receding horizon control, abstraction-refinement
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Chapter 1

Introduction

In our everyday life, we work with or come into contact with many computer-
based systems. We rely on them and we trust them to work as expected. De-
spite our expectations, computer systems tend to fail every now and then. The
consequences of failures range from minor discomfort to catastrophic situations
resulting in a huge loss of resources, money or even human lives. At the same
time, it is these safety-critical systems that lie in the center of the technological
progress, concentrated in areas such as aerospace, automotive, chemical processes,
civil infrastructure, energy, health, manufacturing and transportation.

The techniques commonly used in practice to detect faulty behavior of com-
puter systems are testing and simulation. They can reveal a large number of errors
in a reasonable time, however, they cannot be used to prove their non-existence.
In contrast, formal verification methods in computer science can prove the sat-
isfaction or violation of a given property. The area of formal verification has a
long history and a number of techniques have been introduced and successfully
employed in real-life scenarios. Typically, computer-based systems are digital
and hence modeled as discrete-state systems evolving in discrete or continuous
time. The properties of interest are usually complex time-dependent properties
expressed using a suitable temporal logic such as Computation Tree Logic (CTL)
or Linear Temporal Logic (LTL).

A different approach to ensuring properties of computer systems is correct-
by-construction design, where instead of verifying that the system meets given
requirements once it is designed, one focuses on designing the system in a way
that ensures the requirements. The corresponding research area is referred to
as formal synthesis and in this work, we are particularly interested in branch of
synthesis called strategy synthesis. Here, the goal is to synthesize a strategy for
a system that determines, given the history of the execution of the system, the
inputs to be applied in order to satisfy a given objective over a finite or infinite time
horizon. Similarly as in formal verification, the objectives are typically temporal
properties or alternatively, the behavior of the system can be optimized with
respect to a given value function over executions of the system. Some of the well-
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known techniques for strategy synthesis rely on game theory. Indeed, the control
of a system in order to satisfy an objective can be seen as a game between the
system controllable through its inputs and the uncontrollable environment that
affects the systems’ state.

Comparing to computer-based systems, modern engineering systems, recently
referred to as cyber-physical systems, integrate hardware and software to create
complex behavior that involves continuous, dynamic components. These systems
are then modeled with differential or difference equations and examples include au-
tonomous ground and aerial vehicles and embedded medical devices. Analogously
to strategy synthesis for computer-based systems, control theory is an interdisci-
plinary branch of engineering and mathematics that deals with the behavior of
dynamic engineering systems. Typically, the control rules are synthesized in order
to optimize the behavior of a system or to ensure a “simple” temporal objective
such as safety, stability or reachability of a given goal configuration.

Over the last several decades, cyber-physical systems have been evolving rapidly
due to industrial needs as well as academic and public competitions such as
DARPA Grand challenge for autonomous vehicles or the recent DARPA Robotics
challenge for semi-autonomous ground robots performing complex tasks in dan-
gerous and degraded environments. The quick evolution emphasizes the need
for robust approaches to design and control of these systems. To this end, formal
methods from computer science have been employed in the last twenty years. The
main advantage of the algorithms based on formal verification and strategy syn-
thesis is that they offer rigorous techniques and result in strategies with strong
mathematical guarantees. Also, since computer science deals with “complex”
properties of rather “simple” systems and dually, control theory considers “com-
plex” dynamic systems against “simple” objectives, the use of formal methods in
control promises analysis of “complex” behavior of “complex” systems.

One of the common approaches to employing formal methods in control of
complex systems is the following hierarchical approach. First, the complex dy-
namical system is abstracted using a finite discrete model. Second, a complying
control strategy for the model is synthesized using formal techniques. Finally, the
obtained control rules are implemented the original system using low level con-
trollers. If the abstract model captures all behavior of the system relevant to the
desired property then it is guaranteed that every control strategy satisfying the
property in the abstract model also satisfies the property in the original system.

It is important to note that the existing formal techniques from computer
science often cannot be applied on the abstract model directly and without any
change. There are two main reasons for that. First, the constructed model is of-
ten large and many formal techniques suffer from high computational complexity.
Second, problems motivated by real applications usually involve specific aspects
that are not typically considered in computer science. For example, the system
may involve dynamic elements such as dynamic obstacles and reactive environ-
ment. The system can be given an unrealizable objective with the goal to control
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CHAPTER 1. INTRODUCTION

the system to behave as close to satisfaction as possible, or we might have a set
of systems or robots cooperating on a single common mission. Robotic systems
are also heavily dependent on the use of sensors that introduce uncertainty. For
example, only some part of the environment in close proximity may be fully ob-
served or the sensor information may provide only a partial information about
the current state of the system. Many of these problems are hard to solve or even
undecidable in their general form and this area is constantly active, specifying
new control problems. The algorithms and techniques designed to solve these
problems then contribute not only to the area of control but also to the area of
computer science when conceptually new problems are formulated.

Motivated by robotic applications, in this work we focus on the problems
arising in path planning, where the goal is to synthesize a low-resolution high-
level path or a control strategy for a system that satisfies given specification.
Historically, the central problem of path planning was to plan a path for a mobile
robot to move from position A to position B while avoiding obstacles. However,
with the fast evolving area of cyber-physical systems and especially autonomous
cars, more complex properties are becoming of interest. In this work, we consider
specification expressed as a formula of LTL over the state space of the system.
Recently, LTL has gained a lot of attention in control theory as a language that
is expressive enough to describe complex tasks and yet has some resemblance
to natural language. We embrace the above mentioned hierarchical approach to
employ formal methods such as automata-based model checking and games on
graphs to synthesize control strategies with strong mathematical guarantees.

In the first part of the thesis, we assume a finite abstraction of the dynamic
system is already given and we focus only on the synthesis step of the hierarchical
approach. We consider both deterministic and probabilistic finite systems and we
design algorithms to synthesize strategies that guarantee satisfaction of an LTL
formula, while at the same time optimize a value function over (possibly) dynamic
and partially observed values interpreted either as rewards or penalties. Such a
connection between optimal and temporal logic control is an intriguing problem
with a potentially high impact in applications such as control of a mobile robot
on a complex mission under tight fuel and time constraints.

In the second part, we consider the more general problem of synthesizing
control for infinite dynamic systems. Namely, we consider the problem of LTL
control synthesis for discrete-time stochastic systems with linear dynamics. These
systems are a popular modeling formalism in control theory because they are
expressive enough to model many real-life systems, while linear dynamics is simple
enough to analyze. Motivated by the hierarchical approach, we design an iterative
abstraction-refinement algorithm that builds an abstraction of the system using
a finite game.

In Section 1.1, we offer an overview of standard as well as recent results in
computer science, control theory and path planning. The most related existing
techniques are also discussed at the beginning of the chapters containing our main
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1.1. RELATED WORK

results. The remaining structure of the thesis and its contributions are described
in detail at the end of this chapter in Section 1.2.

1.1 Related Work

1.1.1 Formal Methods in Computer Science

Formal verification

In computer science, the problem of formal verification requires to prove or dis-
prove that behaviors of a system satisfy certain properties. There exist two main
approaches to formal verification that have been pursued in the literature. The
first approach is deductive verification, where the system and the specification
are used to generate a set of proof obligations. The techniques used to establish
the truth of these obligations include theorem provers and satisfiability modulo
theories (SMT) solvers, for overview of the techniques see [RV01]. This approach
typically requires interaction with a skilled designer.

The second, automatic approach to formal verification that is also embraced
in this work is model checking [BK08]. It entails exhaustive systematic analysis
of a finite model of the system. Explicit-state model checking suffers from the
well-known state-space explosion problem, where even a small implicit represen-
tation of the system and the objective can result in a very large intermediate
state space that needs to be analyzed. The approaches to combat this prob-
lem include the following. Symbolic model checking allows for large numbers of
states to be considered in a single step. Historically, the first symbolic approaches
used binary decision diagrams (BDDs) [McM93]. Bounded model checking com-
bines model checking with satisfiability solving to investigate only a fixed number
of steps of the system at a time [CBRZ01]. Partial order reduction techniques
used in systems involving interleaving reduce the number of possible orderings of
events that need to be investigated using, e.g., ample sets [Pel93]. Abstraction
attempts to first simplify the system at hand using techniques such as quotient-
ing based on bisimulation, simulation or trace equivalence, for overview of these
methods see [Ber01]. Finally, counterexample guided abstraction refinement (CE-
GAR) [CGJ+00] starts verifying the system using a coarse, imprecise abstraction
and iteratively refines it. When a counterexample is found, it is analyzed in order
to guide the next abstraction.

Specification

The specification that is investigated in formal verification is usually expressed as
a formula of a suitable temporal logic over states of the system or their labels.
Temporal properties of systems can be divided into two categories. Linear-time
properties are properties of an individual run, i.e., a sequence of states of a sys-
tem. However, runs of the system might be branching meaning that in every
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CHAPTER 1. INTRODUCTION

particular point of a run there might exist multiple possible extensions of the
run. Branching-time properties then specify behaviors of infinite trees of these
runs. To express linear-time properties, LTL was introduced in [Pnu77] and anal-
ogously, branching-time properties are typically formulated in CTL [CE82, QS82].
CTL* [EH86] combines both linear-time and branching-time properties and modal
µ-calculus [Koz83] is an even more powerful specification formalism.

In this work, we consider linear-time properties of systems expressed as formu-
las of LTL. Our motivation comes from the recent growing interest of engineering
and especially robotics community in LTL that we motivate properly later in this
section. There are two main approaches to LTL model checking. First, tableau-
based techniques were introduced in [LP85, CGH97]. Different, widely used ap-
proach to LTL model checking explores the connection between LTL formulas
and finite automata over infinite words also known as ω-automata. In [VW94], it
was shown that properties expressed as LTL formulas are ω-regular and therefore,
every LTL formula can be translated to an ω-automaton. The authors in [VW94]
introduce the framework for automata-based LTL model checking, where an LTL
formula is first translated to a (non-deterministic) Büchi automaton and the sys-
tem is analyzed against the automaton using graph algorithms. For systems that
contain uncertainty such as non-determinism or probability, a more structured
model than a non-deterministic ω-automaton needs to be considered. In such a
case, an LTL formula is typically translated to a deterministic Rabin automa-
ton [GTW02].

Note that unlike for deterministic and non-deterministic systems, for systems
with probability we can consider various formulations of the verification prob-
lem. Besides verifying that all behaviors of the system meet the specification, we
can ask to verify whether the specification is satisfied with probability 1 or non-
zero probability (referred to as qualitative verification), or with at least a given
probability p ∈ (0, 1) (referred to as quantitative verification). The probability 1
satisfaction is the strongest guarantee one can achieve while accounting for the
probability in the system and in this work, we focus only on probability 1 anal-
ysis when considering systems with probability. An overview of techniques for
qualitative as well as quantitative LTL model checking can be found in [BK08].

Control synthesis and game theory

The counterpart to formal verification is the problem of control synthesis that
aims to find a control strategy for the system that satisfies given requirements.
In this case, the principles of automata-based approach from LTL model check-
ing can be utilized in an almost straightforward way, as we discuss in Section 2.5.
Once the requirement is represented with an ω-automaton, the system is analyzed
against the automaton using techniques from game theory. The control synthesis
problem can be interpreted as a game between the controllable system and the
uncontrollable environment. Games on graphs [AG11] offer a convenient formal-
ism, where a game arena consists of a finite graph whose states are partitioned
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1.1. RELATED WORK

among two players. When the game is in a state of a particular player, this player
decides the next state of the game based on the available transitions. Typically,
Player 1 represents the system and Player 2 represents the environment. In the
most general case, they both behave probabilistically. Such a game arena is called
a 21/2-player game. By considering a weaker Player 1 and/or Player 2, i.e., with-
out probability, or completely deterministic, we obtain less general game arenas
corresponding to non-deterministic transition systems, Markov decision processes
(MDPs) or deterministic transition systems. To solve a game means to synthesize
a strategy for Player 1 that satisfies a given winning objective in a given winning
mode. A winning objective defines which plays of the game are winning for Player
1 and thus losing for Player 2, and vice versa. It can either be given as a qualitative
objective in the form of a temporal logic formula or an ω-automaton, a quanti-
tative objective in the form of a value function such as mean payoff or energy
objective, or a combination of qualitative and quantitative objectives. Similarly
as in formal verification, the winning mode determines whether we want Player
1 to win in every play of the game, every play with probability one, non-zero
probability or given probability p ∈ (0, 1), against any Player 2 strategy. Re-
cent surveys such as [CH12, CD10, CDH12, CD12] offer an exhaustive overview
of the algorithms, complexity results and remaining open problems for different
combinations of game models, winning objectives and winning modes.

1.1.2 Control Theory

Unlike computer-based systems, engineering systems are generally described by a
set of differential or difference equations, for continuous or discrete time systems,
respectively. The state space and/or control space is infinite, often continuous
given as a polytopic set in a multi-dimensional space. The standard techniques
in control theory are the following. To achieve or verify stability and safety of
such systems, reachability analysis and approaches based on potential fields and
Lyapunov functions can be employed [AM08]. Optimization control problems have
also been extensively studied and approached using linear programming [Ber12].
Model predictive control (MPC) offers a great tool to handle complex dynamical
systems and systems with uncertainty [RM09]. MPC is an iterative approach to
finite-time horizon optimization, where in every iteration, an online and on-the-fly
computation is used to explore possible executions starting in the current state
of the system and find a cost-minimizing control strategy over a fixed finite time
window. Only the first step of the control strategy is implemented and the next
iteration is started with the new current state. MPC is also referred to as receding
horizon control as the prediction horizon keeps being shifted forward.

In control theory, several methods for building a finite abstraction of the
infinite system have been developed with different application scopes. In cell
decomposition techniques, a finite graph is build by partitioning the contin-
uous space into a finite set of polytopic sets and a transition is implied be-
tween every two adjacent partition elements, or computed based on the dy-
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CHAPTER 1. INTRODUCTION

namics of the system. On the one hand, these methods offer strong math-
ematical guarantees by accounting for the whole state/control space, on the
other hand they do not scale well in higher dimensions. For high-dimensional
or otherwise complex, e.g., nonlinear, systems, sampling-based methods have
proven to be suitable. In this case, the finite graph approximating the system
is built over a finite set of samples chosen from the continuous space. For an
overview of standard abstraction techniques see [LaV06], more recent results in-
clude [BKV10, KF11, KB08, KGFP09, YTv+12, TI12, PGT08, Rei11, ZPMT12].

1.1.3 Formal Methods in Path Planning

In our work, we are motivated by the path planning problem for robotic systems.
Formal methods have been increasingly employed in this area, especially over the
last decade. The breakthrough came when DARPA (Defense Advanced Research
Projects Agency), an agency of the United States Department of Defense, funded
a prize competition DARPA Grand Challenge for driverless cars. The goal was
to create the first fully autonomous ground vehicles capable of completing a sub-
stantial mission in an off-road or an urban-like environment within a limited time.
Altogether, there were three events in 2004, 2005 and 2007 and they unequivocally
manifested a need for robust and provably correct techniques to solve control prob-
lems. To formalize the complex behavior of a system, temporal logics are being
utilized. In particular, linear time properties are of interest since one is typically
interested in the outcome of a single execution of the robot. LTL has been widely
used to express such properties as a language that is expressive enough to describe
complex tasks and yet has some resemblance to natural language.

The standard three step hierarchical approach consisting of the abstraction,
synthesis and implementation step, has been developed for LTL control of simple
discrete-time dynamic systems [FGKP09, KGFP09] (implemented in a tool LTL-
MoP [FJK10]) and discrete and continuous-time linear systems [TP06, GDLB12].
With some added conservatism, more complicated dynamics and stochastic dy-
namics can also be handled [CB12, Gir12, JGP06]. Motivated by the DARPA
competitions, the authors in [WTM12c, Won10] design a framework for LTL con-
trol of dynamic systems that alleviates the computational complexity of the hi-
erarchical approach. Using receding horizon planning, the LTL task is broken
into successive short-horizon tasks that are achieved by computing a series of
discrete trajectories and their continuous implementation. The framework was
implemented in a tool TuLiP [WTO+11]. Alternatively, the standard hierarchical
approach can be enhanced with an iterative abstraction refinement similar to the
CEGAR framework in model checking [GLB12, LAB12, SKC+15].

In the second step of the hierarchical approach, path planning techniques adapt
formal methods to synthesize controllers for deterministic finite systems [BK08],
Büchi and Rabin games are used to synthesize control for nondeterministic sys-
tems [PPS06], and probabilistic games are used to compute a strategy for finite
probabilistic systems such as MDPs [BK08]. Many works in this area focus solely
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1.2. THESIS CONTRIBUTION AND SUMMARY

on the second step of the hierarchical approach. In such a case, more complex
specification than a single LTL formula is often addressed. In optimal temporal
control, the aim is to synthesize a control strategy that satisfies an LTL formula,
while optimizing an additional value function concerning the expected time to
satisfaction [STBR11], a reward function [DLB12, STBv12, CKSW13] or a cost
function [DSBR11, WTM12a, SvB15, SvB13a]. To battle the high computational
complexity of LTL synthesis, which is 2EXPTIME-complete in general, a fragment
called General Reactivity(1) (GR(1)) was introduced in [PPS06]. This fragment
is expressive enough to describe many interesting properties typically considered
in robot motion such as reachability, safety and liveness, yet it allows polynomial
synthesis algorithms. GR(1) was originally designed to synthesize strategies in
the presence of a reactive environment. In such a case the synthesis is exponen-
tial in the size of the formula describing both the environment and the desirable
behavior.

Besides expressing motion properties such as “go from A to B and avoid ob-
stacles”, one can also use LTL to argue about actions such as “grasp a ball”.
In [TMDK14], the authors synthesize a maximally satisfying control strategy while
taking into account that the robot’s action executions may fail. Also, it is not
always the case that the desired LTL property can be satisfied in the system.
For example, an autonomous car is required to avoid collisions and obey traffic
rules such as to never enter a pavement or to not enter the left lane. To avoid
obstacles, the car might need to temporarily violate some of the rules. Works
such as [RKG13] can be used to explore possible causes of unsynthesizability and
in [TCK+13], the authors construct least-violating strategies for such scenarios.

In the presence of uncertainty due to unreliable sensors or actuators, partially
observable systems such as partially observable MDPs can be used to model the
uncertainty. Here, during executions, the current state of the system is not di-
rectly observed and only a partial information is provided that implies a belief
state, i.e., a set of states in which the system might be based on the past ob-
servations. Partially observable games can be employed to solve control problems
for these models [CD10, CDH12, CCGK15, SCL+15]. Alternatively, uncertain
MDPs [WTM12b] and bounded-parameter MDPs [LAB12] have been considered
to model uncertainties.

Other interesting and active areas of motion planning that employ formal
methods include multi-robot control, adaptation of machine learning in motion
planning, and various applications such as autonomous vehicle and UAV control,
swarm robotics, traffic control, robotic surgery, video game artificial intelligence
and the study of biological molecules.

1.2 Thesis Contribution and Summary

The objective of the thesis is to design correct-by-construction control synthesis
algorithms for selected problems motivated by robot path planning. We consider
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CHAPTER 1. INTRODUCTION

complex discrete and dynamic systems with complex temporal specification (alone
and in a combination with an optimization objective). All designed algorithms
build on the standard as well as recent results from both computer science and
control theory and thus make a step towards interconnecting the two areas. Below,
we summarize our results and the structure of the thesis. The full list of author’s
contributions can also be found in Appendix A.

Chapter 2 covers the preliminaries used throughout the thesis. After intro-
ducing LTL and its correspondence to automata over infinite words, we define
the finite discrete systems as well as dynamic systems that appear in the control
problems considered in the later chapters. Finally, we discuss the principles of
automata-based approach to model checking and control synthesis.

Chapter 3 addresses control of finite discrete systems and presents solutions
to three closely related control problems that combine temporal logic and optimal
control.

In Section 3.1, we consider a deterministic transition system under temporal
constraint expressed as an LTL formula containing persistent surveillance subgoal.
Assuming that the executions of the system incur time-varying locally sensed
rewards in the visited states, we aim to synthesize control strategies that maximize
the expected value between states under surveillance, while at the same time
satisfy the additional LTL constraint. We prove that an optimal strategy cannot
be constructed because the two goals often cannot be reached simultaneously.
If the system primarily collects high rewards, the LTL formula might never be
satisfied and vice versa, if the system is controlled to satisfy the formula, the
collected rewards might be low. We design a framework that allows for a definition
of a broad class of optimization functions over finite horizon and a user-guided
trade-off between the importance of making progress towards LTL satisfaction and
importance of collecting high rewards. The constructed control strategy synthesis
algorithm combines receding horizon control with formal methods.

In Section 3.2, we consider a similar problem, where the collected values are
interpreted as penalties and the goal is to minimize penalty collection over infi-
nite horizon, namely, the expected average penalty between visits of states under
surveillance. We provide two algorithmic approaches to this problem. First, we
derive an optimal strategy within the class of strategies that do not exploit val-
ues of penalties sensed in real time. Second, we show that by taking advantage
of locally sensing the penalties, we can construct a whole class of heuristic re-
ceding horizon strategies leading to lower collected penalty. While still ensuring
satisfaction of the LTL constraint, we cannot guarantee optimality in the latter
case.

Finally, in Section 3.3, we consider a probabilistic system modeled as a Markov
decision process, where every application of a control action in a state is associated
with a non-negative real value interpreted as a penalty. Similarly as in the first two
problems, given an LTL formula with persistent surveillance subgoal, our goal is to
synthesize a control strategy that guarantees the satisfaction of the LTL formula

9
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with probability 1, while at the same time minimizes the expected average penalty
between consecutive visits of states under surveillance. The existing solutions to
this problem are sub-optimal. We provide a way to generate an optimal solution
that can be seen as an adaptation of the framework in Section 3.2.

All designed approaches have been implemented and are demonstrated and
evaluated on illustrative case studies. Moreover, an experimental control tool
ConTool [SMv13] has been created that allows simulation of the control algorithms
for the first two problems.

These results are based on the following publications:

[SvB15] M. Svoreňová, I. Černá, and C. Belta. Optimal Temporal Logic Con-
trol for Deterministic Transition Systems with Probabilistic Penal-
ties. IEEE Transactions on Automatic Control, 60(6):1–14, 2015.

[SvB13a] M. Svoreňová, I. Černá, and C. Belta. Optimal Control of MDPs
with Temporal Logic Constraints. In Proc. of IEEE Conference on
Decision and Control CDC, pages 3938–3943, 2013.

[SvB13b] M. Svoreňová, I. Černá, and C. Belta. Optimal Receding Horizon
Control for Finite Deterministic Systems with Temporal Logic Con-
straints. In Proc. of American Control Conference ACC, pages 4399–
4404, 2013.

[STBv12] M. Svoreňová, J. Tůmová, J. Barnat, and I. Černá. Attraction-based
Receding Horizon Path Planning with Temporal Logic Constraints.
In Proc. of IEEE Conference on Decision and Control CDC, pages
6749–6754, 2012.

Chapter 4 addresses a control problem for discrete-time systems with lin-
ear dynamics and stochastic uncertainty. We design an iterative abstraction-
refinement algorithm that finds the maximal set of initial states of the dynamic
system from which a given GR(1) formula can be satisfied with probability 1,
together with the corresponding strategies. In every iteration, the system is ab-
stracted using a 21/2-player game that is then analyzed and a new, more refined
abstraction is built. While the synthesis step leverages the existing game theoret-
ical techniques, both abstraction and refinement steps present novel approaches.
Every iteration of the algorithm results in a partial solution. The designed al-
gorithm is sound but completeness cannot be guaranteed. To the best of our
knowledge, the presented approach is the first attempt to construct abstraction-
refinement of stochastic systems with continuous state and control spaces in the
form of 21/2-player games. We argue that in order to obtain the desired control
strategies, the system must indeed be abstracted using a 21/2-player game and not
using a weaker model such as a 2 player game. Using a case study, we compare
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our approach with two simpler algorithms for reachability analysis. While the
simpler algorithms find the set of satisfying initial states considerably faster, they
are not able to construct the desired strategies demonstrating that abstraction
using a 21/2-player game is necessary even in the case of reachability.

These results are based on the following publication:

[SKC+15] M. Svoreňová, J. Křet́ınský, M. Chmeĺık, K. Chatterjee, I. Černá,
and C. Belta. Temporal Logic Control for Stochastic Linear Systems
using Abstraction Refinement of Probabilistic Games. In Proc. of
Conference on Hybrid Systems: Computation and Control HSCC,
pages 259–268, 2015.

Finally, Chapter 5 concludes the main body of the thesis, Appendix A
lists all publications and contributions of the author of the thesis, and technical
Appendices B and C contain algorithms for game solving and operations with
polytopes, respectively, used as routines in the framework designed in Chapter 4.
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Chapter 2

Preliminaries

In this chapter, we cover the main notions used throughout the thesis. After
we set the basic notation, we introduce linear temporal logic as the language to
describe rich specification for systems. We follow with the definitions of finite
and infinite systems that appear in the following chapters. Given a system and
a specification, we formally state the problems of formal verification and control
synthesis and overview the well-known automata-based approach.

2.1 Notation

For a finite set X, we use |X|, X+, X∗ and Xω to denote the cardinality of X
and the set of all finite non-empty, finite and infinite sequences of elements of
X, respectively. A finite sequence σ = x0 . . . xn ∈ X∗ has length |σ| = n + 1,
also referred to as the number of stages, and last(σ) = xn is the last state. For
0 ≤ i ≤ n, σ(i) = xi is the i-th element, σ→i = x0 . . . xi is the prefix ending with
the i-th element and σi→ = xi . . . xn is the suffix starting with the i-th element.
Similarly, for an infinite sequence ρ = x0x1 . . . ∈ Xω, ρ(i) = xi, ρ

→i = x0 . . . xi and
ρi→ = xixi+1 . . . for all i ≥ 0. Additionally, inf(ρ) denotes the set of all elements
appearing infinitely many times in ρ. For two sets X1 ⊆ X∗, X2 ⊆ X∗ ∪Xω, we
use X1 ·X2 = {x1 · x2 | x1 ∈ X1, x2 ∈ X2} to denote their concatenation.

For two sets X,Y , we use X × Y = {(x, y) | x ∈ X, y ∈ Y } to denote
the Cartesian product of the two sets. For every element (x, y) ∈ X × Y , we
denote π1((x, y)) = x and π2((x, y)) = y the projection on the first and second
component, respectively. We naturally extend this notation over the sequences
from (X × Y )+, (X × Y )∗, (X × Y )ω, e.g., π1

(
(x1, y1) . . . (xn, yn)

)
= x1 . . . xn.

Finally, given a set X, D(X) is the set of all probability distributions over X
and {x ∈ X | d(x) > 0} is the support set of a distribution d ∈ D(X).

12



CHAPTER 2. PRELIMINARIES

2.2 Linear Temporal Logic

Linear temporal logic (LTL) is a modal temporal logic with modalities referring
to time that was first proposed for formal verification of computer programs by
Amir Pnueli in 1977 [Pnu77]. In this section, we formally define the logic, discuss
the correspondence between formulas of LTL and automata over infinite words
and introduce two special classes of formulas that we use in our work. For a more
detailed reading on LTL, we refer the reader to textbooks such as [BK08].

2.2.1 Syntax and Semantics

Definition 1. Linear Temporal Logic (LTL) formulas over a finite set AP of
atomic propositions are formed according to the following grammar:

φ ::= true | a | ¬φ | φ ∧ φ | Xφ | φUφ,

where a ∈ AP is an atomic proposition, ¬ and ∧ are the standard Boolean connec-
tives negation and conjunction, and X (next), U (until) are temporal operators.

Formulas of LTL are interpreted over words in (2AP )ω. Formally, the sat-
isfaction relation |=⊆ (2AP )ω×LTL is the smallest relation with the following
properties:

z |= true,
z |= a ⇔ a ∈ z(0),
z |= ¬φ ⇔ z 6|= φ,
z |= φ1 ∧ φ2 ⇔ z |= φ1 and z |= φ2,
z |= Xφ ⇔ z1 |= φ,
z |= φ1Uφ2 ⇔ there exists i ≥ 0 such that zi |= φ2,

and for all 0 ≤ j < i, it holds that zj |= φ1.

Derived temporal operators that are commonly used in LTL are F (future
or eventually) and G (generally or always) defined as Fφ = trueUφ and Gφ =
¬F¬φ. LTL formulas that describe properties often considered in path planning
for robotic systems are:

- reachability : Fφ (eventually satisfy φ),

- safety : Gφ (φ must hold at all times),

- response or liveness: G(φ1 ⇒ Fφ2) (every satisfaction of φ1 is eventually
answered with satisfaction of φ2),

- exclusive response: G(φ1 ⇒ X(¬φ1Uφ2)) (every satisfaction of φ1 is even-
tually answered with satisfaction of φ2 before φ1 can be satisfied again),

- persistent surveillance: GFφ (φ must hold infinitely many times),

- stability : FGφ (φ must hold from some point on).

13



2.2. LINEAR TEMPORAL LOGIC

We use |φ| to denote the size of a formula φ defined as the number of operators
appearing in φ. Inductively, |true| = 0, |a| = 0 for all a ∈ AP , |¬φ| = |Xφ| =
|φ|+ 1 and |φ1 ∧ φ2| = |φ1Uφ2| = |φ1|+ |φ2|+ 1.

2.2.2 Automata Representation

The set of all words satisfying an LTL formula forms an ω-regular language [VW94],
i.e., a language that can be represented by an ω-automaton.

Definition 2. A (non-deterministic) ω-automaton is a tuple

A = (Q,Σ, δ, q0, Acc),

where Q is a nonempty finite set of states, Σ is a finite alphabet, δ ⊆ Q× Σ×Q
is a transition relation such that for every q ∈ Q, a ∈ Σ, there exists q′ ∈ Q such
that (q, a, q′) ∈ δ, q0 ∈ Q is the initial state, and Acc is an accepting condition.

A run q0q1 . . . ∈ Qω of A is an infinite sequence such that for every i ≥ 0
there exists ai ∈ Σ with (qi, ai, qi+1) ∈ δ. We say that the word a0a1 . . . ∈ Σω

induces the run q0q1 . . .. Every word in Σω induces a non-empty set of runs of A.
An ω-automaton is called deterministic if every word over its alphabet induces a
single run.

A run q0q1 . . . of A is accepting if and only if it satisfies the accepting condition
Acc. A word over Σ is accepted by A if it induces at least one accepting run. The
set of all words over 2AP accepted by the ω-automaton A is called the language
of A.

Depending on the accepting condition, we recognize Büchi, Rabin, Streett, par-
ity and Müller automata and their non-deterministic and deterministic versions.
Below, we define some of these automata that appear in the standard translation
techniques for LTL. For further reading on ω-automata and their connection to
logics, see [GTW02].

Non-deterministic ω-automata

A standard approach is to translate an LTL formula over the set of atomic propo-
sitions AP to a non-deterministic Büchi automaton (BA) over alphabet 2AP . A
Büchi accepting condition for an ω-automaton A is given as a set of so called
accepting states F ⊆ Q. A run q0q1 . . . is called accepting if and only if it visits
at least one accepting state infinitely many times, i.e.,

inf(q0q1 . . .) ∩ F 6= ∅.

The first algorithm to translate an LTL formula to a BA was presented in [VW94],
other appeared in [GO01a, SB00]. The translation is EXPTIME-complete, i.e.,
the size of the obtained Büchi automaton is in the worst case exponential in
the size of the formula [GO01a]. Online implementations such as [GO01b] are
available to translate an LTL formula to a BA.
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Deterministic ω-automata

Every LTL formula can be translated to a non-deterministic Büchi automaton,
but there exist LTL formulas for which there is no deterministic Büchi automaton
such as the stability property FGa for a ∈ AP . To translate an LTL formula to a
deterministic ω-automaton, the standard approach is to use a deterministic Rabin
automaton (DRA) over alphabet 2AP . The Rabin accepting condition is given as
a set Acc ⊆ 2Q× 2Q. A run q0q1 . . . of a DRA A is called accepting if there exists
a pair (E,F ) ∈ Acc such that the run visits every state from E only finitely many
times and at least one state from F infinitely many times, i.e.,

inf(q0q1 . . .) ∩ E = ∅ ∧ inf(q0q1 . . .) ∩ F 6= ∅.

The problem of translating LTL to DRA is 2EXPTIME-complete [PR89]. There
are two general approaches. The first, traditional one translates an LTL for-
mula to a BA and then uses Safra’s construction [Saf88] to obtain a deterministic
ω-automaton. An implementation with improved Safra’s construction is avail-
able online at [Kle07]. As this approach may lead to unnecessarily big automata
for some formulas, there exist several translations avoiding Safra’s construction
for chosen fragments of LTL. For comparison of available algorithms and tools,
see [BKS13].

2.2.3 General Reactivity(1)

To avoid the high computational complexity of full LTL, the General Reactivity(1)
(GR(1)) fragment was introduced in [PPS06]. Here, we use the extended version
of the standard definition that appears in the same work.

Definition 3. A GR(1) formula φ is a particular type of an LTL formula over a
set of atomic propositions AP of the form

φ =
( m∧
i=1

ϕi
)

=⇒
( n∧
j=1

ϕj
)
, (2.1)

where each ϕi, ϕj is an LTL formula that can be represented by a deterministic
Büchi ω-automaton.

Many interesting properties can be expressed using formulas of GR(1) such as
the properties mentioned in Section 2.2.1 and their combinations according to the
form in Equation 2.1, except for the stability property as it cannot be represented
by a deterministic BA.

The advantage of using GR(1) instead of full LTL as the specification language
is that realizability for LTL is 2EXPTIME-complete [PR89], whereas for GR(1)
it is only cubic in the size of the formula [PPS06].

To represent formulas of GR(1), we use ω-automata with Büchi implication
acceptance condition, also known as one-pair Streett acceptance condition. The

15



2.3. FINITE DISCRETE SYSTEMS

condition is defined as Acc = (E,F ) ∈ 2Q×2Q and a run q0q1 . . . is accepting, if it
holds that if the set E is visited infinitely often, then the set F is visited infinitely
often, i.e.,

inf(q0q1 . . .) ∩ E 6= ∅ =⇒ inf(q0q1 . . .) ∩ F 6= ∅.

Note that the Büchi acceptance condition is a special case of Büchi implication ac-
ceptance condition with E = Q. To translate a GR(1) formula to an ω-automata
with Büchi implication acceptance condition, one first constructs deterministic
Büchi automata for each formula ϕi, ϕj and the deterministic Büchi automaton
that accepts the intersection of the languages of the given automata can be com-
puted using the well-known counting construction [BK08].

2.2.4 LTL with Persistent Surveillance

In our work, we often consider LTL formulas of the following form

φ = ϕ ∧ GF asur, (2.2)

where ϕ is an LTL formula over AP and asur ∈ AP is so-called surveillance
proposition. Besides satisfying the formula ϕ, formula with persistent surveillance
that the surveillance proposition asur is satisfied infinitely many times.

Given a word z ∈ AP+ ∪APω, we say that every satisfaction of the property
asur in z completes a surveillance cycle. Specifically, the first i > 0 such that
asur ∈ z(i) completes the first surveillance cycle of a word. For a finite word
z ∈ AP+ such that asur ∈ last(z), ](z) denotes the number of complete surveillance
cycles in z, otherwise ](z) is the number of complete surveillance cycles plus one.

Technically, LTL with persistent surveillance is not a fragment of LTL because
the form in Equation 2.2 does not restrict the expressiveness of LTL. Indeed, every
LTL formula ϕ over AP is equivalent to the formula φ = ϕ ∧ GF true.

2.3 Finite Discrete Systems

In this section, we introduce three increasingly more general types of discrete
systems with finite state and control spaces. First, a deterministic transition
system is introduced that is a finite system with no uncertainty. The second model
is a Markov decision process that includes probabilistic uncertainty. Finally, 21/2-
player games represent the most general type of a finite system that includes both
probabilistic and non-deterministic uncertainty.

2.3.1 Deterministic Transition Systems

System and its runs

Definition 4. A deterministic transition system (DTS) is a tuple

T = (S, T,AP ,L),
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where S is a nonempty finite set of states, T ⊆ S × S is a transition relation,
AP is a nonempty finite set of atomic propositions and L : S → 2AP is a labeling
function.

An initialized DTS is a DTS T = (S, T,AP ,L) with a distinctive initial state
sinit ∈ S.

We assume that for every s ∈ S there exists s′ ∈ S such that (s, s′) ∈ T . A
run of a DTS T is an infinite sequence ρ = s0s1 . . . ∈ Sω such that for every i ≥ 0
it holds (si, si+1) ∈ T . We use RunT (s) to denote the set of all runs of T that
start in s ∈ S. Let RunT =

⋃
s∈S RunT (s). A finite run σ = s0 . . . sn of T is a

finite prefix of a run of T and RunTfin(s) denotes the set of all finite runs of T that
start in s ∈ S. Let RunTfin =

⋃
s∈S RunTfin(s). A cycle of a DTS T is a finite run

cyc = c0 . . . cm of T for which it holds that (cm, c0) ∈ T .

By extending the labeling function, every infinite run ρ = s0s1 . . . ∈ RunT and
finite run σ = s0 . . . sn ∈ RunTfin induces a word L(ρ) = L(s0)L(s1) . . . ∈ (2AP )ω

and L(σ) = L(s0) . . . L(sn) ∈ (2AP )+ over the alphabet 2AP , respectively.

Control strategy

Definition 5. Let T = (S, T,AP ,L) be a DTS. A control strategy for T is a func-
tion C : RunTfin → S such that for every σ ∈ RunTfin, it holds that (last(σ), C(σ)) ∈
T .

A strategy C for which C(σ1) = C(σ2), for all finite runs σ1, σ2 ∈ RunTfin with
last(σ1) = last(σ2), is called memoryless. In that case, C is considered to be a
function C : S → S. A strategy is called finite-memory if it can be defined as
a tuple C = (M, next, trans, start), where M is a non-empty finite set of modes,
trans : M ×S →M is a transition function, next : M ×S → S selects a state of T
to be visited next, and start : S → M selects the starting mode. A strategy that
is not finite-memory is called infinite-memory.

A run induced by a strategy C is a run ρC = s0s1 . . . ∈ RunT for which
si+1 = C(ρ→iC ) for every i ≥ 0. For every s ∈ S, there is exactly one run induced
by C that starts in s. A finite run induced by C is σC ∈ RunTfin, which is a finite
prefix of some ρC .

Definition 6. Let T = (S, T,AP ,L) be a DTS. A sub-system of T is a DTS
U = (SU , TU , AP ,L|U ), where ∅ 6= SU ⊆ S and TU ⊆ T ∩ (SU × SU ). We use L|U
to denote the labeling function L restricted to the set SU . If the context is clear,
we use L instead of L|U .

A sub-system U of T is called strongly connected if for every pair of states
s, s′ ∈ SU , there exists a finite run σ ∈ RunUfin(s) such that last(σ) = s′. A strongly
connected component (SCC) of T is a maximal strongly connected sub-system of
T . We use SCC(T ) to denote the set of all strongly connected components of T .
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Every state of a DTS T belongs to at most one strongly connected component
of T . Hence, the cardinality of the set SCC(T ) is bounded by the number of
states of T .

Let C be a strategy, finite-memory or not, for a TS T . For every state s ∈
S, the run ρC ∈ RunT (s) induced by C satisfies inf(ρC) ⊆ SU for some U ∈
SCC(T ) [BK08]. We say that C leads T from the state s to the SCC U .

Satisfaction of LTL formulas

We say that an infinite run ρ of a DTS T satisfies an LTL formula φ over AP ,
denoted as ρ |= φ, iff it holds that L(ρ) |= φ. We say that a strategy C for T
satisfies φ starting from a state s ∈ S iff the run induced by C that starts from s
satisfies φ.

2.3.2 Markov Decision Processes

System and its runs

Definition 7. A Markov decision process (MDP) is a tuple

M = (S,Act, P,AP ,L),

where S is a non-empty finite set of states, Act is a non-empty finite set of actions,
P : S × Act × S → [0, 1] is a transition probability function such that for every
state s ∈ S and action α ∈ Act it holds that

∑
s′∈S P (s, α, s′) ∈ {0, 1}, AP is a

finite set of atomic propositions, L : S → 2AP is a labeling function.

An initialized Markov decision process is an MDP M = (S,Act, P,AP ,L)
with a distinctive initial state sinit ∈ S.

An action α ∈ Act is enabled in a state s ∈ S if it holds that
∑

s′∈S P (s, α, s′) =
1. With a slight abuse of notation, Act(s) denotes the set of all actions enabled
in a state s. We assume Act(s) 6= ∅ for every s ∈ S.

A run of an MDP M is an infinite sequence of states ρ = s0s1 . . . ∈ Sω

such that for every i ≥ 0, there exists αi ∈ Act(si), P (si, αi, si+1) > 0. We use
RunM(s) to denote the set of all runs of M that start in a state s ∈ S and
RunM =

⋃
s∈S RunM(s). A finite run σ = s0 . . . sn ∈ S+ of M is a finite prefix

of a run in M and RunMfin(s) denotes the set of all finite runs of M starting in a
state s ∈ S. Let RunMfin =

⋃
s∈S RunMfin(s).

Every run ρ = s0s1 . . . ∈ RunM induces a word L(ρ) = L(s0)L(s1) . . . ∈
(2AP )ω. Similarly, a finite run σ = s0 . . . sn ∈ RunMfin induces a finite word L(σ) =
L(s0) . . . L(sn) ∈ (2AP )+.

Remark 1. Note that if the transition probability function of an MDP satisfies
P (s, α, s′) ∈ {0, 1} for all states s, s′ ∈ S and actions α ∈ Act, then the set of
actions Act can be omitted and the MDP can be seen as a DTS.
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Control strategy

Definition 8. Let M = (S,Act, P,AP ,L) be an MDP. A control strategy for
M is a function C : RunMfin → Act such that for every σ ∈ RunMfin it holds that
C(σ) ∈ Act(last(σ)).

A strategy C for which C(σ) = C(σ′) for all finite runs σ, σ′ ∈ RunMfin with
last(σ) = last(σ′) is called memoryless. In that case, we consider C to be a
function C : S → Act. A strategy is called finite-memory if it is defined as a tuple
C = (M, next, trans, start), where M is a finite set of modes, trans : M × S → M
is a transition function, next : M × S → Act selects the next action to be applied
in the MDP M, and start : S →M selects the starting mode for every s ∈ S.

A run ρC = s0s1 . . . ∈ RunM of an MDP M is a run under a strategy C for
M if for every i ≥ 0, it holds that P (si, C(ρ→iC ), si+1) > 0. A finite run under C
is a finite prefix of a run under C. The set of all infinite and finite runs of M
under C starting in a state s ∈ S are denoted by RunM,C(s) and RunM,C

fin (s),

respectively. Let RunM,C =
⋃
s∈S RunM,C(s) and RunM,C

fin =
⋃
s∈S RunM,C

fin (s).

Definition 9. A sub-system of an MDP M = (S,Act, P,AP ,L) is an MDP
N = (SN , ActN , P |N , AP ,L|N ) such that ∅ 6= SN ⊆ S, ∅ 6= ActN ⊆ Act. We
use P |N to denote the function P restricted to the sets SN and ActN . Similarly,
we use L|N with the obvious meaning. If the context is clear, we only use P,L
instead of P |N , L|N .

An end component (EC) of M is a sub-system N such that for every pair of
states s, s′ ∈ SN , there exists a finite run σ ∈ RunNfin(s) with last(σ) = s′. The set
of all end components and maximal end components of M is denoted by EC(M)
and MEC(M), respectively.

The number of ECs of an MDP M can be up to exponential in the number
of states of M and they can intersect. On the other hand, MECs are pairwise
disjoint and every EC is contained in a single MEC. Hence, the number of MECs
of M is bounded by the number of states of M.

The following properties hold for any MDP M [BK08]. For every EC N of
M, there exists a finite-memory strategy C forM such thatM under C starting
from any state of N never visits a state outside N and all states of N are visited
infinitely many times with probability 1. On the other hand, having any, finite-
memory or not, strategy C, a state s ofM and a run ρ ofM under C that starts
in s, the set of states visited infinitely many times by ρ forms an end component.
Let ec ⊆ EC(M) be the set of all ECs of M that correspond, in the above sense,
to at least one run under the strategy C that starts in the state s. We say that
the strategy C leads M from the state s to the set ec.

Probability measure

Let M be an MDP, s ∈ S a state of M, and C a strategy for M. The following
probability measure is used to argue about the possible outcomes of applying C
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in M starting from the state s.
Let σ ∈ RunM,C

fin (s) be a finite run. A cylinder set Cyl(σ) of σ is the set
of all runs of M under C that have σ as a finite prefix. There exists a unique
probability measure PrM,C

s on the σ-algebra generated by the set of cylinder sets
of all runs in RunM,C

fin (s). For σ = s0 . . . sn ∈ RunM,C
fin (s), it holds

PrM,C
s (Cyl(σ)) =

n−1∏
i=0

P (si, C(σ→i), si+1)

and PrM,C
s (Cyl(s)) = 1. Intuitively, given a subset X ⊆ RunM,C(s), PrM,C

s (X)
is the probability that a run of M under C that starts in s belongs to the set X.

Satisfaction of LTL formulas

Given an MDP M and an LTL formula φ over AP , we say that an infinite run
ρ of M satisfies φ over AP , denoted as ρ |= φ, iff it holds that L(ρ) |= φ. The
set of all runs under given strategy C that satisfy an LTL formula form a set
measurable in the probability measure PrM,C

s [BK08]. The strategy C for M is
said to satisfy φ almost-surely, or with probability 1, starting from a state s ∈ S
iff it holds that

PrM,C
s ({ρ | ρ |= φ}) = PrM,C

s (φ) = 1.

Note that in such case, there might exist runs ρ ∈ RunM(s) that violate the
formula but the probability ofM executing such a run under the strategy C is 0.

2.3.3 21/2-player Games

System and its runs

Definition 10. A two-player turn-based probabilistic game, or 21/2-player game,
is a tuple

G = (S1 ∪ S2, Act, P,AP ,L),

where S = S1 ∪ S2 is a non-empty finite set of states partitioned into a set S1 of
Player 1 states and a set S2 of Player 2 states, Act is a non-empty finite set of
actions for the players, P : (S1 ∪ S2) × Act × (S1 ∪ S2) → [0, 1] is a probabilistic
transition function such that for every state s ∈ S and action α ∈ Act it holds that∑

s′∈S P (s, α, s′) ∈ {0, 1}, AP is a finite set of atomic propositions and L : S →
2AP is a labeling function.

An action α ∈ Act is enabled in a state s ∈ S if it holds that
∑

s′∈S P (s, α, s′) =
1. We use Act(s) to denote the set of all actions enabled in a state s. We assume
Act(s) 6= ∅ for every s ∈ S.

A run or a play of a 21/2-player game G is a sequence ρ ∈ Sω such that
for all n ≥ 1 there exists α ∈ Act such that P (ρ(n), α, ρ(n + 1)) > 0. We use
RunG(s) to denote the set of all plays of G that start in a state s ∈ S and
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RunG =
⋃
s∈S RunG(s). A finite play σ is a finite prefix of a play of G. Let

RunGfin(s) denote the set of all finite plays of G starting in a state s ∈ S and
RunGfin =

⋃
s∈S RunGfin(s).

The word induced by a play ρ = s0s1 . . . ∈ RunG is an infinite sequence
L(ρ) = L(s0)L(s1) . . . ∈ (2AP )ω. Similarly, a finite play of G induces a finite word
L(σ) in (2AP )+.

Remark 2. Note that if S = S1, or equivalently S2 = ∅, the 21/2-player game G is
an MDP, also called a 11/2-player game in game theory. Given a 21/2-player game
G, the 11/2-player interpretation of G, where the players cooperate, is denoted as
Gcoop.

Control strategy

Definition 11. Let G = (S1∪S2, Act, P,AP ,L) be a 21/2-player game. A Player 1
strategy for G is a function C1 : RunGfin · S1 → Act such that for every play σ ∈
RunGfin · S1 of G it holds that C1(σ) ∈ Act(last(σ)). Strategies C2 for Player 2 are
defined analogously.

A strategy C1 for Player 1 for which C1(σ) = C1(σ′) for all finite plays σ, σ′ ∈
RunGfin with last(σ) = last(σ′) ∈ S1 is called memoryless and we consider the
strategy to be a function C1 : S1 → Act. A strategy is called finite-memory if it
is defined as a tuple C1 = (M, next, trans, start), where M is a finite set of modes,
trans : M × S →M is a transition function, next : M × S1 → Act selects the next
action to be applied in Player 1 states, and start : S → M selects the starting
mode for every s ∈ S. Memoryless and finite-memory strategies for Player 2 are
defined analogously.

A play ρC1,C2 = s0s1 . . . ∈ RunG of a game G is called a play under strategies
C1, C2 for Player 1 and Player 2, respectively, if for every i ≥ 0, it holds that
P (si, C(ρ→iC1,C2), si+1) > 0, where C is the Player 1 strategy C1 iff si ∈ S1 and

it is the Player 2 strategy C2 otherwise. A finite play under C1, C2 is a finite
prefix of a run under these strategies. The set of all infinite and finite plays of G
under the two strategies starting in a state s ∈ S are denoted by RunG,C

1,C2
(s)

and RunG,C
1,C2

fin (s), respectively. Let RunG,C
1,C2

=
⋃
s∈S RunG,C

1,C2
(s) and finally

RunG,C
1,C2

fin =
⋃
s∈S RunG,C

1,C2

fin (s).

Probability measure

Analogously as for MDPs, we define a probability measure over sets of plays of a
game. Let G be a 21/2-player game, s a state of G, and C1 and C2 strategy for
Player 1 and Player 2, respectively.

Let σ ∈ RunG,C
1,C2

fin (s) be a finite play. A cylinder set Cyl(σ) of σ is the set of
all plays of G under C1, C2 that have σ as a finite prefix. There exists a unique
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probability measure PrG,C
1,C2

s on the σ-algebra generated by the set of cylinder

sets of all runs in RunG,C
1,C2

fin (s). For σ =∈ RunG,C
1,C2

fin (s), it holds

PrG,C
1,C2

s (Cyl(σ)) =
n−1∏
i=0

P (σ(i), C(σ→i), σ(i+ 1)),

where C is the Player 1 strategy C1 iff σ(i) ∈ S1 and it is the Player 2 strategy

C2 otherwise, and PrG,C
1,C2

s (Cyl(s)) = 1.
Note that for the cooperative game Gcoop the probability measure matches the

definition of the probability measure for MDPs.

Satisfaction of specification

Given a 21/2-player game G and an LTL formula φ over AP , we say that a play ρ
of G satisfies φ, denoted as ρ |= φ, iff it holds that L(ρ) |= φ. The set of all runs
under given strategies C1, C2 that satisfy an LTL formula form a set measurable
in the probability measure PrG,C

1,C2

s [BK08]. Strategies C1, C2 for Player 1 and
Player 2 are said to satisfy φ almost-surely, or with probability 1, starting from a
state s ∈ S iff it holds that

PrG,C
1,C2

s ({ρ | ρ |= φ}) = PrG,C
1,C2

s (φ) = 1.

We use AlmostG(φ) to denote the almost-sure winning set in G for a formula φ,
i.e., the set of all states of the game such that Player 1 has a strategy to ensure
satisfaction of the LTL formula φ with probability 1 irrespective of the strategy
of Player 2. Formally,

AlmostG(φ) = {s ∈ S | ∃C1 ∀C2 : PrG,C
1,C2

s (φ) = 1}.

The almost-sure winning set in the cooperative game Gcoop for a formula φ is
then defined as

AlmostG
coop

(φ) = {s ∈ S | ∃C1 ∃C2 : PrG,C
1,C2

s (φ) = 1}.

2.4 Dynamic Systems

In this section, we introduce systems that have infinite, continuous state and con-
trol spaces. Namely, we consider systems that have linear dynamics and include
stochastic uncertainty. We start with several necessary definitions from geometry.

2.4.1 Polytopes

A (convex) polytope X ⊂ RN is defined as the convex hull of a finite set X =
{xi}i∈I ⊂ RN :

X = hull(X) = {
∑
i∈I

λixi | ∀i : λi ∈ [0, 1],
∑
i∈I

λi = 1}. (2.3)
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We use V (X ) to denote the vertices of X that is the minimum set of vectors in
RN for which X = hull(V (X )). Alternatively, a polytope can be defined as an
intersection of a finite number of half-spaces in RN :

X = {x ∈ RN | HXx ≤ KX }, (2.4)

where HX ,KX are matrices of appropriate sizes. Forms in Equations 2.3 and
2.4 are referred to as the V-representation and H-representation of polytope X ,
respectively.

A polytope X ⊂ RN is called full-dimensional if it has at least N + 1 vertices.
In this work, we consider all polytopes to be full-dimensional, i.e., a polytope
that is not full-dimensional is considered to be empty.

2.4.2 Linear Stochastic Systems

System and its runs

Definition 12. A linear stochastic system L is defined as

L : xt+1 = Axt +But + wt,

where xt ∈ X ⊂ RN , ut ∈ U ⊂ RM are column vectors, X ,U are polytopes in the
corresponding Euclidean spaces called the state space and control space, respec-
tively, column vector wt ∈ W ⊂ RN is the value at time t of a random vector with
values in polytope W. The random vector has positive density fW : W → [0, 1] on
all values in W. Finally, A and B are matrices of appropriate sizes.

The set of atomic propositions AP is given as a finite set of linear predicates
over the state space X of L:

AP = {a : cx ≤ d | c ∈ RN , d ∈ R},

where c is a row vector. A labeling function L : X → 2AP is defined as the set of
all linear predicates that are true in a state x, i.e., L(x) = {a ∈ AP | cx ≤ d}.

We use Xout to denote the set of all states in RN outside of the state space X
that can be reached within one step in system L:

Xout = {x ∈ RN \ X | ∃x′ ∈ X ,∃u ∈ U ,∃w ∈ W : x = Ax′ +Bu+ w}. (2.5)

A run of a linear stochastic system L is an infinite sequence ρ = x0x1 . . . ∈
X ω such that for every n ≥ 0, it holds that xn+1 = Axn + Bu + w for some
u ∈ U , w ∈ W. Moreover, every infinite sequence x0 . . . xn−1(xn)ω such that
x0 . . . xn ∈ X ∗ · Xout satisfies the above condition for every 0 ≤ i ≤ n − 2 is
also considered to be a run of L. We use RunL(x) to denote the set of all runs
of L that start in a state x ∈ X and RunL =

⋃
x∈X RunL(x). A finite run

σ = x0 . . . xn ∈ X+ of L is a finite prefix of a run of L. For x ∈ X , RunLfin(x)
denotes the set of all finite runs of L starting in x and RunLfin =

⋃
x∈X RunLfin(x).

Every run ρ = x0x1 . . . of a linear stochastic system generates an infinite word
L(ρ) = L(x0)L(x1) . . . ∈ (2AP )ω and similarly, every finite run σ = x0 . . . xn
generates a finite word L(σ) = L(x0) . . . L(xn) ∈ (2AP )+.
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Control strategy

Definition 13. Let L be a linear stochastic system. A control strategy for L is a
function C : RunLfin → U .

A strategy C for which C(σ1) = C(σ2), for all finite runs σ1, σ2 ∈ RunLfin

with last(σ1) = last(σ2), is called memoryless. In that case, C is a function
C : X → U . A strategy is called finite-memory if it can be defined as a tuple
C = (M, next, trans, start), where M is a finite set of modes, trans : M × X → M
is a transition function, next : M ×X → U selects the control input to be applied,
and start : X →M selects the starting mode. A strategy that is not finite-memory
is called infinite-memory.

A run induced by C is a run ρC = x0x1 . . . ∈ RunL such that for every
i ≥ 0, there exists w ∈ W such that xi+1 = Axi + BC(ρ→iC ) + w. A finite
run induced by C is σC ∈ RunLfin that is a finite prefix of some ρC . The set of
all infinite and finite runs of L under C starting in a state x ∈ X are denoted
by RunL,C(x) and RunL,Cfin (x), respectively, and RunL,C =

⋃
x∈X RunL,C(x) and

RunL,Cfin =
⋃
x∈X RunL,Cfin (x).

Probability measure

Let L be a linear stochastic system of the form in Equation 12, x ∈ X a state of
L and C a strategy for L.

Given a finite sequence X1 . . .Xn of polytopes within the state space X , a
cylinder set Cyl(X1 . . .Xn) is the set of all runs ρ = xx1 . . . xn . . . ∈ RunL,C(x)
such that xi ∈ Xi for all 1 ≤ i ≤ n.

There exists a unique probability measure PrL,Cx on the σ-algebra generated
by the set of all cylinder sets. For a sequence X1 . . .Xn, it holds

PrL,Cx (Cyl(X1 . . .Xn)) =

∫
x1∈X1

· · ·
∫

xn−1∈Xn−1

P (x, dx1)P (x1, dx2) · . . . ·P (xn−1,Xn),

where P is the stochastic kernel of the linear stochastic system L.

Satisfaction of LTL formulas

A run ρ of a linear stochastic system L satisfies an LTL formula φ over the set
AP , denoted as ρ |= φ, iff it holds that Lρ |= φ. A strategy C for L is said to
satisfy φ almost-surely, or with probability 1, starting from a state x ∈ X if it
holds that

PrL,Cx ({ρ | ρ |= φ}) = PrL,Cx (φ) = 1.
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2.5 Automata-based LTL Model Checking and Con-
trol Synthesis

The problem of LTL model checking aims to answer the following question:

Given a system and an LTL formula, does it hold that all runs under
all strategies satisfy the formula?

For probabilistic systems, we consider the qualitative version of the problem:

Given a probabilistic system and an LTL formula, does it hold that
the formula is satisfied with probability 1 under all strategies?

Dually, the problem of LTL control synthesis is defined as follows:

Given a system and an LTL formula, does there exist a control strategy
such that all runs under the strategy satisfy the formula?

Finally, the qualitative LTL control synthesis poses the following question:

Given a probabilistic system and an LTL formula, does there exist
a control strategy such that the formula is satisfied with probability 1
under the strategy?

The automata-based approach to model checking relies on the correspondence
between LTL formulas and ω-automata. The main idea is to search for a run
that violates the formula. For probabilistic systems, the aim is to find a control
strategy that violates the formula with non-zero probability. If no such run or
strategy exists, the model satisfies the formula. The general idea of the algorithm
is as follows. First, the system is abstracted using a finite discrete model such as
the ones introduced in Section 2.3. The formula is negated and translated to an
ω-automaton using techniques listed in Section 2.2. Next, a synchronous product
of the model and the ω-automaton is constructed, where the runs of the model
that satisfy the negated formula can be easily identified through the accepting
condition of the ω-automaton. Finally, the product is systematically analyzed to
find an accepting run of the product or a strategy that is accepting with non-zero
probability. If it exists, the answer to the model checking problem is no and the
found run or strategy serves as a counterexample for the formula satisfaction that
can be further analyzed.

To use automata-based approach in control synthesis, the above algorithm can
be applied with the following changes. First, the ω-automaton is built for the LTL
formula, not its negation. In the synchronous product, one aims to find a control
strategy that induces only accepting runs. Analogously, for probabilistic systems,
the strategy must induce an accepting run with probability 1. The constructed
strategy is then the desired control strategy that guarantees satisfaction of the
formula.
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SYNTHESIS

satisfying behavior exists?
yesno

system LTL formula φ

LTL formula ¬φ

ω-automaton

no (counter-example)yes

synchronous product

discrete system

(a)

satisfying behavior exists?
no yes

no yes (control strategy)

synchronous product

discrete system

LTL formula φ

ω-automaton

system

(b)

Figure 2.1: The outline of the automata-based approach to (a) LTL model
checking and (b) LTL control synthesis.

We summarize the framework for the automata-based approach to LTL model
checking and control synthesis in Figure 2.1. Based on the finite system at hand,
an appropriate ω-automaton is used to represent the formula and the algorithm
to analyze the synchronous product explores the specific properties of both the
system and the ω-automaton. The corresponding algorithms for DTSs, MDPs and
21/2-player games appear in the following chapters and serve as the cornerstones
for the designed techniques.
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Chapter 3

Control for Finite Discrete
Systems

In this chapter, we address a control problem for finite discrete models that is intu-
itively formulated as follows. Assume that every state of the system is associated
with a (possibly changing) value. The values can be used to encode quantita-
tive aspects of the system such as energy or time demands in given locations,
or rewards associated with visits of particular states. Motivated by persistent
surveillance missions for mobile robots, our goal is to optimize the expected cu-
mulative value incurred between consecutive satisfactions of a property associated
with some states of the system, while at the same time satisfying an additional
temporal constraint in the form of an LTL formula. While the problems of optimal
control and temporal logic control for finite discrete models are fairly well-studied,
the connection between the two is an intriguing problem with a potentially high
impact in applications.

In Section 3.1, we analyze the case, where the system is described using a
DTS and the values are interpreted as rewards, i.e., the goal is to maximize the
collected value. In Section 3.2, we follow with the dual problem, where the values
are interpreted as penalties and construct strategies that while satisfying the LTL
formula, minimize the expected collected value. Finally, in Section 3.3, a version
of this problem is considered for MDPs. Every section starts with a motivation
for the particular setup and a discussion on existing related work. We follow
with the formal problem formulation and the description of the designed solution
including illustrative examples for better understanding. All presented algorithms
were implemented and their usability is demonstrated on case studies.
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3.1 Deterministic Systems with Rewards

3.1.1 Motivation

In this section, we assume that the system is modeled using a deterministic tran-
sition system, as introduced in Definition 4. The task is to collect rewards that
dynamically appear, disappear and change their values in the states of the DTS
and that can only be sensed locally in close proximity from the current state. An
example of such a system is a robot moving through a partitioned environment.
The regions of the environment partition are states of the DTS and the robot can
move between the regions using motion primitives such as “go straight”, “go left”
and so on. The rewards can represent benefits associated with visiting a partic-
ular region at a particular time. A traditional approach to this kind of problem,
i.e., an optimization problem defined on a dynamically changing plant, is model
predictive control (MPC) [RM09]. The method is based on iterative re-planning
and optimization of a cost function over a finite time horizon and hence, it is also
called receding horizon control.

In this work, we focus on interconnecting the receding horizon control with the
synthesis of a strategy, or equivalently a run that is provably correct with respect
to a given temporal logic formula referred to as a mission. This idea appeared
in [WTM12c], where the receding horizon approach was employed to fight the
high computational complexity of reactive motion planning with a specification
in GR(1) fragment of LTL. However, the authors did not consider any reward col-
lection to be optimized. In contrast, the authors in [DBC10] addressed a similar
problem that we do. They assumed a deterministic transition system with locally
sensed rewards changing according to an unknown dynamics. The problem ad-
dressed is to design a control strategy that (1) guarantees the satisfaction of the
mission and (2) locally maximizes the collected rewards. These two goals often
cannot be reached simultaneously. If the system primarily collects high rewards,
the mission might never be satisfied and vice versa, if the system is controlled
to accomplish the mission, the collected rewards might become low. The authors
utilized ideas from the automata-based approach to model checking in order to
iteratively find a local path maximizing the collected rewards among the local
paths that ensure that a step towards the mission satisfaction is made. This way,
they managed to compromise between the two goals.

Our work can be seen as a different, generalized approach to the above prob-
lem. In particular, we assume an LTL mission that includes persistent surveillance
of a set of states and a user-defined preference function expressing the desired
trade-off between the surveillance and the reward collection given the history of
the system execution. In other words, the preference function determines in each
moment whether moving towards a surveyed place or optimization of the col-
lected rewards is of a higher priority. Whereas the local path planned in [DBC10]
always guarantees progress towards the satisfaction of the mission, in our case
this progress may be deliberately postponed (for a finite amount of time) if the
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collection of the rewards is prioritized. For example, consider a garbage truck
that is required to periodically visit two garbage disposal plants A and B and to
arrive to a plant as fully loaded as possible. In [DBC10], each local plan for the
truck would send the truck closer to A (or B, respectively) and the truck might
arrive half-empty. In contrast, through the preference function, we can define that
collecting the garbage is the primary target until the truck is full enough to drive
to a plant and that once it is, driving towards A (or B, respectively) becomes the
priority. Besides that, we generalize the problem from [DBC10] in the following
sense. The authors there assumed that the reward dynamics is completely un-
known. Therefore, when planning, they estimate that the rewards collected along
a planned local path would be equal to the sum of the rewards that are currently
seen at the states of this path and they aim to maximize it. We consider arbitrary
reward dynamics that might be unknown, known partially or even fully. We cap-
ture the concrete reward dynamics assumptions through a so-called state potential
function. Through these user-defined functions, we also allow for a broad class of
optimization objectives that aim at optimizing reward collection over a finite time
horizon such as the one discussed for the garbage truck. The problem we address
is to design a control strategy that (1) guarantees the satisfaction of the formula,
(2) locally optimizes the collection of rewards, and (3) takes into consideration
the preference function and the reward dynamics assumptions.

In our solution, we leverage ideas from the automata-based approach to model-
checking to provably guarantee the satisfaction of the mission and we introduce
several extensions that allow us to support both the preference function and the
arbitrary assumptions on the reward dynamics. We build a synchronous product
of the DTS and an ω-automaton for the LTL mission that captures all the runs of
the system that satisfy the mission. We employ the preference function to com-
pute the attraction of states in the product and at each time, we choose the most
attractive state to be visited next. While the value of the preference function is
low, the system is primarily driven by the sensed rewards. However, as the pref-
erence function grows, the surveillance is prioritized and the attraction forces the
system to move not only towards the surveyed regions, but also towards accepting
states of the product, i.e., towards the satisfaction of the global specification.

The results presented in this section are based on our results in [STBv12].
The rest of the section is organized as follows. In Section 3.1.2, the problem is
described in detail and stated formally. The designed solution is presented in
Section 3.1.3. Finally, an illustrative case study is presented in Section 3.1.4.

3.1.2 Problem Formulation

Let T = (S, T,AP ,L) be an initialized DTS with initial state sinit ∈ S, see
Definition 4. Let

w : T → R+ (3.1)
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be a weight function. With a slight abuse of notation, we use w(σ) to denote the
weight of a finite run σ = s0 . . . sn of the DTS, i.e., w(σ) =

∑n−1
i=0 w((si, si+1)).

Moreover, w∗(s, s′) denotes the minimum weight of a finite run from s to s′.
Specifically, w∗(s, s) = 0 for every s ∈ S and if there does not exist a run from s
to s′, then w∗(s, s′) = ∞. For a set S′ ⊆ S we let w∗(s, S′) = mins′∈S′ w

∗(s, s′).
We say that a state s′ and a set S′ is reachable from s if and only if w∗(s, s′) 6=∞
and w∗(s, S′) 6=∞, respectively.

We interpret the weight w((s, s′)) of a transition (s, s′) ∈ T as the amount of
time that this transition takes. That means, if the system is in a state s at time
t and follows the transition (s, s′) then it is in the state s′ at time t + w((s, s′)).
The time spent in states is 0. Associated with a run ρ = s0s1 . . . ∈ RunT and a
finite run σ = s0 . . . sn ∈ RunTfin there is a sequence of time instances t0t1 . . . and
t0 . . . tn, respectively, where t0 = 0 and ti denotes the time at which the state si
is reached, i.e., ti+1 = ti + w((si, si+1)).

We assume a visibility range v ∈ R>0, v ≥ max(s,s′)∈T w(s, s′) is given and we
use Vis(s) = {s′ | w∗(s, s′) ≤ v} to denote the set of states that are within the
visibility range v from a state s ∈ S. Let

rew : S × RunTfin → R≥0

be the reward function, where rew(s, s0 . . . sk) is the reward sensed in a state s ∈ S
at time tk after executing a finite run s0 . . . sk ∈ RunTfin. Note that rew(s, s0 . . . sk)
is defined if and only if s ∈ Vis(sk) and it is known only at time tk (and later),
not earlier.

A user-defined planning horizon and a state potential function are employed
to capture user’s assumptions about the reward dynamics and her interests. For
instance, the values of the rewards may increase or decrease at most by 1 during
1 time unit, they may appear according to a probabilistic distribution, or their
changes might be random. The user might have full, partial or no knowledge of the
reward dynamics. The reward might disappear once it are collected at the state,
or it might not. The user might be interested in, e.g., the maximal, expected,
or minimal sum of rewards that can be collected from a given state during a
finite run whose weight is no more than the planning horizon. The concrete
definitions of the planning horizon and the state potential function are meant
to be specifically tailored for different cases. Formally, the horizon is h ∈ R>0,
h ≥ max(s,s′)∈T w(s, s′) and the state potential function is

pot : S × RunTfin × R>0 → R≥0, (3.2)

where pot(s, s0 . . . sk, h), is the potential of the state s at time tk assuming that
s0 . . . sk is the so far executed run of the system. It is defined for all s such that
(sk, s) ∈ T and it specifies the optimal rewards that can be collected during a
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finite run σ ∈ RunTfin(s, sk, h), where

RunTfin(s, sk, h) = {σ | (i) σ ∈ RunTfin(s),

(ii) w((sk, s)) + w(σ) ≤ h,
(iii) the states that appear in σ belong to Vis(sk)}.

Note, that the visibility range v and the planning horizon h are independent.
While v determines the set of states whose rewards are visible from the current
state sk, h gives the maximal total weight of a planned finite run σ within Vis(sk),
which can be even greater than v.

Example 1. The function stating that the potential of s is the maximal sum of
rewards that can be collected from s assuming that the rewards do not change
while the system can sense them and that they disappear once collected is

pot(s, s0 . . . sk, h) = max
σ∈RunTfin(s,sk,h)

∑
s′∈σ

rew(s′, s0 . . . sk).

In fact, this is how authors in [DBC10] estimate the amount of rewards collected
on a local path.

To define our problem, we assume that the specification is given as an LTL
formula with persistent surveillance as defined in Section 2.2.4. Recall that a
formula with persistent surveillance is

φ = ϕ ∧ GF asur,

where ϕ is an arbitrary LTL formula over AP and asur ∈ AP is a surveillance
proposition. The formula states that the system must satisfy a temporal constraint
ϕ and at the same time, it must infinitely many times survey states Ssur = {ssur |
asur ∈ L(ssur)} labeled with proposition asur.

The user can partially guide whether the system should collect high rewards
or whether it should rather make a step towards the satisfaction of the surveil-
lance proposition asur through a preference function. For example, the preference
function can grow linearly with time since the latest visit to asur, meaning that
going towards asur gradually gains more importance. In contrast, the value of the
preference function can stay low until the latest visit to asur happened no later
than 100 time units ago and after that increase rapidly, expressing that the system
is preferred to collect rewards for 100 time units and then to move towards asur

quickly.
Formally, the preference function

pref : RunTfin → R≥0 (3.3)

assigns a non-negative real value to every executed finite run s0 . . . sk of T (pos-
sibly) taking into account the current values of the state potential function.
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Example 2. An example of a preference function is

pref(s0 . . . sk) = 0.01 · wi · max
(sk,s)∈T

pot(s, s0 . . . sk, h),

where wi = w(si . . . sk) such that asur ∈ L(si) and asur 6∈ L(sj), for all i < j ≤ k.
If the surveyed state is being avoided, the total weight (or time) wi since the last
visit to a surveyed state gradually grows and eventually, the value of pref(s0 . . . sk)
overgrows the value of pot(s, s0 . . . sk, h) for all s.

A shortening indicator function ISsur : T → {0, 1} indicates whether a transi-
tion leads the system closer to a state subject to surveillance, i.e.,

ISsur((s, s
′)) =

1 if min
ssur∈Ssur

w∗(s′, ssur) < min
ssur∈Ssur

w∗(s, ssur),

0 otherwise,
(3.4)

where (s, s′) ∈ T .

Problem 1. Given
• an initialized DTS T = (S, T,AP ,L) with initial state sinit ∈ S,
• a weight function w,
• an LTL formula φ over AP with persistent surveillance,
• rewards rew(s, s0 . . . sk) at time tk, for all s ∈ Vis(sk),
• a visibility range v ∈ R>0, v ≥ max(s,s′)∈T w(s, s′),
• a planning horizon h ∈ R>0, h ≥ max(s,s′)∈T w(s, s′),
• a state potential function pot,
• a preference function pref,

find a control strategy C : RunTfin → S such that
(i) C satisfies φ starting from sinit and

(ii) assuming that s = C(s0 . . . sk), the cost function

pot(s, s0 . . . sk, h) + ISsur((sk, s)) · pref(s0 . . . sk) (3.5)

is maximized at each time tk.

Intuitively, condition (ii) is interpreted as follows. At each time, the aim
is to go to the state with the best trade-off between the amount of potentially
collected rewards and the importance of fast surveillance. The higher the value
of the preference function, the more likely a state closer to asur is chosen. Note
that, in general, the satisfaction of the condition (ii) may cause violation of the
objective (i). Our goal is thus to provably guarantee satisfaction of the formula
and to maximize the value in Equation 3.5 if possible.

Our solution to Problem 1 consists of two consecutive steps. The first step
involves computation performed before the system starts its execution and the
second step is an online receding horizon control algorithm that is employed during
the system’s execution. In the first step, we construct a Büchi automaton for the
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LTL formula φ and its synchronous product with the DTS. We assign two Boolean
indicators to each transition of the product which indicate whether the transition
induces a progress towards a surveyed state of the DTS and both a surveyed state
and an accepting state of the BA, respectively. The receding horizon algorithm
computes the control strategy in real time, i.e., it determines the next state to be
visited by the system in every step of the system’s execution. In every iteration,
attractions of the states of the product are computed. The repeated choices of the
maximal attraction states lead to an eventual visit not only to a surveyed state,
but also to an accepting state of the BA, assuming that the following holds:

Assumption 1. For every run s0s1 . . .RunT with the property that there exists
n1 such that for every m > n1 it holds asur 6∈ L(sm), it holds that there exists
n2 so that for every m > n2 it holds pref(s0 . . . sm) > pot(s, s0 . . . sm, h) for all s,
where (sm, s) ∈ T .

Intuitively, the assumption states that if a visit to a surveyed state is postponed
for a long time, the value of the preference function overweights the value of the
state potentials. Note that this is, in fact, quite natural. It only captures the
fact, that the user who defines the potential and the preference function wishes
to satisfy the LTL formula in long term and therefore the interest in making a
progress towards the satisfaction of the formula at some point naturally prevails
the interest in collecting the rewards.

3.1.3 Problem Solution

In this section, we give the details of our solution to Problem 1. We start with
the description of the pre-computation step. We define the product automaton
and describe how the two Boolean indicators for transitions of the product are
computed. We follow with the description of the online receding horizon con-
trol algorithm. Finally, we discuss the properties and optimality of the designed
approach.

Product construction

To employ the automata-based approach to control synthesis as described in Sec-
tion 2.5, we first translate the LTL formula φ to a non-deterministic Büchi au-
tomaton A using techniques discussed in Section 2.2. Next, we construct the
synchronous product of the DTS T and the BA A.

Definition 14. A product of a DTS T = (S, T,AP ,L) with initial state sinit ∈ S
and a non-deterministic BA A = (Q, 2AP , δ, q0, F ) is a tuple

P = T × A = (SP , TP , sP init, AP ,LP , FP),

where SP = S×Q is a set of states, TP ⊆ SP ×SP is a transition relation, where(
(s, q), (s′, q′)

)
∈ TP if and only if (s, s′) ∈ T and (q, L(s), q′) ∈ δ, sP init = (sinit, q0)
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is the initial state, LP : SP → 2AP is a labeling function such that LP((s, q)) =
L(s) for every (s, q) ∈ SP , and FP = S × F is the set of accepting states.

We naturally extend the weight function w of the DTS T to a weight function
wP : TP → R+ for the product P such that wP(

(
(s, q), (s′, q′))

)
= w((s, s′)) for

every ((s, q), (s′, q)) ∈ TP .

The product P can be viewed as an initialized TS with a set of accepting
states. Therefore, we adopt the definitions of a run ρ, a finite run σ, its weight
wP(σ), and sets RunP((s, q)), RunP , RunPfin((s, q)) and RunPfin from Section 2.3.1.
Similarly, a cycle cyc of P, a strategy CP for P and runs ρCP , σCP induced by
CP are defined in the same way as for a DTS. We also adopt the definitions of a
sub-system and a strongly connected component. On the other hand, P can be
viewed as a weighted BA over the trivial alphabet with a labeling function, which
gives us the definition of an accepting run of P.

Every run ρ and finite run σ of P projects to a run π1(ρ) and a finite run π1(σ)
of T , respectively. Vice versa, for every run s0s1 . . . and finite run s0 . . . sn of T ,
there exists a run (s0, q0)(s1, q1) . . . and finite run (s0, q0) . . . (sn, qn). Similarly,
every strategy for P projects to a strategy for T and for every strategy for T
there exists a strategy for P that projects to it. The projection of a finite-memory
strategy for P is also finite-memory.

Definition 15. Let P = (SP , TP , sPinit, AP ,LP , FP) be the product of an initial-
ized DTS T and a BA A. An accepting strongly connected component (ASCC) of
P is an SCC U = (SU , TU , AP ,LP) such that the set SU ∩ FP is nonempty and
we refer to it as the set FU of accepting states of U . We use ASCC(P) to denote
the set of all ASCCs of P that are reachable from the initial state sPinit.

Boolean indicator assignment

In this section, we define two Boolean indicators for every transition of the product
P of the DTS and the BA for the formula φ that will be used to compute the
control strategy during the online control algorithm.

Let SPsur = {(s, q) ∈ SP | asur ∈ L(s)} denote the subset of states of P
that project onto the surveyed states in T . Furthermore, let F∞P ⊆ FP and
S∞Psur ⊆ SPsur be the sets of states from which FP and SPsur can be visited infinitely
many times, respectively. Sets F∞P and S∞Psur can be computed iteratively as the
maximal sets of states from which a state in S∞Psur and F∞P is reachable via a finite
run of nonzero length, respectively, see Algorithm 1, lines 4-11.

Lemma 1. A run ρ of the product P is accepting if and only if it holds that
F∞P ∩ inf(ρ) 6= ∅ and S∞Psur ∩ inf(ρ) 6= ∅.

Proof. Let ρ be an accepting run of P, i.e., FP ∩ inf(ρ) 6= ∅. Note that there
is a state in SPsur that appears in ρ infinitely many times, because ρ satisfies
φ and hence also GF asur. Then there exist infinite index sets I, J ⊆ N such
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that ρ(i) ∈ FP and ρ(j) ∈ SPsur for every i ∈ I and j ∈ J . For each state
ρ(i) ∈ FP , i ∈ I there exist infinitely many states ρ(j) ∈ SPsur such that i < j ∈ J ,
and analogous holds for each state ρ(j) ∈ SPsur, j ∈ J . Hence, all states ρ(i), ρ(j)
for i ∈ I, j ∈ J belong to F∞P , S

∞
Psur, respectively. On the other hand, if a state

from F∞P occurs on ρ infinitely many times, then ρ is clearly accepting.

For each state u = (s, q) ∈ SP we define the minimum weight of a finite run
from u to a state from S∞Psur

w∗Psur(u) = min
u′∈S∞Psur

w∗P(u, u′) (3.6)

and the minimum weight of a finite run from u to S∞Psur containing a state u′ ∈ F∞P

w∗PF sur(u, u
′) = min

u′′∈S∞Psur

(
w∗P(u, u′) + w∗P(u′, u′′)

)
. (3.7)

Moreover, we define

w∗Pφ(u) =
(
w∗P(u, u′), w∗PF sur(u, u

′)
)

(3.8)

where u′ ∈ F∞P minimizes w∗P(u, u′) among the set of states that minimize Equa-
tion 3.7. Given w∗Pφ(u1) = (x1, y1) and w∗Pφ(u2) = (x2, y2), w∗Pφ(u1) < w∗Pφ(u2) if
and only if x1 < x2 and y1 < y2.

Note that each state u ∈ SP with w∗Psur(u) =∞ or w∗Pφ(u) = (∞,∞) cannot
occur on any accepting run of P. Therefore, we assume from now on that P
contains only states u ∈ SP with w∗Psur(u) 6=∞ and w∗Pφ(u) 6= (∞,∞).

Lemma 2. ∀u ∈ SP \ S∞Psur, ∃u′ ∈ SP : (u, u′),∈ TP , w∗Psur(u) > w∗Psur(u
′), and

∀u ∈ SP \ F∞P , ∃u′ ∈ SP : (u, u′),∈ TP , w∗Pφ(u) > w∗Pφ(u′).

Proof. Follows directly from Equations 3.6, 3.7 and 3.8.

We are now ready to define the shortening indicator functions IPsur, IPφ : TP →
{1, 0}, which indicate whether a transition induces progress towards the set S∞Psur

and towards both the set F∞P and the set S∞Psur via a state in F∞P , respectively.
Formally, we let

IPx((u, u′)) =

{
1 if w∗Px(u) > w∗Px(u′),

0 otherwise,
(3.9)

where x ∈ {sur, φ}.

Corollary 1. ∀u ∈ SP \ S∞Psur, ∃(u, u′) ∈ TP such that IPsur((u, u
′)) = 1 and

∀u ∈ SP \ F∞P ,∃(u, u′) ∈ TP such that IPφ((u, u′)) = 1.

The outline of the indicator assignment procedure for the product P is sum-
marized in Algorithm 1.
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Algorithm 1 Boolean indicator assignment

1: Input: P = T × A = (SP , TP , sP init, AP ,LP , FP), wP
2: Output: IPsur, IPφ
3: F∞P := FP , S

∞
Psur := SPsur

4: while fix-point of F∞P , S
∞
Psur not found do

5: for all u ∈ F∞P , s.t. min
(u,u′)∈TP ,u′′∈S∞

Psur

w∗P(u′, u′′) =∞ do

6: remove p from F∞P
7: end for
8: for all u ∈ S∞Psur, s.t. min

(u,u′)∈TP ,u′′∈F∞
P

w∗P(u′, u′′) =∞ do

9: remove u from S∞Psur

10: end for
11: end while
12: for all u ∈ SP , s.t. w∗Psur(u) =∞ ∨ w∗Pφ(u) = (∞,∞) do
13: remove u together with incident transitions
14: end for
15: for all (u, u′) ∈ TP do
16: compute IPsur((u, u

′)), IPφ((u, u′)) according to Equation 3.9
17: end for

Online control

The online control algorithm computes the control strategy for Problem 1 in
real time. At time tk such that s0 . . . sk is the so far executed finite run of the
DTS T the algorithm determines the next state C(s0 . . . sk) of T to be visited.
Simply put, we compute the next state in the product P and then we project
it onto T . Formally, T starts in its initial state sinit and P in its initial state
sP init = (sinit, q0). For each finite run u0 . . . uk of P, the algorithm computes the
next state of P denoted by CP(u0 . . . uk)) = uk+1. The next state of T is then
C(s0 . . . sk) = π1(uk+1) = sk+1.

To guarantee that the control strategy C generates a run of T satisfying φ,
it is sufficient to ensure that the control strategy CP generates a run of P that
visits FP infinitely many times. In T , the high value of the preference function
pref was used to guide the system towards sur. Projected into the product, the
high value of pref can “send” the system towards a state in S∞Psur. We expand this
idea and use the preference function to guide the robot not only towards S∞Psur,
but also towards F∞P . This way, we ensure that F∞P is indeed visited infinitely
many times.

In particular, we introduce two subgoals in P. The first one is the mission
subgoal, when a visit to F∞P is targeted. The second one is the surveillance subgoal,
when we aim to visit S∞Psur. At each time, one of the subgoals is to be achieved
and once it is, the subgoals are switched and the other one is to be achieved.
Progress towards both subgoals is governed by maximization of the attraction
function attr that is defined for the product automaton in an analogous way as
the cost function in Equation 3.5 for Problem 1.
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Assume, that φ is satisfiable, i.e., that F∞P and S∞Psur computed in Algorithm 1
are both non-empty and sP init ∈ F∞P . The product P naturally inherits the
rewards from T , i.e., rewP((s, q), (s0, q0) . . . (sk, qk)) = rew(s, s0 . . . sk). Thus,
the value of pot function can be computed on the product using rewP . We use
potP(u, u0 . . . uk, h) to denote the value of the state potential function for a state
u computed on P.

The value of the attraction

attr : SP × RunPfin × R>0 → R≥0

is computed differently for the two subgoals. Initially, the subgoal to be achieved
is the surveillance one and the attraction is

attr(u, u0 . . . uk, h) = potP(u, u0 . . . uk, h) + IPsur((uk, u)) · pref(π1(u0 . . . uk)),
(3.10)

where (uk, u) ∈ TP . For a finite run u0 . . . uk, let CP(u0 . . . uk) be the state
with the highest attraction (if there are more of them, we choose one randomly).
Hence, if the attraction of a state that is not closer to the subgoal is higher
than the attraction of ones that are, the collection of rewards is preferred and
vice versa. However, note that repeated choices of the states that maximize attr
together with Assumption 1 guarantee that the surveillance subgoal, i.e., a visit
to S∞Psur, will be eventually achieved. Once it is, the mission subgoal becomes the
one to be reached.

For the mission subgoal, the attraction needs to be defined in a different way.
The reason is that with an analogous definition as for the surveillance subgoal, we
would not be able to ensure eventual visit to F∞P . Intuitively, if asur was repeatedly
unintentionally visited, the value of pref(π1(u0 . . . uk)) might not overgrow the
value of potP(u, u0 . . . uk, h), the “non-shortening” transitions might always be
chosen to follow and a visit to F∞P might be infinitely postponed.

Thus, we define a projection function π1 that projects a finite run u0 . . . uk of
P onto the corresponding finite run of T while removing asur from some of the
states. In particular, on π̄1(u0 . . . uk), the proposition asur appears at most once
between every two successive visits to an accepting state in F∞P .

Definition 16. Let T = (S, sinit, T , AP ,L) be a DTS, where S = S ∪{s | s ∈ S},
if (s, s′) ∈ T then (s, s′), (s, s′), (s, s′), (s, s′) ∈ T , and L(s) = L(s) and L(s) =
L(s) \ {asur} for all s ∈ S. Let u0 . . . uk be a finite run of P. We define:

π1(u0 . . . uk)(0) =π1(u0)

π1(u0 . . . uk)(i) =


π1(ui) if asur 6∈ LP(ui) or

asur ∈ LP(ui) and ∃j < i : uj ∈ F∞P such that

∀j ≤ l < i : asur 6∈ LP(ul)

π1(ui) otherwise.
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The definition of the attraction for the mission mode is

attr(u, u0 . . . uk, h) = potP(u, u0 . . . uk, h) + IPφ((uk, u)) · pref(π1(u0 . . . uk),
(3.11)

where (uk, u) ∈ TP . Similarly as for the surveillance subgoal, the state CP(u0 . . . uk)
is the state maximizing the attraction (if there are more of them, we choose one
randomly). The construction of the attraction together with Assumption 1 ensure
that the mission subgoal is always eventually reached. Once it is, we aim for the
surveillance subgoal again. If both of the subgoals are reached simultaneously,
the surveillance subgoal is set to be reached.

The outline of the solution to Problem 1 is given in Algorithm 2.

Algorithm 2 Solution to Problem 1

1: Input: T , w, φ, rew, v, h, pot,pref
2: Output: control strategy C
3: compute a BA A for φ and the product P = T × A
4: run Algorithm 1
5: if F∞P = ∅ or sP init 6∈ F∞P then return “Formula cannot be satisfied”
6: end if
7: σ := sP init, subgoal := asur, k := 0
8: while true do
9: for all u, s.t. (uk, u) ∈ TP do

10: compute attr(u, σ, h) using Equation 3.10 if subgoal = asur

and Equation 3.11 if subgoal = φ
11: end for
12: CP(σ) := arg max

u∈SP
attr(u, σ, h)

13: C(π1(σ)) := π1(CP(σ))
14: if subgoal = asur and CP(σ) ∈ S∞Psur then
15: subgoal := φ
16: end if
17: if subgoal = φ and CP(σ) ∈ F∞P then
18: subgoal := asur

19: end if
20: concatenate CP(σ) to σ; k := k + 1
21: end while

Properties of the solution

In this section, we prove that under Assumption 1, our algorithm is correct and
complete with respect to the satisfaction of the LTL formula (condition (i) of
Problem 1). We discuss the sub-optimality of the solution and we introduce
an assumption under which the locally planned run is optimal with respect to
condition (ii) of Problem 1 among the solutions that do not cause an immediate,
unrepairable violation of φ.
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Theorem 1. Algorithm 2 results in a strategy C that satisfies φ starting from
the initial state sinit, if such a strategy exists.

Proof. If Algorithm 2 returns “Formula cannot be satisfied” then F∞P is empty
and according to Lemma 1 and φ cannot be satisfied in T .

Now assume that Algorithm 2 computes a strategy CP for the product P.
We show by contradiction that CP generates a run ρ of P that visits the set F∞P
infinitely many times. Assume that there is a finite prefix u0 . . . uk of ρ such that
un 6∈ F∞P for all n ≥ k and assume that the current subgoal is the surveillance one.
Then according to Assumption 1 and the definition of the attraction function in
Equation 3.10, the value of pref(π1(u0 . . . uk . . . ul)) > potP(u, u0 . . . uk . . . ul, h)
for all prefixes u0 . . . uk . . . ul of ρ such that l ≥ m for some m ≥ k. This means
that the “shortening” transitions will be preferred over the “non-shortening”
ones since tm and thus, uj ∈ S∞Psur will be reached eventually. Second, as-
sume that the mission subgoal is the current one. Then according to Assump-
tion 1 and the definition of the attraction function in Equation 3.11, the value of
pref(π1(u0 . . . uk . . . ul)) > potP(u, u0 . . . uk . . . ul, h) for all prefixes u0 . . . uk . . . ul
of the run ρ such that l ≥ m for some m ≥ k. Analogously to the former case,
uj ∈ F∞P will be reached eventually. Thus the proof is complete.

In general, the satisfaction of condition (ii) of Problem 1 cannot be guaranteed
as repeated visits to the state maximizing Equation 3.5 might prevent the mission
to be satisfied. However, we reach some level of optimality as discussed bellow.

In the attraction definition in Equation 3.10, the value of the state potential
function potP(u, u0 . . . uk, h) is computed in the product instead of the DTS. As
a result, it is computed assuming that only sequences of transitions that do not
cause an immediate, unrepairable violation of the formula can be followed from
sk = π1(uk). If the current subgoal of the online planner is the surveillance
subgoal, the following optimality statement can be made: A state of P maximizing
the attraction in Equation 3.10 projects onto the state of T maximizing the cost
function in Equation 3.5 taking into consideration only finite runs that do not
cause an immediate violation of the formula. In contrast, if the current subgoal
of the online planner is the mission one, we cannot claim the similar. First, the
indicator function in the attraction in Equation 3.10 does not indicate whether a
transition of the product automaton leads closer to asur, it rather indicates whether
it leads closer to both an accepting state and asur. Second, the preference function
in the attraction function in Equation 3.10 is computed for π1(u0 . . . uk) instead
for π1(u0 . . . uk). This is necessary for correctness of the algorithm, however, as
a result, the value of pref(π1(u0 . . . uk)) in the attraction in Equation 3.10 might
be different than the corresponding value of pref(s0 . . . sk) in the cost function in
Equation 3.5.

In case F∞P = {u′ ∈ SP | u ∈ S∞Psur and (u, u′) ∈ TP}, the mission subgoal is
reached always exactly one planning step after the surveillance subgoal is reached.
Therefore, we can reach the optimality that was stated in the previous paragraph
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for the surveillance subgoal also for the mission subgoal, since all the transitions
from S∞Psur are always “shortening” with respect to F∞P . In particular, this is the
case if a Büchi automaton with the property that all the transitions leading to
an accepting states are labeled with a set containing asur, is used in the product
automaton construction. For instance, a surveillance fragment of LTL defined
in [CTB12] guarantees existence of such a BA. The fragment includes LTL for-
mulas that require to repeatedly visit a surveillance proposition asur (called an
optimizing proposition in [CTB12]) and to visit a given set of regions in between
any two successive visits to states satisfying asur. In addition, ordering constraints,
request-response properties, and safety properties are allowed.

Complexity

The size of a BA for an LTL formula φ is 2O(|φ|) in the worst case, where |φ|
denotes the length of the formula φ. However, note that the actual size of the
BA is in practice often quite small. The size of the product P is O(|S| · 2O(|φ|)).
A simple modification of the Floyd-Warshall algorithm is employed to find the
minimum weights between each pair of states in O(|P|3). The same complexity
is reached for the computation of F∞P , S

∞
Psur, w

∗
Psur and w∗Pφ. The shortening

indicators IPsur, IPφ can be computed in linear time and space with respect to
the size of P. The overall complexity of Algorithm 1 is O((|S| · 2O(|φ|))3). The
complexity of the online planning algorithm highly depends on the complexity of
the state potential and the preference functions. The set RunTfin(s, sk, h) can be
computed in O(dh), where d denotes the maximal out-degree of states of P. If pot
and pref functions took constant time to compute, the online planning algorithm
would be in O(d · dh) per iteration.

3.1.4 Case Study

We implemented the framework with several concrete choices of the state potential
and the preference function. In this section, we report on simulation results to
illustrate employment of our approach.

We consider a data gathering robot in a grid-like partitioned environment
modeled as the DTS depicted in Figure 3.1. The robot collects data packages of
various, changing sizes (rewards) in the visited regions. The following is known
about the reward dynamics: A non-negative natural reward can appear in a state
with the current reward equal to 0. The probability of the fresh reward being
from {0, . . . , 15} is 50% as well as from {16, . . . , 60}, i.e., the smaller-sized data
packages are more likely to occur. The reward drops by 1 every time unit as the
data outdate. The visibility range v is 6. For example, in Figure 3.1 the visibility
region Vis(sinit) for the current state sinit is depicted as the blue-shaded area.

The mission assigned to the robot is to alternately visit the two transmitters
(in green, labeled with propositions a, and b, respectively), while avoiding unsafe
locations (in red, labeled with u). The surveillance proposition asur is true in both
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Figure 3.1: A weighted DTS representing the robot (illustrated as the black
dot) motion model in a partitioned environment. Individual regions of the par-
titioned environment are depicted as states. Transmitters are in green (labeled
with propositions a and b, respectively), unsafe locations (labeled with u) are in
red. The set of transitions contains every pair (s, s′) of vertically, horizontally or
diagonally neighboring states. Weights of a horizontal and a vertical transition
are 2, weight of a diagonal transition is 3.

transmitter regions. The LTL formula for the mission is

φ = G
(
a⇒ X (¬aU b)

)
∧ G

(
b⇒ X (¬bU a)

)
∧G(¬u) ∧ G F asur.

In our simulations, we consider the planning horizon h = 9 and several variants
of the state potential function and the preference function that are summarized in
Table 3.1. The first state potential function pot1 is the maximal sum of rewards
that can be collected on a finite run while taking into account the reward behavior
assumptions described above. If the run visits a state more than once or a reward
of a state drops below 0, we assume the reward there is 15. The second state
potential function pot2 is defined as the maximal size of a single data package
that can be collected on a finite run.

The respective ratio of the value of pref and the maximum value of pot is al-
ways non-decreasing with the time elapsed since last transmission and the value of
pref overgrows the maximum value of pot when the elapsed time is 50. Intuitively,
pref1 sets zero importance on going towards a transmitter if the last transmission
occurred not more then 50 time units ago. On the other hand, pref2 rises quite
slowly at the beginning and very quickly later. In contrast, the function pref3

grows very fast in the beginning and its growth slows down.
For each of 6 instances we executed 5 runs of 100 iterations of the online
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Table 3.1: State potential and the preference functions used in the case study.

pot1(s, s0 . . . sk, h) = max
σ∈RunT

fin
(s,sk,h)

∑|σ|−1
i=0 f1(σ(i), s0 . . . sk, σ)

pot2(s, s0 . . . sk, h) = max
σ∈RunT

fin
(s,sk,h)

(
max

i=0,...,|σ|−1
f2(σ(i), s0 . . . sk, σ)

)
,

f1,2(σ(i), s0 . . . sk, σ) =


rew(σ(i), s0 . . . sk)− w(σ→i) if this value > 0, σ(i) 6= sk

and ∀j < i : σ(j) 6= σ(i)

f1 = 15, f2 = 0 otherwise

pref1(s0 . . . sk) =

{
0 if w(sisur . . . sk) ≤ 50

maxpot(s0 . . . sk, h) + 1 otherwise

pref2(s0 . . . sk) = 1
503 · w(sisur . . . sk)

3 ·maxpot(s0 . . . sk, h)

pref3(s0 . . . sk) = 1
3√50
· 3
√
w(sisur . . . sk) ·maxpot(s0 . . . sk, h)

isur = max{i | 0 ≤ i ≤ k, sisur ∈ Ssur}

maxpot(s0 . . . sk, h) = max
(sk,s)∈T

pot(s, s0 . . . sk, h)

planner. The sizes of the data collected in time are depicted in Fig. 3.2. Table 3.2
shows the mean of average reward per transition and the time between consecutive
surveys, respectively. As expected, the faster the preference function grows with
time since the last survey, the smaller the reward per transition and the shorter the
time between consecutive transmissions are. For pref1 and pref2, the difference in
the reward per transition is not high, since in both cases the collection of rewards
is preferred in the beginning, whereas pref3 is very steep and therefore drives the
robot towards transmitter quickly. Function pot1 computing the maximal sum of
rewards that can be collected gives, as expected, higher average and lower variance
for both objectives comparing to pot2 that aims to collect big packages.

The experiments were run on Mac OS X 10.7.3 with 2.7 GHz Intel Core i5
and 4 GB DDR3 memory. The BA had 8 states (3 accepting) and it satisfied
the condition for optimality from Section 3.1.3. The product had 800 states.
Algorithm 1 took 6 seconds and one iteration of the online receding horizon control
algorithm 1-2 milliseconds.

3.1.5 Conclusion

We proposed a general framework for control synthesis in an environment with dy-
namically changing locally sensed rewards. While a high-level surveillance mission
is guaranteed to be accomplished, the user-defined priorities on trade-off between
the surveillance frequency and the reward collection are taken into account. The
system is modeled as a weighted deterministic transition system and although the
weights are in this chapter interpreted as time durations of the transitions, they
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pot1 and pref1 pot1 and pref2 pot1 and pref3

pot2 and pref1 pot2 and pref2 pot2 and pref3

Figure 3.2: Total size of data collected since the last transmission with respect
to time depicted for each executed run.

Table 3.2: Statistical results for the reward per transition (rew/T ) and the time
between consecutive surveys (t) for different choices of pot/pref functions (in the
header). AVG is the mean of average computed on each run and VAR the mean
of variance computed on each run. ν shows the percentage variance of the average
among the runs.

1/1 1/2 1/3 2/1 2/2 2/3

rew/T

AVG 33.8 33.7 28.2 30.8 29.2 25.9

ν 2.4% 4.4% 6.0% 3.9% 5.8% 8.3%

VAR 13.8 14.6 15.9 19.2 18.3 18.7

t

AVG 73.4 46.0 26.7 66.2 41.9 26.4

ν 2.4% 8.0% 2.1% 8.4% 7.7% 3.0%

VAR 2.8 6.0 2.7 11.2 6.5 3.3

can be, in general interpreted, as any quantitative aspect, such as length or cost.

3.2 Deterministic Systems with Penalties

3.2.1 Motivation

In this section, we consider an analogous problem to the one discussed in Sec-
tion 3.1. We assume that the system is modeled as a weighted deterministic
transition system with time-varying, locally sensed values associated with every
state. However, here we assume that the values are interpreted as penalties that
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can be used to encode various dynamic features of the system. For example, con-
sider a mobile robot involved in a surveillance mission in a dangerous area and
under tight fuel and time constraints. The correctness requirement is a temporal
logic specification, e.g., “Alternately keep visiting A and B and always avoid C”,
while the resource constraints translate to minimizing a cost function over the
feasible trajectories. The concept of such dynamic values is well adopted, e.g., in
reinforcement learning [Sze10] with applications in robotics, games or economics.
Here, we consider probabilistic penalties defined as Markov chains that are used
to model environmental phenomena with known statistics such as the traffic load
or the value of a stock.

Unlike in Section 3.1, our goal is to optimize penalty collection over infinite
time horizon. To be specific, given an LTL mission involving persistent surveil-
lance, our goal is to minimize the expected average cumulative penalty incurred
between consecutive visits of states under surveillance, while at the same time
satisfying the additional temporal constraint. We design two algorithms that
bring together concepts from automata-based model checking, game theory and
receding horizon control. The first computes an offline, optimal control strategy
that uses only the a priori known transition probabilities of the penalties’ Markov
chains, but does not exploit their actual values sensed in real time. Up to special
cases, the optimal strategy requires infinite memory. We show that using simple
feedback, the strategy can be implemented efficiently. The second proposed al-
gorithm shows that by taking advantage of the local sensing, we can design an
online, receding horizon control strategy that, while still satisfying the temporal
specification, provides lower value of the optimization function. The online strat-
egy is a heuristic that locally improves the offline strategy based on local sensing
and simulation over a user-defined planning horizon. While we can prove opti-
mality of the offline strategy among the strategies that disregard local sensing,
it is intractable to construct or use an optimal strategy among those that utilize
it. We also suggest a method to construct a whole class of online strategies with
good expected behaviors.

This paper is related to [STBR11, WTM12a], which also focus on optimal
control for weighted deterministic transition systems with temporal constraints.
In [STBR11], the authors develop a control strategy that minimizes the maximum
weight between consecutive visits to a given set of states, subject to constraints
expressed as LTL formulas. In addition to weights, transitions in [WTM12a] are
assigned with costs and a strategy is constructed that minimizes the weighted
average cost, while satisfying an LTL formula. The proposed solution is related
to our offline approach, where we disregard the local sensing of penalties and
consider only their expected, static value. We address this correlation and our
contribution over [WTM12a] in more detail in the following sections.

The results presented in this section are based on our results in [SvB13b,
SvB15]. The rest of the section organized as follows. In Section 3.2.2, we describe
Markov chains as models of penalties. The problem is formally stated in Sec. 3.2.3
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and Sec. 3.2.4 contains our main results. Finally, in Sec. 3.2.5, we present the two
case studies and discuss simulation results.

3.2.2 Markov Chains

Definition 17. A Markov chain (MC) is a tuple M = (G,P, pinit), where G is
a nonempty finite set of states, P : G × G → [0, 1] is a transition probability
function such that

∑
g′∈G P (g, g′) = 1 for all g ∈ G and pinit : G → [0, 1] is an

initial distribution, i.e.,
∑

g∈G pinit(g) = 1.

A run of a Markov chain is an infinite sequence g0g1g2 . . . ∈ Gω such that for
every i ≥ 0 it holds P (gi, gi+1) > 0. A finite run of M is a finite prefix of a run
of M. A Markov chain is called strongly connected if for every pair g, g′ ∈ G of
states there exists a finite run from g to g′. We call a Markov chain nontrivial if
|G| > 1 implies that there exist g, g′ ∈ G such that P (g, g′) ∈ (0, 1).

In this work, we only consider strongly connected nontrivial Markov chains
due to reasons explained later in Remark 3 and we interpret them as discrete
stochastic processes [Nor98], i.e., time series of values that involve probabilistic
indeterminacy. We assume that the set of states G = {g0, g1, . . . gn} is an ordered
finite set of non-negative real numbers and we refer to G as the set of values.
We use M(t) to denote the value (or state) of Markov chain M at time t ∈ N0.
The function P can be represented as a square matrix AM = {Aij}, where Aij =
P (gi, gj).

Definition 18. The invariant distribution of a (strongly connected nontrivial)
Markov chain M = (G,P, pinit), G = {g0, . . . , gn}, is a vector νM of size n + 1
such that for every 0 ≤ i ≤ n it holds 0 ≤ νM(i) ≤ 1,

∑n
i=0 νM(i) = 1 and

νM ·AM = νM.

Intuitively, νM(i) is the probability of the Markov chainM being in state gi at
any point of an execution. Note that the invariant distribution can be effectively
computed using the above definition. The expected value of M is then

ME =
n∑
i=0

νM(i) · gi.

Assume that M(t) = gi for some t ≥ 0, 0 ≤ i ≤ n, and let k ≥ 0. The simulated
expected value

Msim(t, gi, k) =

n∑
j=0

(AkM)ij · gj

is the expected value of M at time t+ k assuming that its value is gi at time t.

3.2.3 Problem Formulation

Consider a DTS T = (S, T,AP ,L) with initial state sinit ∈ S and a weight function
w : T → R+ as in Equation 3.1. The weight w((s, s′)) represents the amount of
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time that the transition (s, s′) ∈ T takes and the system starts at time 0. We
use tn to denote the point in time after the n-th transition of a run, i.e., initially
t0 = 0 and after a finite run σ ∈ RunTfin(sinit) of length n+1 the time is tn = w(σ).

We assume there is a dynamic penalty associated with every state of the tran-
sition system. The penalty in a state s ∈ S is defined as a (strongly connected
nontrivial) Markov chain Ms. With a slight abuse of notations, we use

pen(s, t) =Ms(t)

to denote the value of the penalty in a state s ∈ S at time t ∈ N0 and

penE(s) =MsE

is the expected value of the penalty in state s. Assuming that the penalty in state
s is x at time t ∈ N0,

pensim(s, t, x, k) =Ms sim(t, x, k)

is the simulated expected value of the penalty in state s at time t + k. We use
penmax to denote the maximum possible value of a penalty over all states. Upon
the visit of a state, the corresponding penalty is incurred. The visit of the state
does not affect the penalty’s value or dynamics.

In every execution of the transition system T , the probabilistic choices during
the evolution of all penalties are resolved in some particular way that we call
penalty profile. A penalty profile ∆ determines, for a particular execution of the
TS T , the value of penalty in every state at every time moment. The penalty
profile that is being followed in an execution is not known to us. Nevertheless, we
can compute the probability Pr(∆, k) that a penalty profile ∆ will be followed in
the first k time units of an execution based on the Markov chains Ms, s ∈ S.

Motivated by robotic applications, where various sensors typically provide
reasonable measurements only within certain range, we assume that the penalties
are sensed only locally in close proximity from the current state. To be specific,
we assume a visibility range v ∈ N is given. If the system is in a state s ∈ S
at time t, the penalty pen(s′, t) of a state s′ ∈ S is observable if and only if
s′ ∈ Vis(s) = {s′ ∈ S | w∗(s, s′) ≤ v}. The set Vis(s) is also called the set of
states visible from s. We consider the penalties to be an integral part of the DTS
and thus, a strategy for the DTS might consider in its decision procedure not only
the sequence of states that have been visited in the past but also the penalties
incurred and observed in the meantime. Therefore, the run induced by a strategy
C for T may differ under different penalty profiles. We use ρC,∆(s) to denote the
run induced by a strategy C under a penalty profile ∆ starting from a state s ∈ S.

We assume that the specification is given as an LTL formula with persistent
surveillance as defined in Section 2.2.4. Recall that a formula with persistent
surveillance is

φ = ϕ ∧ GF asur,
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where ϕ is an arbitrary LTL formula over AP and asur ∈ AP is a surveillance
proposition. The formula states the system must satisfy a temporal constraint
ϕ and at the same time, it must infinitely many times survey states Ssur = {s ∈
S | asur ∈ L(s)} labeled with the proposition asur. We extend the notation from
Section 2.2.4 and use ](σ) to denote the number of complete surveillance cycles
in a finite run σ such that last(σ) ∈ Ssur, otherwise ](σ) denotes the number of
complete surveillance cycles in σ plus one.

The long-term optimization objective is defined as follows. Let VT ,C : S → R+
0

be a function such that VT ,C(s) is the expected average cumulative penalty per
surveillance cycle (APPC) incurred under a strategy C for T starting from a
state s ∈ S:

VT ,C(s) = lim sup
k→∞

∑
∆

Pr(∆, k) ·

k∑
i=0

pen(ρC,∆(i), w(ρ→iC,∆))

](ρ→kC,∆)
(3.12)

where ρC,∆ ∈ RunT (s) is the run induced by C starting from s under a penalty
profile ∆. In the special case, when asur ∈ L(s) for every s ∈ S, the long-term
optimization objective minimizes the expected average penalty incurred per stage
that is a standard optimization objective in control theory [Ber12] as well as in
game theory [AG11].

Problem 2. Given

• an initialized DTS T = (S, T,AP ,L) with initial state sinit ∈ S,
• a weight function w,
• an LTL formula φ over AP with persistent surveillance,
• penalties defined by (strongly connected nontrivial) Markov chains Ms, s ∈
S,
• a visibility range v ∈ R>0, v ≥ max(s,s′)∈T w(s, s′),

find a control strategy C : RunTfin → S such that

(i) C satisfies φ starting from sinit and
(ii) among all strategies satisfying (i), C minimizes the APPC value VT ,C(sinit)

defined in Equation 3.12.

Note that a strategy that solves Problem 2 is dependent on the penalty profiles
and it defines an optimal control sequence for each penalty profile separately.
However, due to the probabilistic nature of penalties, we are not able to predict
their values in the future precisely, i.e., we are not able to determine the profile
that is being followed during an execution. Hence, even if we were able to construct
the solution to Problem 2, we do not have the means to use it. Therefore, we
consider the following relaxed version of Problem 2. Consider strategies that are
independent on the penalty profiles, i.e., ρC,∆(s) = ρC,∆′(s) for any two penalty
profiles ∆,∆′ and a state s. Note that such strategies may still consider the
Markov chains defining the penalties in states of the TS and their expected values.
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For this type of strategies the value VT ,C(s) for a state s ∈ S from Equation 3.12
can be computed easily as follows:

VT ,C(s) = lim sup
k→∞

k∑
i=0

penE(ρC(i))

](ρ→kC )
. (3.13)

Problem 3. Given
• an initialized DTS T = (S, T,AP ,L) with initial state sinit ∈ S,
• a weight function w,
• an LTL formula φ over AP with persistent surveillance,
• penalties defined by (strongly connected nontrivial) Markov chains Ms, s ∈
S,

• a visibility range v ∈ R>0, v ≥ max(s,s′)∈T w(s, s′),

find a control strategy C : RunTfin → S such that
(i) C is independent on penalty profiles,

(ii) C satisfies φ starting from sinit and
(iii) among all strategies satisfying (i) and (ii), C minimizes the APPC value

VT ,C(sinit) defined in Equation 3.13.

In Section 3.2.4, we propose an algorithm to design a strategy that solves
Problem 3. Since the resulting strategy is independent on penalty profiles, it does
not take advantage of the local sensing of penalties. It is computed in an offline
manner and we refer to it as the offline strategy or offline control. While the offline
strategy minimizes the APPC value among strategies satisfying the formula that
are independent on penalty profiles, there may exist strategies that are dependent
on penalty profiles and while satisfying the formula, provide lower APPC value
than the offline control. We construct such a strategy in Section 3.2.4 as well.
Since the strategy is dependent on penalty profiles, it considers the penalties
observed in real-time. This online control is constructed using the principles from
receding horizon control, where we locally improve the offline control according
to the penalties observed from the current state of the DTS and their simulation
over the next h time units, where h ∈ N0 is a user-defined planning horizon. Note
that the variable planning horizon will be used differently here and in Section 3.1.
The online strategy is a heuristic, and we also suggest a method to construct a
whole class of strategies with similar properties. In Section 3.2.5, we evaluate all
designed control strategies on illustrative case studies. All strategies synthesized
in this work are infinite-memory in general, but can be implemented efficiently
using simple technical improvements.

Example 3. Consider a robot whose motion in a grid-like partitioned environ-
ment is modeled by the transition system depicted in Figure 3.3a. The robot
transports packages between two delivery locations, marked green in Fig. 3.3a.
The blue state marks the robot’s base location. There is a transition between ev-
ery two vertically, horizontally, and diagonally neighboring states. The weight
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4/5 0 0 0 0 0 1.0
1 1− p(s) 0 0 0 0 p(s)
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Figure 3.3: (a) Transition system modeling the robot (black dot) motion in a
partitioned environment. There are two delivery locations shown in green, a base
shown in blue, and unsafe locations shown in red. (b) Transition matrix AMs of
the Markov chainMs that defines the penalty in a state s. (c) Graphical represen-
tation of the function p : S → (0, 1). The values range over the set {0.1, . . . , 0.9}.
Darker shades indicate higher values.

of a horizontal and vertical transition is 2, for a diagonal transition it is 3.
The Markov chain Ms defining the penalty in a state s has the set of values
G = {0, 1

5 ,
2
5 ,

3
5 ,

4
5 , 1}, the initial distribution is the uniform distribution over G

and the transition matrix is of the form shown in Figure 3.3b. Intuitively, every
penalty increases every time unit by 1

5 and always when the penalty is 1, in the
next time unit the penalty remains 1 with nonzero probability p(s) or it drops to
0 with nonzero probability 1− p(s), where p : S → (0, 1) is a function over states
of the system, defined in Figure 3.3c. The visibility range v is 6. For example, in
Figure 3.3a the set Vis(s) of states visible from the state s, with corresponding
penalties, is depicted as the blue-shaded area.

The mission for the robot is to transport packages between the two delivery
locations (labeled with propositions a and b, respectively) and infinitely many
times return to the base (labeled with c), while avoiding unsafe locations (labeled
with d). At the same time, we wish to minimize the expected average cumulative
penalty incurred per transport. To model this requirement, we add the property
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asur to the label set of both delivery locations. The corresponding LTL formula is

G (a⇒ X (¬aU b)) ∧ G (b⇒ X (¬bU a)) ∧ GF c ∧ G(¬d) ∧ GF asur. (3.14)

3.2.4 Problem Solution

In this section, we present algorithms to construct the offline and online control
strategies. Both algorithms work with the product

P = T × A = (SP , TP , sP init, AP ,LP , FP)

of the initialized DTS T and a Büchi automaton A for the LTL formula φ, see
Definition 14. We map the penalties from T to P by defining M(s,q) = Ms

for every state (s, q) ∈ SP and pen((s, q), t) = pen(s, t) for every t ∈ N0. We
also adopt the visibility range v and the definition of the set Vis((s, q)). When
convenient, we use singletons such as u, u′, ui to denote states of the product.
We distinguish between control strategies for P that are dependent on penalty
profiles and those that are not, i.e., between strategies for which the APPC value
is computed directly using the definition in Equation 3.12 and those for which the
value can be computed easily using Equation 3.13. The control strategies for T
are computed as projections of control strategies for P with suitable properties.

We start with a formal definition of a probability measure that allows us to
argue about possible sequences of penalties incurred in a run of the product. We
follow with the description of the offline and online control strategies. We discuss
their properties, complexity and usability.

Probability measure

Let CP be a strategy for P that is independent on penalty profiles and let (s, q) ∈
SP . Let σ ∈ RunPfin((s, q)) be a finite run induced by CP starting from (s, q) and
let τ ∈ [0,penmax]+ be a sequence of length |σ| such that there exists a penalty
profile for P for which the penalty

pen(σ(i), wP(σ→i)) = τ(i)

for every 0 ≤ i ≤ |σ|. We call (σ, τ) a finite pair. Analogously, an infinite pair
(ρ, κ) consists of the run ρ ∈ RunP((s, q)) induced by the strategy CP and an
infinite sequence κ ∈ [0, penmax]ω such that there exists a penalty profile for P for
which the penalty

pen(σ(i), wP(σ→i)) = κ(i)

for every i ≥ 0. A cylinder set Cyl((σ, τ)) of a finite pair (σ, τ) is the set of all
infinite pairs (ρ, κ) for which τ is a prefix of κ.

Consider the σ-algebra generated by the set of cylinder sets of all finite pairs
(σ, τ), where σ ∈ RunPfin((s, q)). From classical concepts in probability the-

ory [ADD00], there exists a unique probability measure PrP,CP(s,q) on the σ-algebra
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such that for a finite pair (σ, τ)

PrP,CP(s,q) (Cyl((σ, τ)))

is the probability that the penalties incurred in the first |σ| + 1 stages when
applying the strategy CP in P from the state (s, q) are given by the sequence τ ,
i.e.,

pen(σ(i), wP(σ→i)) = τ(i)

for every 0 ≤ i ≤ |σ|. This probability can be computed based on the Markov
chainsM(s,q), (s, q) ∈ SP and it is equal to the sum of probabilities Pr(∆, wP(σ))
over all penalty profiles ∆ under which the above equation is satisfied. For a set X
of infinite pairs, an element of the above σ-algebra, the probability PrP,CP(s,q) (X) is

the probability that under CP starting from (s, q) the infinite sequence of penalties
incurred in the visited states is κ for some (ρ, κ) ∈ X.

Offline control

In this section, we construct a strategy C for T that solves Problem 3 as a pro-
jection of a strategy Coff

P for P. All strategies in this subsection including Coff
P are

independent on penalty profiles, i.e., their APPC value can be computed using
Equation 3.13.

In order for Coff
P to project on a solution to Problem 3, the run induced by

Coff
P must visit the set FP infinitely many times and at the same time, the APPC

value VP,Coff
P

(sP init) must be minimal among all strategies for P that are indepen-
dent on penalty profiles and visit the set FP infinitely many times. Hence, the
strategy Coff

P must lead from sP init to an ASCC. If the set ASCC(P) is empty, the
formula φ cannot be satisfied in T and our algorithm terminates. Otherwise, for
U ∈ ASCC(P), we denote V ∗U ((s, q)) the minimum expected average cumulative
penalty per surveillance cycle that can be achieved in U by a strategy independent
on penalty profiles starting from (s, q) ∈ SU . Since U is strongly connected, this
value is the same for all states in SU and is denoted by V ∗U . It is associated with
a cycle cycVU = c0 . . . cm of U witnessing the value. We describe the algorithm to
compute V ∗U and cycVU for U in the proof of Theorem 2. In the remainder of this
section, U = (SU , TU , AP ,LP) is the ASCC of the product that minimizes V ∗U and
cycVU = c0 . . . cm is the corresponding cycle.

Before constructing the strategy Coff
P , let us intuitively describe the main idea

behind this strategy. Using the automata-based approach to model checking, one
can construct a strategy Coff,φ

P for P that visits at least one of the accepting states
infinitely many times. On the other hand, using graph theory, we can design a
strategy Coff,V

P that achieves the minimum APPC value among all strategies for
P that are independent on penalty profiles and do not cause an immediate, unre-
pairable violation of φ, i.e., φ is satisfiable from every state of the run induced by
Coff,V
P . However, we would like to have a strategy Coff

P satisfying both properties
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at the same time. To achieve that, we draw inspiration from a recent game theo-
retic technique proposed in [CD12]. Intuitively, we combine two strategies Coff,φ

P
and Coff,V

P to create a new strategy Coff
P . The strategy Coff

P is played in rounds,
where each round consists of two phases. In the first phase, we play the strategy
Coff,φ
P until an accepting state is reached. We say that the aim is to achieve the

mission subgoal. The second phase applies the strategy Coff,V
P . The aim is to

maintain the expected average cumulative penalty per surveillance cycle in the
current round, and we refer to it as the average subgoal. The number of steps for
which we apply Coff,V

P is computed individually every time we enter the second
phase of a round. The resulting offline control strategy is not a finite-memory
strategy in general. Intuitively, we need to perform more and more steps in every
round of the strategy. We discuss this matter in detail later in this section and
suggest technical improvements that reduce the number of steps in every round
and the usage of memory. The improvements result in a strategy that is equiva-
lent to the offline strategy in the sense that it guarantees the satisfaction of the
given LTL formula and has the same APPC value as the offline control strategy,
but is no longer independent on penalty profiles.

Now, we design the strategies Coff,φ
P and Coff,V

P that are then combined to

create the strategy Coff
P . The strategy Coff,φ

P is a memoryless strategy that from
every u ∈ SP\FU that can reach the set FU , follows one of the finite runs with the
minimum weight from u to FU . Formally, for every u ∈ SP\FU with w∗P(u, FU ) <
∞, we define

Coff,φ
P (u) = u′ such that wP(u, u′) = w∗P(u, FU )− w∗P(u′, FU ).

The strategy Coff,V
P is a memoryless strategy given by the cycle cycVU = c0 . . . cm.

Similarly as for the above strategy Coff,φ
P , for a state u ∈ SP\cycVU such that

w∗P(u, cycVU ) < ∞, the strategy Coff,V
P follows one of the finite runs with the

minimum weight to cycVU , i.e.,

Coff,V
P (u) = u′ such that wP(u, u′) = w∗P(u, cycVU )− w∗P(u′, cycVU )

and for a state ci ∈ cycVU , it holds

Coff,V
P (ci) = ci+1 mod (m+1).

Proposition 1. For the strategy Coff,V
P and every state u ∈ SU it holds that for

every ε > 0, there exists j(ε) ∈ N such that if Coff,V
P is followed from the state u

until at least j(ε) surveillance cycles are completed, then the average cumulative
penalty per surveillance cycle incurred in the performed finite run is at most V ∗U+ε
with probability at least 1− ε. Formally:

lim
k→∞

Pr
U ,Coff,V
P

u

(∑k
i=0 pen(ρ(i), wP(ρ→i))

](ρ→k)
≤ V ∗U

)
= 1, (3.15)

where ρ is the run induced by Coff,V
P starting from u.
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Proof. It holds that the product P with penalties defined as MCs can be translated
into a Markov decision process with static penalties. Together with the fact that
the cycle cyc∗U provides the minimum APPC value in the ASCC U , it implies that
Equation 3.15 is equivalent to the property of MDPs proved in [CD12] regarding
the minimum expected penalty per stage.

Remark 3. Here we explain why we require that the Markov chains defining the
penalties of the DTS T be nontrivial. Assume there exists a state u ∈ SP with
a trivial Markov chain Mu, i.e., the penalty in u evolves deterministically, not
probabilistically. If we visit u infinitely many times in different (not necessarily
consequent) points in time, the expected average penalty incurred in u might
differ from penE(u). That can cause violation of Proposition 1.

Finally, we are ready to define the strategy Coff
P . It is played in rounds, where

each round consists of two phases, one for each subgoal. The first round starts
at the beginning of the execution of the system in the initial state sPinit of P.
Let i be the current round. In the first phase of the round the strategy Coff,φ

P is
applied until an accepting state of the ASCC U is reached. We use ki to denote the
number of steps we played the strategy Coff,φ

P in round i. Once the mission subgoal
is fulfilled, the average subgoal becomes the current subgoal. In this phase, we
play the strategy Coff,V

P until the number of completed surveillance cycles in the
second phase of the current round is li = max{j(1

i ), i · (ki + |SU |) ·penmax}, where
j(1

i ) is from Proposition 1.

Theorem 2. The offline control strategy C that results from projecting the strat-
egy Coff

P from P to T solves Problem 3 and the corresponding APPC value is

VT ,C(sinit) = VP,Coff
P

(sP init) = V ∗U .

Proof. To prove that the offline strategy C satisfies the LTL formula φ, we show
that Coff

P guarantees infinite number of visits of accepting states. Since the ASCC

U is reachable from the initial state sPinit and from the construction of Coff,φ
P , it

holds that every round of the strategy Coff
P finishes after a finite number of steps

and in every round an accepting state is visited.
To prove that the offline control strategy minimizes the APPC value among

all strategies that satisfy the LTL formula φ, we first present the algorithm to
compute the minimum APPC value V ∗U that can be achieved in an ASCC U and
a cycle cycVU of U witnessing the value. The idea is to reduce U to a TS Usur that
contains only the states labeled with the surveillance proposition asur and then
apply Karp’s algorithm [Kar78] that finds a cycle with minimum value per edge
also called the minimum mean cycle for a directed graph with values on edges.
The value V ∗U and cycle cycVU are synthesized from the minimum mean cycle of
Usur.

Given an ASCC U = (SU , TU , AP ,LP) of P, Algorithm 3 returns a DTS Usur =
(SUsur,Tsur, AP ,LP), a weight function wsur and a function ς : Tsur → RunUfin with
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Algorithm 3 Reduction of an ASCC. We use . to denote the concatenation of
two finite sequences and

∑
penE(σ) is the sum of expected penalties penE(σ(i))

for every state σ(i) of a finite run σ.

1: Input: ASCC U = (SU , TU , AP ,LP) of P, wP
2: Output: DTS Usur = (SUsur,Tsur, AP ,LP), weight function wsur and function
ς : Tsur → RunUfin

3: let X = (SX ,TX , AP ,LP) be a DTS equal to U , wX = wP and ςX : TX → RunUfin

such that ςX((u, u′)) = u for every (u, u′) ∈ TX

4: while SX\SUsur 6= ∅ do
5: let u ∈ SX\SUsur

6: for all u1, u2 ∈ SX , u1 6= u, u2 6= u, (u1, u), (u, u2) ∈ TX do
7: if (u1, u2) 6∈ TX then
8: add (u1, u2) to TX

9: ςX((u1, u2)) := ςX((u1, u)).ςX((u, u2))
10: wX((u1, u2)) :=

∑
penE(ςX(u1, u2))

11: else
12: if

∑
penE(ςX((u1, u2))) ≥

∑
penE(ςX((u1, u)).ςX((u, u2))) then

13: ςX((u1, u2)) := ςX((u1, u)).ςX((u, u2))
14: wX((u1, u2)) :=

∑
penE(ςX(u1, u2))

15: end if
16: end if
17: end for
18: remove u from SX , and all adjacent transitions from TX

19: end while
20: return X, wX and ςX

the following properties. For the DTS Usur it holds that (u, u′) ∈ Tsur if and only
if there exists a finite run in U from u ∈ SUsur to u′ ∈ SUsur with one surveillance
cycle, i.e., between u and u′ no state labeled with asur is visited. Moreover, the
run ς((u, u′)) = u0 . . . un is such that u = u0 and σ = u0 . . . unu

′ is the finite run
in U from u to u′ with one surveillance cycle that minimizes the sum of expected
penalties received during σ, denoted as the weight wsur(σ), among all finite runs
in U from u to u′ with one surveillance cycle. The algorithm in Algorithm 3
builds Usur and the function ς by eliminating the states from SU\SUsur one by one,
in arbitrary order. Figure 3.4 demonstrates elimination of one such state on an
illustrative example.

We apply the Karp’s algorithm to the oriented graph with vertices SUsur, edges
Tsur and values on edges wsur. Let cycUsur

= u0 . . . um be the minimum mean cycle
of this graph. We have

V ∗U =
1

m+ 1

m∑
i=0

penE
(
ς((ui, ui+1 mod (m+1))

)
,

cycVU = ς((u0, u1)). . . . .ς((um−1, um)).ς((um, u0)).
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ς3

ς8

ς4

ς6

ς2

ς5

ς5.ς4

ς2.ς6

ς1

ς9ς7

Figure 3.4: Elimination of one state of an ASCC during the algorithm in Algo-
rithm 3. The finite run ς8 is the one of the runs ς1 and ς2.ς4 that minimizes the
sum of expected penalties in the states of the run. Similarly, ς9 is one of the runs
ς7 and ς5.ς6.

It can be easily shown that all states of the cycle cycVU are distinct. It follows that

1

|cycVU ∩ SUsur|

m∑
i=0

penE(ci) = V ∗U .

When the APPC value and the corresponding cycle is computed for every ASCC of
P, we choose the ASCC that minimizes the APPC value. We denote this ASCC
U = (SU , TU , AP ,LP) and cycVU = c0 . . . cm. Every strategy solving Problem 3
must achieve APPC value V ∗U .

Since the offline strategy C is a projection of the strategy Coff
P , we have

VT ,C(sinit) = VP,Coff
P

(sPinit). To show that VP,Coff
P

(sPinit) = V ∗U , let εi = 1
i for

round i. From Proposition 1 and the fact that li = max{j(1
i ), i·(ki+|SU |)·penmax}

it follows that the average penalty per surveillance cycle in i-th round after its
completion is at most

ki · penmax + |SU | · penmax + li(V
∗
U + εi)

li

≤ V ∗U + εi +
1

i
(li ≥ i · (ki + |SU |) · penmax)

= V ∗U +
2

i

with probability at least 1 − 1
i . Therefore, in the limit, the average cumulative

penalty per surveillance cycle V ∗U with probability 1, independently on penalty
profile.

Complexity

The size of a BA for an LTL formula φ is in 2O(|φ|), where |φ| is the size of
φ [GO01a]. However, the actual size of the BA is in practice often quite small.
The size of the product P is in O(|S| · 2O(|φ|)). To compute the minimum weights
w∗((s, q), (s′, q′)) between every two states of P we use Floyd-Warshall algorithm
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taking O(|SP |3) time. Tarjan’s algorithm [Tar72] is used to compute the set
SCC(P) in O(|SP |+ |TP |) time. The reduction of an ASCC U can be computed
in O(|SU | · |TU |2) time. The Karp’s algorithm [Kar78] finds the optimal APPC
value and corresponding cycle in O(|SUsur| · |Tsur|) time. The main pitfall of
the algorithm is to compute the number j(1

i ) of surveillance cycles needed in
the second phase of the current round i according to Proposition 1. Intuitively,
we need to consider the finite run σ]k induced by the strategy Coff,V

P from the
current state that contains k = 1 surveillance cycles, and compute the sum of
probabilities PrP,CP(s,q) (Cyl((σ]k, τ))) for every τ with the average cumulative penalty

per surveillance cycle less or equal to V ∗U + 2
i . If the total probability is at least

1− 1
i , we set j(1

i ) = k, otherwise we increase k and repeat the process. For every
k, there exist up to penmax to the power of |σ]k| sequences τ . This issue can be
partially overcome using the rule presented below.

Usability

The strategy Coff
P is not a finite-memory strategy in general. The reason is that

the number of surveillance cycles that we need to perform in the second phase
of round i is increasing with i. Note that in the special case when there exists a
cycle cycVU of the SCC U corresponding to V ∗U that contains an accepting state,

the memoryless strategy Coff,V
P for the average subgoal maps to a strategy of T

solving Problem 3, which is therefore in the worst case finite-memory. To improve

the memory usage we suggest the following technical improvements. Let Coff
P be

the strategy for P that results from applying the following rule to the strategy
Coff
P . Let i be the current round and ki the number of steps in the first phase

of the round. In the second phase we proceed as follows. After completion of
every surveillance cycle, check whether the average penalty per surveillance cycle
incurred in the current round of the execution is above V ∗U + 2

i , for the significance
of this value see the proof of Theorem 2. If yes, continue with the second phase
of round i, otherwise start new round i+ 1. Also, avoid performing the expensive
computation of the value j(1

i ) until it is necessary, i.e., only compute the value
once the number of surveillance cycles performed in the second phase of the round
i is i·(ki+|SU |)·penmax and the average penalty per surveillance cycle in the round

i is still above V ∗U + 2
i . Note that the strategy Coff

P is dependent on penalty profiles
but it is equivalent to the strategy Coff

P in the meaning that it provably guarantees
infinite number of visits to the set FP of accepting states and the APPC value of

Coff
P is equal to the APPC value of Coff

P , i.e., it is V ∗U . Formally, the strategy Coff
P

may still require infinite memory. However, in our simulations in Section 3.2.5 we
demonstrate that the memory usage and the amount of computation performed

while using the strategy Coff
P is significantly decreased comparing to the strategy

Coff
P . More specifically, the number of surveillance cycles performed in the second

phase of each round drops dramatically and the value j(1
i ) for round i needs to

be computed only rarely, if ever.
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Figure 3.5: (a) Transition system for the delivery system example. The pro-
jection of an optimal APPC cycle is shown in magenta. For convenience, in (b),
we also show the graphical representation of the function p : S → (0, 1) from
Figure 3.3c.

Remark 4. By considering only the expected values of penalties in states of
the TS, the penalties can be seen as static in our offline approach. This makes
Problem 3 related to the problem formulated in [WTM12a] for systems with static
costs. In [WTM12a], the optimality is achieved by persistently increasing the
number of visits to states under surveillance that leads to neglecting the remaining
part of the LTL specification over time. The authors in [WTM12a] disregard such
a strategy as undesirable. In our case, the optimal strategy Coff

P performs only as
many surveillance cycles in every round as are needed for the expected average
penalty per surveillance cycle to be close enough to the optimal value V ∗U with
probability 1, see Proposition 1 and the proof of Theorem 2. This allows us to
efficiently implement Coff

P using feedback, see the discussion on usability above.
We demonstrate in Section 3.2.5 that unlike the one in [WTM12a], our optimal
strategy does not lead to the undesirable, ever-increasing number of visits of
surveillance states.

Example 4. For the delivery system from Example 3, the Büchi automaton gen-
erated for the LTL formula in Equation 3.14 using [GO01b] has 16 states. The
product P of the transition system and the automaton contains 2 ASCCs and the
chosen, optimal ASCC U has 568 states. The projection of a cycle cycVU provid-
ing the minimum expected average cumulative penalty per surveillance cycle is
depicted in magenta in Figure 3.5 and the APPC value associated with the cycle
is V ∗U = 4.35.

The offline control has the following structure. In the first phase of the first
round, the aim of the strategy Coff

P for the product is to reach an accepting state of
the ASCC U using a finite run of the minimum possible weight. When projected
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to the TS, the robot starts from the base location and moves to the top delivery
location using a finite run of the minimum possible weight. The first phase is
completed one step after the visit of the delivery location, when the product
reaches an accepting state, in total of k1 = 8 steps. The control proceeds to the
second phase of the first round. In the product, we first reach the optimal APPC
cycle cycVU as fast as possible and then follow the cycle until l1 = max{576, j(1)}
surveillance cycles are completed. At the beginning of the second phase, even
though the robot might be in a state that lies on the cycle shown in magenta
in Figure 3.5, the product is not yet on the cycle cycVU . Therefore, in the TS
the control does not yet follow the cycle depicted in Figure 3.5. In the product,
the closest state of the optimal APPC cycle that can be reached is the one that
projects to the bottom delivery location. That means, the robot follows one of the
shortest finite runs from the top to the bottom delivery location. The round then
proceeds with l1 alternative visits of the two delivery locations by following the
cycle shown in magenta in Figure 3.5. Once completed, the control proceeds to
the second round. Every round i ≥ 2 starts from either the top or bottom delivery
location. In the first phase of the round, the robot first moves from the top, or
bottom, delivery location to the base location and then continues delivering the
packages by moving to the bottom, or top, delivery location, respectively. In both
cases the first phase of the round ends after 15 steps, i.e., li = 15 for every i ≥ 2.
In the second phase, the robot keeps delivering packages between the top and
the bottom delivery locations until the number of visits of the two locations is
li = max{i · 583, j(1

i )}.
Note that the robot follows a predetermined sequence of transitions given by

the strategy Coff
P , without considering the penalties incurred or observed in real-

time. Also, the robot visits the base location only during the first phase of rounds
and as the number li grows very fast with i, the time between consecutive visits
to the base grows rapidly. By applying the rule from the above discussion on the
usability of the offline control, we can visit the base more often by monitoring
the amount of penalties incurred in the current round and decreasing the number
of performed surveillance cycles. As we demonstrate in Section 3.2.5, the rule
dramatically improves the visit rate of the base while not affecting the convergence
to the optimal value V ∗U .

Online control

In this section, we construct a strategy for T that also provably guarantees the
satisfaction of given LTL formula but provides better or equal APPC than the
offline strategy. Hence, in the context of Problem 2 it is a better solution than
the offline control. It is however dependent on penalty profiles, so it cannot be
considered as a solution to Problem 3.

The online strategy is again computed as a projection of a suitable strategy
Con
P for the product P. We obtain Con

P by locally improving the offline strategy
Coff
P from the previous section. Intuitively, we compare applying Coff

P for several
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steps to reach a specific state or set of states of P to executing different local
paths to reach the same state or set of states. We consider a finite set of finite
runs leading to the state or set, containing the finite run induced by Coff

P . We then
choose the one that is expected to minimize the average cumulative penalty per
surveillance cycle incurred in the current round, taking into account the currently
observed penalties within the visibility range and their simulation in the next h
time units, where h ∈ N is a user-defined planning horizon. The first transition of
the chosen run is applied in the system. The process continues until the state, or
set, is reached, and then it starts over again. For the same reasons as in the offline
algorithm, the resulting strategy for T is an infinite-memory strategy. We again
propose technical improvements to reduce memory usage and computational cost
that result in a strategy for T that is equivalent to the online strategy, i.e., it
guarantees the satisfaction of the given formula and provides the same APPC
value. The online control strategy is a heuristic and we suggest a procedure to
design a whole class of heuristic online strategies with similar properties.

In this section, we use the following notation. Let σall ∈ RunPfin(sPinit) denote
the finite run executed by P so far. Let i be the current round of strategy Con

P
and σi = ui,0 . . . ui,k the finite run executed so far in this round, i.e., ui,k is the
current state of P. We use ti,0, . . . , ti,k to denote the points in time when the
states ui,0, . . . , ui,k were visited, respectively.

The optimization function f : RunPfin(ui,k) → R+
0 assigns every finite run σ =

u0 . . . un starting from the current state value f(σ) that is the expected average
cumulative penalty per surveillance cycle that would be incurred in round i, if
run σ was to be executed next, i.e.,

f(σ) =

k∑
j=0

pen(ui,j , ti,j) +
n∑
j=1

pen(uj , ti,k + wP(σ→j))

](σi.σ1→)
, (3.16)

where

pen(uj , ti,k + wP(σ→j)) =


pensim(uj , ti,k, pen(uj , ti,k), wP(σ→j))

if uj ∈ Vis(ui,k), wP(σ→j) ≤ h
penE(uj)

otherwise.

Intuitively, if the penalty in state uj is visible in the current time moment and
uj would have been visited within the next h time units in run σ, the value
pen(uj , ti,k +wP(σ→j)) refers to the simulated expected penalty in uj at the time
of its visit, as defined in Section 3.2.2. Otherwise, we do not simulate the penalty
over time and consider only its expected value penE(uj).

For a set of statesX ⊆ SP , we define a shortening indicator function IX : TP →
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{0, 1} such that for (u, u′) ∈ TP , we have

IX
(
(u, u′)

)
=

{
1 if w∗P(u,X) > w∗P(u′, X),

0 otherwise.
(3.17)

In words, the indicator has value 1 if the transition leads strictly closer to X, and
0 otherwise.

Now we are ready to formally define the strategy Con
P . In the first phase

of every round, we locally improve the strategy Coff,φ
P computed in the previous

section that aims to visit an accepting state of the chosen ASCC U . In each step of
the resulting strategy Con,φ

P , we consider the set Runφ(ui,k) of all finite runs that
start in the current state ui,k and lead to an accepting state from the set FU with
all transitions shortening in the indicator IFU defined according to Equation 3.17,
i.e.,

Runφ(ui,k) = {σ ∈ RunPfin(ui,k) |last(σ) ∈ FU and

∀0 ≤ j ≤ |σ| − 1: IFU ((σ(j), σ(j + 1))) = 1}.

Let σ ∈ Runφ(ui,k) be the run that minimizes the optimization function f from

Equation 3.16. Then Con,φ
P (σall) = σ(1). Just like in the offline algorithm, the

strategy Con,φ
P is applied until a state from the set FU is visited. In the second

phase of strategy Con
P , we locally improve the strategy Coff,V

P for the average sub-

goal from the previous section and we use Con,V
P to denote the resulting strategy.

At the beginning of the second phase of the current round i, we aim to reach the
cycle cycVU = c0 . . . cm of the ASCC U and we use the same idea that is used in

the first phase above. To be specific, we define Con,V
P (σall) = σ(1), where σ is the

run minimizing f from the set

Runinit
V (ui,k) = {σ ∈ RunPfin(ui,k) |last(σ) ∈ cycVU , and

∀0 ≤ j ≤ |σ| − 1: IcycVU
((σ(j), σ(j + 1))) = 1}.

Once a state ca ∈ cycVU of the cycle is reached, we continue as follows. Let
cb ∈ cycVU be the first state labeled with asur that is visited from ca if we follow
the cycle. Until we reach the state cb, the optimal finite run σ is chosen from the
set

RunV (ui,k) = {σ ∈ RunPfin(ui,k) |last(σ) = cb, and

∀0 ≤ j ≤ |σ| − 1: Icb((σ(j), σ(j + 1))) = 1 or

|σca→ui,k |+ |σ| ≤ b− a+ 2 mod (m+ 1)},

where σca→ui,k is the finite run already executed in P from state ca to the current
state ui,k. Intuitively, the set contains every finite run starting from the current
state and leading to cb that either has all transitions shortening in Icb or the length
of the finite run is such that if we were to perform the finite run, the length of the
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performed run from ca to cb would not be longer than following the cycle from ca
to cb. When state cb is reached, we restart the above procedure with ca = cb. The
strategy Con,V

P is performed until li = max{j(1
i ), i·(ki+|SU |)·penmax} surveillance

cycles are completed in the second phase of the current round i, where ki is the
number of steps of the first phase and j is from Proposition 1 (the value is given
by the strategy Coff

P ).

Theorem 3. The online control strategy C that results from projecting strategy
Con
P from P to T guarantees satisfaction of the LTL specification φ. Moreover,

it holds that the online control strategy provides lower or equal expected average
cumulative penalty per surveillance cycle than the offline control strategy, i.e.,
VT ,C(sinit) = VP,Con

P
(sP init) ≤ V ∗U .

Proof. To prove that the online control strategy satisfies the LTL specification, we
show that under every penalty profile ∆, the run ρCon

P ,∆
induced by strategy Con

P
visits the set FP of accepting states infinitely many times. From the definitions
of sets Runφ(ui,k), Runinit

V (ui,k) and RunV (ui,k) it follows that every round of Con
P

ends after a finite number of steps and at least one accepting state is visited in
every round. The inequality VP,Con

P
(sP init) ≤ V ∗U follows directly from the design

of the strategy Con
P .

As we show in Section 3.2.5, computation of the APPC value of the online
strategy according to Equation 3.12 is intractable even for reasonably small ex-
amples. Nevertheless, we demonstrate that in some cases, it can be computed
based on the specifics of the transition system, and in general, it can be estimated
from statistical results. The case studies also demonstrate that even though the
construction of the online strategy does not guarantee strict decrease in APPC
value in theory, these strategies often result in a significant improvement.

Complexity

To design the online strategy Con
P , we first compute the strategy Coff

P . The com-
plexity of one step of the online strategy is as follows. The cardinality of the set of
finite runs Runφ(ui,k) grows exponentially with the minimum weight w∗P(ui,k, FU ).
Analogously, the same holds for sets Runinit

V (ui,k) and RunV (ui,k), and the set cyc∗V
or one of its surveillance states. In the following discussion on the usability of the
online control, we propose a simple rule to simplify the computations and ef-
fectively use the algorithm in real time. Also, the complexity of one step of the
strategy Con

P grows exponentially with the user-defined planning horizon h and the
system-specific visibility range v. Hence, h should be chosen wisely. One should
also keep in mind that generally, the higher the planning horizon, the better local
improvement.
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Usability

Just like the offline strategy, the online strategy is not finite-memory in general.
To reduce memory usage, we construct new strategy Con

P from Con
P by applying

the rule to reduce the number of performed surveillance cycles in the second phase
of every round that was introduced for the offline control in the previous section.
Moreover, to simplify the computation in one step of the online control, we allow
the user to define parameter Wmax ≥ max{wP((u, u′)) | (u, u′) ∈ TP} that serves
as follows. In the first phase of round i and at the beginning of the second phase,
when not yet on the optimal APPC cycle, we only consider prefixes of the finite
runs from the sets Runφ(ui,k), Runinit

V (ui,k) or RunV (ui,k), and the set cyc∗V of
weight at most Wmax. In the second phase of a round, when the optimal cycle
has already been reached, if the weight of the fragment of the cycle from ca to
cb is more than Wmax, we first optimize the run from ca to an intermediate state
c′b for which it holds that the weight of the fragment of the cycle from ca to
c′b is at most Wmax but highest possible. Finally, we postpone the computation
of the value j(1

i ) for round i for as long as possible in the same manner as for
the offline strategy. The strategy Con

P is equivalent to Con
P in the meaning that it

provably satisfies the LTL formula φ and has the same APPC value as the strategy
Con
P . The improvement of the usability of the online control is demonstrated in

Section 3.2.5.

Example 5. The online control for the delivery system from Example 3 that
locally improves the offline control described in Example 4 works as follows. Con-
sider planning horizon h = 9. In every step of the first phase of every round,
the robot considers all finite runs that start in the current state, continue to the
base location and end in the delivery location that should be visited next. The
robot performs the first transition of the run minimizing the function from Equa-
tion 3.16. When computing the value for a finite run, the penalties in states that
are within the visibility range and would be visited within 9 time units are simu-
lated. In the second phase, the robot locally improves the finite run leading from
one delivery location to the other, while visiting at most as many states as there are
on the cycle shown in Figure 3.5 between the two delivery locations. The number
of surveillance cycles in the second phase of round i is li = max{i·(ki+576), j(1

i )},
where ki is the number of steps in the first phase of the round. Unlike in the offline
control in Example 4, number ki might differ from round to round.

Note that the set of finite runs considered in one step of the online control
can be very large, especially in the first phases of rounds when the finite runs are
considerably long. We can use the parameter Wmax introduced in the discussion
on the usability of the online control above to decrease the number and weight
of finite runs considered in every step of the control. By applying the rest of the
rules from the discussion, we can also decrease the number of visits to delivery
locations in every round and thus visit the base location more often.

62



CHAPTER 3. CONTROL FOR FINITE DISCRETE SYSTEMS

Remark 5. The online control introduced in this section is in fact a heuristic.
We can formulate other heuristics that would construct a strategy satisfying The-
orem 3. For example, consider a strategy that is constructed from the offline
strategy Coff

P in the same way as the strategy Con
P , i.e., deploying sets Runφ(ui,k)

and Runinit
V (ui,k), except in the second phase of every round, once a state ca ∈ cycVU

on the cycle is reached, the optimal finite run is chosen from the set defined as

RunV (ui,k) = {σ ∈ RunPfin(ui,k) |last(σ) = cb, and

∀0 ≤ j ≤ |σ| − 1: Icb((σ(j), σ(j + 1))) = 1 or

|σca→ui,k |+ |σ| ≤ 2 ·
(
b− a+ 2 mod (m+ 1)

)
},

i.e., we consider all finite runs consisting only of transitions shortening in Icb and
all finite runs leading to the target state cb with length at most twice the length
of following the cycle from ca to cb. We refer to the projection of this strategy
from P to T as the modified online control.

We can define other heuristics in a similar way by changing only the definition
of the sets of finite runs Runφ(ui,k),RunV (ui,k). However in order to guarantee
satisfaction of Theorem 3, the sets must satisfy the following conditions. The
definition of Runφ(ui,k) guarantees that an accepting state from FU is always
visited after a finite number of steps. The definition of RunV (ui,k) guarantees a
visit of the cycle cycVU after at most |SU | steps and once a state ca ∈ cycVU on
the cycle is reached, the set RunV (ui,k) guarantees visit of the state cb in a finite
number of steps.

3.2.5 Implementation and Case Studies

Implementation

The framework presented in this section is implemented in our simulation tool
ConTool [SMv13]. Input transition system can be defined in DOT language and
then visualized using Graphviz [GN00]. The MCs defining the penalties in states
are loaded from a text file. We use LTL2BA [GO01b] to generate a Büchi au-
tomaton for given LTL formula. The user can choose to simulate the offline,
online or the modified online control from Remark 5. All three control strate-
gies implement the rules introduced to reduce memory usage and computational
costs. After specifying additional parameters such as visibility range, planning
horizon and the parameter Wmax for the online control, the simulation tool allows
to observe the control one transition at a time.

Case study 1: Delivery system

The offline and online control strategies for the delivery system from Example 3
were described in Example 4 and 5, respectively. Here we report on the results we
obtained from executing 10 runs of 30 rounds for all three types of control strate-
gies using ConTool. In simulations of the online and modified online controls, we
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used parameter Wmax = 9. We present the analysis of the average penalty per
surveillance cycle at the end of every round in Figure 3.6. For the offline control,
the value gradually converges to the (optimal) APPC value 4.35 of the offline
control, marked as a red line in Figure 3.6. On the other hand, for both online
and modified online control strategies, the average is below 4.35 due to the local
improvement based on local sensing. Due to the size and density of the transition
system, it is intractable to compute the exact APPC value as defined in Equa-
tion 3.12 for the online and modified online control. Nevertheless, from Figure 3.6
we can observe that the average penalty per surveillance cycle stabilizes in timely
manner at approximately 4.16 for the online control and 4.05 for the modified
online control.

The number of surveillance cycles performed in the second phase of every
round i using the rules from Section 3.2.4 was always less than i · (ki + 568) for
all three types of control, i.e., the second phase always ended due to the fact
that the average incurred in the round was below the threshold V ∗U + 2

i . That
means, we were never forced to compute the value j(1

i ). The maximum number
of surveillance cycles performed in the second phase of a round of offline control
strategy was 636, average was only 29 and median was 8. Using online control
strategy, the maximum number of surveillance cycles performed in the second
phase of a round was 10, the average was 2 and the median was 1. Similarly for
the modified online strategy, the maximum was 9 and both average and median
were 1, i.e., for all three control strategies the rules from Section 3.2.4 reduced
the number of performed surveillance cycles in every round substantially from
thousands to only tens or few hundreds and thus allowed to visit the base location
much more often. Moreover, the number of surveillance cycles in the second phase
of a round did not evolve monotonically, rather randomly.

We ran the simulations on a Lenovo laptop with Windows 7, Intel Pentium
CPU 2.00 GHz and 3GB RAM. The offline strategy was computed in 45 seconds
on average. One step of the online and modified online control took 150 millisec-
onds and 7.5 seconds on average, with 100 milliseconds and 12 seconds deviation,
respectively.

Case study 2: Stock market

The second case study we use to evaluate our framework models a simple stock
market and a broker that performs one action on the market at a time. He can
sell or buy stocks, or decide to wait. We assume that the system can be modeled
as the transition system depicted in Figure 3.7a. The system starts in state s0.
The broker decides his next action in state s1 and he can choose from 5 different
buying and selling orders. All transitions have weight 1. In Figure 3.7b, we list
the transition matrices of the Markov chains that define penalties in states of the
TS. The initial distribution is always the uniform distribution over the possible
values of the penalty in a given state. Only the states s2, . . . , s6 can have non-
zero penalty modeling the fact that only buying and selling stocks has any value.
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Figure 3.6: Evolution of the average penalty per surveillance cycle obtained
in simulations of the offline, online and modified online control for the delivery
system case study. For each control, the statistics is built on 10 individual runs of
30 rounds each. The red line marks the optimal APPC value and the black line
shows the mean over executed runs.
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s0

s1

s2

s3

s4

s5

s6

s7

(a)

A0 = A1 = A7 =
( 0

0 1.0
)

A2 =
( 2

2 1.0
)

A3 =

( 1 2

1 0.8 0.2
2 0.2 0.8

)
A4 =


0 1 2 3

0 0.1 0.5 0.3 0.1
1 0.1 0.5 0.3 0.1
2 0.1 0.5 0.3 0.1
3 0.1 0.5 0.3 0.1



A5 =


0 1 2 3

0 0.2 0.8 0 0
1 0 0.2 0.8 0
2 0 0 0.2 0.8
3 0.8 0 0 0.2

 A6 =


0 1 2 3

0 0 1.0 0 0
1 0 0 1.0 0
2 0 0 0 1.0
3 0.9 0 0 0.1


(b)

Figure 3.7: (a) Transition system that models a broker acting on a simple
stock market. In state s1, in green, the broker chooses one of the five buying
or selling orders. All transitions have weight 1. The optimal cycle with respect
to the expected average penalty per surveillance cycle is shown in magenta. (b)
Matrices of Markov chains that define penalties in states of the transition system.
Matrix Ai describes penalty in state si.
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Finally, state s7, in blue, can be seen as an evaluation state, where the gains and
losses are counted. The visibility range v is 4, i.e., the broker can always observe
penalties in all states.

The mission for the broker is to make an infinite number of orders and, at the
same time, to minimize the penalty incurred per order. We model this requirement
with LTL formula

GF a ∧ GF asur,

where a and asur are true in state s7. The Büchi automaton generated for the
formula using [GO01b] has 4 states, the product has one ASCC with 25 states.
The optimal APPC cycle projected to the transition system is shown in magenta
in Figure 3.7a and the optimal APPC value is 1.4.

We present statistical results that we obtained by running 10 runs of 30 rounds
for each of the offline, online and modified online control strategies. In all simula-
tions we used planning horizon h = 9 and we did not use the parameter Wmax. In
Figure 3.8, we plot the average penalty per surveillance cycle at the end of every
round. The red line marks the APPC value of the offline control 1.4. For the of-
fline control, the obtained value converges to the optimal APPC value fairly fast.
We can observe considerable improvement for both online and modified online
control. The reason is the following. In the offline control, when in the second
phase of a round the broker always chooses the action leading to state s4 that
has the minimum expected value penE . On the other hand, in the same situation
when using online control, the broker always chooses the next action according to
the simulated expected values of penalties pensim rather than their expected val-
ues penE . Finally, using the modified online control, the broker is allowed to wait
up to three time units in state s1 and only then decide to buy or sell. Note that
the penalty in state s6 gradually increases from 0 to 3 and then with probability
90% it drops to 0 again. The broker waits in s1 until the penalty in state s6 has
value 3 and then moves to s6. Just like for the first case study, it is intractable
to compute the APPC value for the online and modified online control. However,
from the discussion above, we can conclude that the APPC value of the modified
online control is 0.3 and this fact can also be observed in Figure 3.8. Based on
Figure 3.8, the APPC value of the online control strategy is approximately 0.64.

The number of surveillance cycles in the second phase of every round using
the rules in Section 3.2.4 was always below i · (ki+25) for all three strategies, i.e.,
every round ended with the average penalty per surveillance cycle in the round
dropping below the threshold V ∗U + 2

i and we never needed to compute the value
j(1

i ). The maximum number of surveillance cycles performed in the second phase
of a round was 288 for the offline control, 12 for the online control and 5 for
the modified online control, and the median was 1 in all three cases. Hence, the
improvement of the rules in Section 3.2.4 is again remarkable. In all three cases,
the number of surveillance cycles in rounds did not evolve monotonically, rather
randomly.

We ran the simulations on a Lenovo laptop with Windows 7, Intel Pentium
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Figure 3.8: Evolution of the average penalty per surveillance cycle attained in
simulations of the offline, online and modified online control for the stock market
case study. For each control strategy, the statistics is built on 10 individual runs
of 30 rounds each. The red line marks the optimal APPC value and the black line
shows the mean over executed runs.
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CPU 2.00 GHz and 3GB RAM. The offline strategy took 0.5 seconds on average
to compute. One step of the online and modified online control strategies always
took under one millisecond.

3.2.6 Conclusion

In this section, we considered the problem of synthesizing an optimal control
strategy for a deterministic transition system under temporal logic constraints.
We assumed real-valued penalties with probabilistic behaviors in the states of the
system. We constructed a control strategy that, while guaranteeing satisfaction of
an LTL formula, minimizes the expected average penalty per visit of a desired set
of states. We also presented (a class of) control strategies that use local sensing
of the penalties in real time and simulation of their values over finite horizon to
improve the average penalty per visit of the set of states in every execution of the
system.

3.3 Probabilistic Systems with Penalties

3.3.1 Motivation

In this section, we consider a variation of the control problem discussed in Sec-
tion 3.2. While in the previous section, we considered a deterministic system with
probabilistic penalties incurred with every transition to a new state, here we con-
sider a probabilistic system modeled as a Markov decision process introduced in
Definition 7, where every transition incurs a static real-valued penalty. Given an
LTL formula with persistent surveillance, our goal is again to synthesize a con-
trol strategy that minimizes the average expected penalty between visits of states
under surveillance subject to the temporal logic constraints.

The above problem was previously investigated in [DSBR11]. Using dynamic
programming techniques, the authors design a solution that is sub-optimal in the
general case. The solution becomes optimal if the MDPM satisfies certain condi-
tions described in [DSBR11] and also for a fragment of LTL specified in [CTB12].
Using an adaptation of the framework presented in Section 3.2 to MDPs, in this
section we design a control strategy that is optimal in the general case, i.e., for
any MDP and any LTL formula. Just like the algorithms presented in Section 3.2,
the designed control builds on recent results from game theory [CD12].

The results presented in this section are based on our results in [SvB13a]. The
rest of the section is organized as follows. We start with formally stating the
problem in Section 3.3.2. The solution together with discussion on its proper-
ties and complexity is presented in Section 3.3.3. Finally, Section 3.3.4 contains
experimental results.
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3.3.2 Problem Formulation

Consider an initialized MDP M = (S,Act, P,AP ,L) with initial state sinit ∈ S
and a penalty function pen: S × Act → R+

0 that specifies the penalty pen(s, α)
associated with applying an action α ∈ Act in a state s ∈ S. Finally, consider a
specification given as an LTL formula with persistent surveillance as defined in
Section 2.2.4. Recall that a formula with persistent surveillance is

φ = ϕ ∧ GF asur, (3.18)

where ϕ is an arbitrary LTL formula over AP and asur ∈ AP is a surveillance
proposition associated with states Ssur = {s ∈ S | asur ∈ L(s)}. We extend
the notation from Section 2.2.4 and use ](σ) to denote the number of complete
surveillance cycles in a finite run σ such that last(σ) ∈ Ssur, otherwise ](σ) denotes
the number of complete surveillance cycles in σ plus one.

For a strategy C for M, we define the average expected cumulative penalty
per surveillance cycle (APPC) in an analogous way as in Section 3.2. APPC in
the MDP M under a strategy C as a function VM,C : S → R+

0 such that for a
state s ∈ S

VM,C(s) = lim sup
k→∞

∑
ρC∈RunM,C(s)

PrM,C
s (Cyl(ρ→kC ) ·

∑k
i=0 pen(ρC(i), C(ρ→iC ))

](ρ→kC )
.

(3.19)
The problem we consider in this section can be formally stated as follows.

Problem 4. Given
• an initialized MDP M = (S,Act, P,AP ,L) with initial state sinit ∈ S,
• an LTL formula φ over AP with persistent surveillance,
• penalties pen: S ×Act→ R+

0 ,
find a control strategy C : RunMfin → Act such that

(i) C satisfies φ with probability 1 starting from sinit and
(ii) among all strategies satisfying (i), C minimizes the APPC value VM,C(sinit)

defined in Equation 3.19.

In the special case when every state of M is a surveillance state, Problem 4
aims to find a strategy that minimizes the average expected penalty per stage
among all strategies almost-surely satisfying φ. The optimization problem of
minimizing the average expected penalty per stage also known as average cost
per stage (ACPS) in an MDP, without considering any correctness specification,
is a well studied problem in optimal control [Ber12]. It holds that there always
exists a stationary strategy that minimizes the ACPS value starting from the
initial state. In our approach to Problem 4, we use techniques for solving the
ACPS problem to find a strategy that minimizes the APPC value. Similarly as in
Section 3.2, we construct a control strategy solving Problem 4 as a combination
of a strategy that ensures the almost-sure satisfaction of the specification φ and a
strategy that guarantees the minimum APPC value among all strategies that do
not cause immediate unrepairable violation of φ.
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3.3.3 Solution

In this section, we describe the solution to Problem 4 in detail. The algorithm
works with the synchronous product of the MDP M and a deterministic Rabin
automaton A for the formula φ. We first define the product and discuss the
construction of an optimal strategy for the product on an intuitive level. We
follow with the construction of the two strategies for the formula satisfaction and
APPC optimization, respectively. Finally, the two strategies are combined to
obtain an optimal strategy for the product that maps to the desired strategy for
M.

Product Construction

To employ the automata-based approach to control synthesis as described in Sec-
tion 2.5, we translate the LTL formula φ to a deterministic Rabin automaton A
using techniques discussed in Section 2.2. Next, we construct the synchronous
product of the MDP M and the DRA A.

Definition 19. Let M = (S,Act, P,AP ,L) be an initialized MDP with initial
state sinit ∈ S and A = (Q, 2AP , δ, q0, Acc) be a DRA. The synchronous product
of M and A is the initialized MDP

P =M×A = (SP , Act, PP , APP , LP),

where SP = S × Q, PP((s, q), α, (s′, q′)) = P (s, α, s′) if q′ = δ(q, L(s)) and 0
otherwise, APP = AP ∪ Q, LP((s, q)) = L(s) ∪ {q}. The initial state of P is
sP init = (sinit, q0).

The product P can be viewed as an initialized MDP with a Rabin accepting
condition. Therefore, we adopt the definitions of a run ρ, a finite run σ, and
sets RunP((s, q)), RunP , RunPfin((s, q)) and RunPfin from Section 2.3.2. Similarly,
a strategy CP for P, runs ρCP , σCP induced by CP , and the probability measure

PrP,CP(s,q) are defined in the same way as for an MDP. We also adopt the definitions of
an end component and maximal end component. Finally, we adopt the penalties
by letting penP((s, q), α) = pen(s, α).

Using the projection π1 on the first component, every (finite) run of P projects
to a (finite) run of M and vice versa, for every (finite) run of M, there exists
a (finite) run of P that projects to it. Analogous correspondence exists between
strategies for P and M. It holds that the projection of a finite-memory strategy
for P is also finite-memory. More importantly, for the product P of M and A,
the probability of satisfying the accepting condition Acc of A under a strategy
CP for P starting from the initial state sP init, i.e.,

PrP,CPsP init

( ∨
(E,F )∈Acc

(FG(¬E) ∧ GFF )
)
,

is equal to the probability of satisfying the formula φ in the MDP M under the
projected strategy C starting from the initial state sinit.
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Definition 20. Let P = (SP , Act, PP , APP , LP) be the product of an MDP M
and a DRA A. An accepting end component (AEC) of P is defined as an end com-
ponent N = (SN , ActN , PP , APP , LP) of P for which there exists a pair (E,F )
in the acceptance condition of A such that LP(SN )∩E = ∅ and LP(SN )∩F 6= ∅.
We say that N is accepting with respect to the pair (E,F ).

An AEC N is called maximal (MAEC) if there is no AEC N ′ such that N ′ 6=
N , SN ⊆ SN ′, ActN ((s, q)) ⊆ ActN ′((s, q)) for every (s, q) ∈ SP and N and
N ′ are accepting with respect to the same pair. We use AEC(P) and MAEC(P)
to denote the set of all accepting end components and maximal accepting end
components of P, respectively.

Note that MAECs that are accepting with respect to the same pair are always
disjoint. However, MAECs that are accepting with respect to different pairs can
intersect.

Optimal strategy for the product – intuition

Using the correspondence between strategies for P and M, an optimal strategy
C for M is found as a projection of a strategy CP for P which almost-surely
satisfies the accepting condition Acc of A and at the same time, minimizes the
APPC value VP,CP (sP init) among all strategies for P that almost-surely satisfy
Acc.

From the discussion above it follows that a necessary condition for almost-
sure satisfaction of the accepting condition Acc by a strategy CP for P is that
there exists a set maec ⊆ MAEC(P) of MAECs such that CP leads the product
from the initial state to maec. Moreover, for every MAEC N ∈ MAEC(P), the
minimum APPC value V ∗N ((s, q)) that can be obtained in N starting from a state
(s, q) ∈ SN is equal for all the states of N and we denote this value V ∗N . The
strategy CP is constructed in two steps.

First, we find a set maec∗ of MAECs of P and a strategy C0 that leads P from
the initial state to the set maec∗. We require that C0 and maec∗ minimize the
weighted average of the values V ∗N for N ∈ maec∗. The strategy CP applies C0

from the initial state until P enters the set maec∗.
Second, we solve the problem of how to control the product once a state

of an MAEC N ∈ maec∗ is visited. Intuitively, we combine two finite-memory
strategies, CφN for the almost-sure satisfaction of the accepting condition Acc
and CVN for maintaining the average expected cumulative penalty per surveillance
cycle. To satisfy both objectives, the strategy CP is played in rounds. In each
round, we first apply the strategy CφN and then the strategy CVN , each for a specific
(finite) number of steps.

Finding an optimal set of MAECs

Let MAEC(P) be the set of all MAECs of the product P that can be computed as
follows. For every pair (E,F ) ∈ Acc, we create a new MDP from P by removing
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all its states with label in B and the corresponding actions. For the new MDP,
we use one of the algorithms in [dA97, CY95, CH11] to compute the set of all its
MECs. Finally, for every MEC, we check whether it contains a state with label
in G.

In this section, the aim is to find a set maec∗ ⊆ MAEC(P) and a strategy C0

for P that satisfy conditions formally stated below. Since the strategy C0 will
only be used to enter the set maec∗, it is constructed as a partial function.

Definition 21. Let M = (S,Act, P,AP ,L) be an MDP. A partial strategy for
M is a partial function ζ : RunMfin → Act, where if ζ(σ) is defined for σ ∈ RunMfin ,
then ζ(σ) ∈ Act(last(σ)).

A partial memoryless strategy forM can also be considered as a partial func-
tion ζ : S → Act or a subset ζ ⊆ S × Act. The set RunM,ζ of runs of M under
ζ contains all infinite runs of M that follow ζ and all those finite runs σ of M
under ζ for which ζ(last(σ)) is not defined. A finite run of M under ζ is then a
finite prefix of a run under ζ. The probability measure PrM,ζ

s is defined in the
same manner as in Section 2.3.2. We also extend the semantics of LTL formulas
to finite words. For example, a formula FGφ is satisfied by a finite word if in
some non-empty suffix of the word φ always holds.

The conditions on maec∗ and C0 are as follows. First, the partial strategy C0

leads P to the set maec∗, i.e.,

PrP,C0
sP init

(FG (
⋃

N∈maec∗

SN )) = 1. (3.20)

Second, we require that maec∗ and C0 minimize the value∑
N∈maec∗

PrP,C0
sP init

(FGSN ) · V ∗N . (3.21)

The procedure to compute the optimal APPC value V ∗N for an MAEC N of
P is described in the next section. Assume we already computed this value for
each MAEC of P. The algorithm to find the set maec∗ and partial strategy C0

is based on an algorithm for stochastic shortest path (SSP) problem. The SSP
problem is one of the basic optimization problems for MDPs. Given an initialized
MDP and its state t, the goal is to find a strategy under which the MDP almost-
surely reaches the state t, so called terminal state, while minimizing the expected
cumulative penalty. If there exists at least one strategy almost-surely reaching
the terminal state, then there exists a stationary optimal strategy. For details
and algorithms see [Ber12].

The partial strategy C0 and the set maec∗ are computed as follows. First, we
create a new MDP P ′ from P by considering only those states of P that can reach
the set MAEC(P) with probability 1 and their corresponding actions. The MDP
P ′ can be computed using backward reachability from the set MAEC(P). If P ′
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does not contain the initial state sP init, there exists no solution to Problem 4. Oth-
erwise, we add a new state t and for every MAEC N ∈ MAEC(P ′) = MAEC(P),
we add a new action αN to P ′. From each state (s, q) ∈ SN ,N ∈ MAEC(P ′), we
define a transition under αN to t with probability 1 and set its penalty to V ∗N .
All other penalties in the MDP are set to 0. Finally, we solve the SSP problem
for P ′ and the state t as the terminal state. Let CSSP be the resulting stationary
optimal strategy for P ′. For every (s, q) ∈ SP , we define C0((s, q)) = CSSP ((s, q))
if the action CSSP ((s, q)) does not lead from (s, q) to t, C0((s, q)) is undefined
otherwise. The set maec∗ is the set of all MAECs N for which there exists a state
(s, q) such that CSSP ((s, q)) = αN .

Proposition 2. The set maec∗ and the partial stationary strategy C0 result-
ing from the above algorithm satisfy the conditions in Equation 3.20 and Equa-
tion 3.21.

Proof. Both conditions follow directly from the fact that the strategy CSSP is an
optimal solution to the SSP problem for P ′ and t.

Optimizing APPC value in an MAEC

In this section, we compute the minimum APPC value V ∗N that can be attained
in an MAEC N ∈ MAEC(P) and construct the corresponding strategy for N .

Essentially, we reduce the problem of computing the minimum APPC value
to the problem of computing the minimum ACPS value by reducing N to an
MDP such that every state of the reduced MDP is labeled with the surveillance
proposition asur.

Let N = (SN , ActN , PP , APP , LP) be an MAEC of P. Since it is an MAEC,
there exists a state (s, q) ∈ SN with asur ∈ LP((s, q)). Let SNsur denote the set of
all such states in SN . We reduce N to an MDP

Nsur = (SNsur ,Actsur, Psur, APP , LP)

using Algorithm 4. For the sake of readability, we use singletons such as u instead
of pairs such as (s, q) to denote the states of N . The MDP Nsur is constructed
from N by eliminating states from SN \SNsur one by one in arbitrary order. The
actions Actsur are partial stationary strategies forN in which we remember all the
states and actions we eliminated. Later we prove that the transition probability
Psur(u, ζ, u

′) for states u, u′ ∈ SNsur and an action ζ ∈ Actsur(u) is the probability
that in N under the partial stationary strategy ζ, if we start from the state u,
the next state that will be visited from the set SNsur is the state u′, i.e., the
first surveillance cycle is completed by visiting u′. The penalty pensur(u, ζ) is the
expected cumulative penalty gained in N using partial stationary strategy ζ from
u until we reach a state in SNsur .

In Figure 3.9, we demonstrate the reduction on an example using the notation
introduced in Algorithm 4. On the left side, we see a part of an MAEC N with five
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Algorithm 4 Reduction of an MAEC N to Nsur

1: Input: N = (SN , ActN , PP , APP , LP), penalties penP
2: Output: Nsur = (SN sur,Actsur, Psur, APP , LP), penalties pensur

3: let X = (SX ,ActX , PX , APP , LP) be an MDP and penX penalties such that
• SX := SN ,

• for u ∈ SX : ActX(u) := {ζα | ζα = {(u, α)}, α ∈ ActN (u)},
• for u, u′ ∈ SX , ζ ∈ ActX : PX(u, ζ, u′) := PP(u, ζ(u), u′),

• for u ∈ SX , ζ ∈ ActX : penX(u, ζ) := penP(u, ζ(u))
4: while SX\SN sur 6= ∅ do
5: let u ∈ SX\SN sur

6: for all ζ ∈ ActX(u) do
7: if PX(u, ζ, u) < 1 then
8: for all ufrom ∈ SX , ζold ∈ ActX(ufrom) do
9: if PX(ufrom, ζold, u) > 0 and ζold, ζ do not conflict then

10: ζnew := ζold ∪ ζ
11: add ζnew to ActX(ufrom)
12: for every uto ∈ SX :

PX(ufrom, ζnew, uto) :=PX(ufrom, ζold, uto) + PX(ufrom, ζold, u) · PX(u, ζ, uto)

1− PX(u, ζ, u)

penX(ufrom, ζnew) := penX(ufrom, ζold) + PX(ufrom, ζold, u) · penX(u, ζ)

1− PX(u, ζ, u)

13: remove ζold from ActX(ufrom)
14: end if
15: end for
16: end if
17: remove ζ from ActX(u)
18: end for
19: remove u from SX
20: end while
21: return X

states and two actions. First, we build an MDP X = (SX ,ActX , PX , APP , LP)
and penalties penX fromN by transforming every action of every state to a partial
stationary strategy with a single pair given by the state and the action. The MDP
X is used in the algorithm as an auxiliary MDP to store the current version of
the reduced system. Assume we want to reduce the state u. We consider all
“incoming” and “outgoing” actions of u and combine them pairwise as follows.
There is only one outgoing action from u in X, namely ζ, and only one incoming
action, namely action ζold of state ufrom. Since ζ and ζold do not conflict as partial
stationary strategies on any state of N , we merge them to create a new partial
stationary strategy ζnew that is an action of ufrom. The transition probability
PX(ufrom, ζnew, uto) for a state uto of X is computed as the sum of the transition
probability PX(ufrom, ζold, uto) of transiting from ufrom to uto using the old action
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Figure 3.9: Illustration of Algorithm 4. A part of an MAEC N is shown in the
left. An auxiliary MDP X is constructed by transforming actions of N to partial
stationary strategies. The MDP X after eliminating the state u is shown on the
right. The penalties associated with actions are depicted in red.

ζold and the probability of entering uto by first transiting from ufrom to u using
ζold and from u eventually reaching uto using ζ. The penalty penX(ufrom, ζnew)
is the expected cumulative penalty gained starting from ufrom by first applying
action ζold and if we transit to u, applying ζ until a state different from u is
reached. Now that we considered every pair of an incoming and outgoing action
of u, the state u and its incoming and outgoing actions are reduced. The modified
MDP X is depicted on the right side of Figure 3.9.

Proposition 3. Let N = (SN , ActN , PP , APP , LP) be an MAEC with penalties
penP and Nsur = (SNsur ,Actsur, Psur, APP , LP) and pensur its reduction result-
ing from Algorithm 4. The minimum APPC value that can be attained in Nsur

starting from any of its states is the same and we denote it V ∗Nsur
. There exists a

stationary strategy CVNsur
for Nsur that attains this value regardless of the starting

state in Nsur. Both V ∗Nsur
and CVNsur

can be computed as a solution to the ACPS

problem for Nsur. It holds that V ∗N = V ∗Nsur
and from CVNsur

, one can construct

a finite-memory strategy CVN for N which regardless of the starting state in N
attains the optimal APPC value V ∗N .

Proof. We prove the following correspondence between N and Nsur. For every
u, u′ ∈ SNsur and ζ ∈ Actsur(u), it holds that ζ is a well-defined partial stationary
strategy for N . The transition probability Psur(u, ζ, u

′) is the probability that in
N , when applying ζ starting from u, the first surveillance cycle is completed by
visiting u′, i.e.,

Psur(u, ζ, u
′) = PrN ,ζu (X(¬SN surUu′)).

The penalty pensur(u, ζ) is the expected cumulative penalty gained in N when
applying ζ starting from u until the first surveillance cycle is completed. On the
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other hand, for every partial stationary strategy ζ for N such that

PrN ,ζu (FSNsur) = 1

for some u ∈ SN sur, there exists an action ζ ′ ∈ Actsur(u) such that the action ζ ′

corresponds to the partial stationary strategy ζ in the above sense, i.e.,

Psur(u, ζ
′, u′) = PrN ,ζu (X(¬SNsurUu′))

for every u′ ∈ SNsur , and the penalty pensur(u, ζ
′) is the expected cumulative

penalty gained in N when we apply ζ starting from u until we reach a state in
SNsur .

To prove the first part of the correspondence above, we prove the following
invariant of Algorithm 4. Let X = (SX ,ActX , PX , APP , LP) be the MDP and
penX the penalty function from the algorithm after the initialization, before the
first iteration of the while cycle. It is easy to see that all actions of X are well-
defined partial stationary strategies. For the transition probabilities, it holds that

PX(ufrom, ζ, uto) = PrN ,ζufrom
(X(¬SXUuto))

for every ufrom, uto ∈ SX and ζ ∈ ActX(ufrom). The penalty penX(ufrom, ζ) is
the expected cumulative penalty gained in N starting from ufrom when applying
ζ until we reach a state in SX . We show that these conditions also hold after
every iteration of the while cycle.

Let X and penX satisfy the conditions above and let u ∈ SX\SN sur. By
removing the state u from SX , we obtain a new version of the MDP X ′ and the
function penX′ . Note that SX′ ∪{u} = SX . Let ufrom ∈ SX′ be a state of X ′ and
ζnew ∈ ActX′(ufrom) be its action such that ζnew has changed in the process of
removing the state u. The action ζnew is a well-defined partial stationary strategy
because it must have been created as a union of an action ζold of ufrom and an
action ζ of u, both from the previous version X, which do not conflict on any
state from SX .

For a state uto ∈ SX′ , we prove that

PX′(ufrom, ζnew, uto) = PrN ,ζnewufrom
(X(¬SX′Uuto)).

Since ζnew = ζold∪ζ, the probability in N when applying ζnew starting from ufrom
of reaching the state uto as the next state in SX′ is the probability of reaching it as
the next state in SX when using ζold from ufrom, plus the probability of reaching
u as the next state in SX from ufrom using ζold and then eventually reaching the
state uto from u using ζ. This means

PrN ,ζnewufrom
(X(¬SX′Uuto)) =

= PrN ,ζoldufrom
(X(¬SXUuto)) + PrN ,ζoldufrom

(X(¬SXUu)) · PrN ,ζu (Futo)

= PX(ufrom, ζold, uto) + PX(ufrom, ζold, u) ·
( ∞∑
i=0

PX(u, ζ, u)i · PX(u, ζ, uto)
)

= PX(ufrom, ζold, uto) + PX(ufrom, ζold, u) · PX(u, ζ, uto)

1− PX(u, ζ, u)
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which is exactly as defined in Algorithm 4.
Similarly, we prove that penX′(ufrom, ζnew) is the expected cumulative penalty

gained in N starting from ufrom when applying ζnew until we reach a state in SX′ .
As ζnew = ζold ∪ ζ, it is the expected cumulative penalty of reaching a state in
SX by using ζold plus, in the case we reach u, the expected cumulative penalty of
eventually reaching a state in SX′ , i.e., other than u, using ζ. To be specific, we
have

penX(ufrom, ζold) + PX(ufrom, ζold, u)·

·
( ∞∑
i=0

PX(u, ζ, u)i · (1− PX(u, ζ, u)) · (i+ 1)
)
· penX(u, ζ)

=

penX(ufrom, ζold) + PX(ufrom, ζold, u) · penX(u, ζ)

1− PX(u, ζ, u)
,

just as defined in Algorithm 4. This completes the proof of the first part of the
correspondence between N and Nsur.

The second part of the correspondence between N and Nsur follows directly
from the fact that, in the process of removing a state u ∈ SX\SNsur , we consider
all combinations of actions of u which eventually reach a state different from u,
with all actions of all states ufrom having an action under which u is reached with
non-zero probability.

From the correspondence between N and Nsur it follows that in Nsur, there
exists a finite run between every two states. Therefore, the minimum APPC value
that can be obtained in Nsur from any of its states is the same and it is denoted by
V ∗Nsur

. Since every state of Nsur is a surveillance state, the APPC problem for Nsur

is equivalent to solving the ACPS problem for Nsur. Using one of the algorithms
in [Ber12], we obtain a stationary strategy CVNsur

that attains the APPC value
V ∗Nsur

regardless of the starting state. From the correspondence between N and
Nsur it also follows that V ∗Nsur

= V ∗N .

Now we construct the strategy CVN forN and show that it attains the minimum
APPC value V ∗N regardless of the initial state. Intuitively, the strategy CVN is
constructed to lead to a single EC of N that provides the minimum APPC value
and that is the EC encoded by the strategy CVNsur

for Nsur.
Let Sdef ⊆ SN be the set of all states u ∈ SN for which there exists a surveil-

lance state usur ∈ SNsur such that the partial strategy CVNsur
(usur) for N is defined

on the state u. We compute a partial strategy ζinit that leads from every state
from SN \Sdef to the set Sdef as follows. Let N ′ be an MDP that is created from
N by adding a new state t and a new action αdef . From every state u ∈ Sdef ,
we define a new transition under αdef to t with probability 1 and penalty 0. Let
CSSP be a stationary optimal strategy for the SSP problem for N ′ and t as the
terminal state. We define ζinit(u) = CSSP (u) for every u ∈ SN \Sdef .

The strategy CVN is a then finite-memory strategy

CVN = (M, next, trans, start),
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where M = SNsur ∪{init} is the set of modes, trans : M×SN →M is the transition
function such that for every m ∈M,u ∈ SN

trans(m,u) =

{
m if u 6∈ SN sur,

u otherwise.

The function next : M × SN → ActN that selects an action to be applied in N is
for m ∈M,u ∈ SN defined as

next(m,u) =

{(
CVNsur

(m)
)
(u) if m ∈ SNsur

ζinit(u) otherwise.

Finally, start : SN → SNsur selecting the starting mode for u ∈ SN is defined as

start(u) =


u if u ∈ SNsur ,

m where
(
CVNsur

(m)
)
(u)

is defined,

init otherwise.

The strategy attains the APPC value V ∗N since it only simulates the strategy CVNsur

by unwrapping the corresponding partial strategies.

The following property of the strategy CVN is crucial for the correctness of our
approach to Problem 4.

Proposition 4. For every (s, q) ∈ SN , it holds that

lim
k→∞

Pr
N ,CVN
(s,q) ({ρ | penP(ρ→]k)

k
≤ V ∗N }) = 1,

where penP(ρ→]k) denotes the cumulative penalty gained in the first k surveillance
cycles of a run ρ ∈ RunN ((s, q)). Hence, for every ε > 0, there exists j(ε) ∈ N
such that if the strategy CVN is applied from a state (s, q) ∈ SN for at least j(ε)
surveillance cycles, then the average expected cumulative penalty per surveillance
cycle in these surveillance cycles is at most V ∗N + ε with probability at least 1− ε.

Proof. In [CH11] the authors prove that a strategy solving the ACPS problem for
an MDP satisfies a property analogous to the one in the proposition. Especially,
for the strategy CVNsur

for the reduced MDP Nsur, it holds that for any state
(s, q) ∈ SNsur

lim
k→∞

Pr
Nsur,CVNsur

(s,q) ({ρ |
penNsur

(ρ→k)

k
≤ V ∗Nsur

}) = 1,

where penNsur
(ρ→k) denotes the cumulative penalty gained in the first n stages

of a run ρ ∈ RunNsur((s, q)). The proposition then follows directly from the
construction of the strategy CVN from the strategy CVNsur

.
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Almost-sure acceptance in an MAEC

Here we design a strategy for an MAEC N ∈ MAEC(P) that guarantees almost-
sure satisfaction of the acceptance condition Acc of Aφ. Let (E,F ) be a pair in
Acc such that N is accepting with respect to (E,F ), i.e., LP(SN ) ∩ E = ∅ and

LP(SN ) ∩ F 6= ∅. There exists a stationary strategy CφN for N under which a
state with label in F is reached with probability 1 regardless of the starting state,
i.e.,

Pr
N ,CφN
(s,q) (FF ) = 1 (3.22)

for every (s, q) ∈ SN . The existence of such a strategy follows from the fact

that N is an EC [BK08]. Moreover, we construct CφN to minimize the expected
cumulative penalty before reaching a state in SN ∩ S × F .

The strategy CφN is found as follows. LetN ′ be an MDP that is created fromN
by adding a new state t and a new action αF . From every state (s, q) ∈ SN ∩S×F ,
we define a new transition under αF to t with probability 1 and penalty 0. Let
CSSP be a stationary optimal strategy for the SSP problem for N ′ and t as the
terminal state. For a state (s, q) ∈ SN , we define CφN ((s, q)) = CSSP ((s, q)) if

the state (s, q) does not have a label in F , otherwise CφN ((s, q)) = α for some
α ∈ ActN ((s, q)).

Proposition 5. The strategy CφN for N resulting from the above algorithm
almost-surely reaches the set SN ∩S ×F and minimizes the expected cumulative
penalty before reaching the set, regardless of the initial state.

Proof. It follows directly from the fact that CSSP optimally solves the SSP prob-
lem for the MDP N ′ and t.

Optimal strategy for the product

Finally, we are ready to construct the strategy CP for the product P that projects
to an optimal solution for M.

First, starting from the initial state sP init, CP applies the strategy C0 until a
state of an MAEC in the set maec∗ is reached. Let N ∈ maec∗ denote the MAEC
and let (E,F ) ∈ Acc be a pair from the accepting condition of Aφ such that N is
accepting with respect to (E,F ).

Now, the strategy CP starts to play the rounds. Each round consists of two
phases. First, play the strategy CφN until a state with label in F is reached. Let

us denote ki the number of steps we play CφN in i-th round. The second phase
applies the strategy CVN until the number of completed surveillance cycles in the
second phase of the current round is li. The number li is any natural number for
which

li ≥ max{j(1
i ), i · ki · penPmax},
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where j(1
i ) is from Proposition 4 and penPmax is the maximum value of the

penalties penP . After applying the strategy CVN for li surveillance cycles, we
proceed to the next round i+ 1.

Theorem 4. The strategy CP almost-surely satisfies the accepting condition Acc
of Aφ and at the same time, CP minimizes the APPC value VP,CP (sP init) among
all strategies for P almost-surely satisfying Acc.

Proof. From Proposition 2 it follows that when applying the strategy C0 from the
initial state sP init, the set maec∗ is reached with probability 1.

Assume that P enters MAEC N ∈ maec∗ that is accepting with respect to a
pair (E,F ) ∈ Acc. Let i be the current round of CP and εi = 1

i . According to
Proposition 5, a state with a label in F is almost-surely reached. In addition, using
Proposition 4, the average expected cumulative penalty per surveillance cycle in
the i-th round is at most

ki · penNmax + li(V
∗
N + εi)

li
=

(ki + li)V
∗
N + ki · penNmax − kiV ∗N + liεi

ki + li

= V ∗N + εi +
ki · penNmax

li

≤ V ∗N + εi +
1

i
(li ≥ i · ki · penNmax)

= V ∗N +
2

i

with probability at least 1− 1
i . Therefore, in the limit, in the MAEC N , we both

satisfy the LTL specification and reach the optimal APPC value with probability
1. Together with the fact that maec∗ and C0 satisfy the condition in Equation 3.21,
we have that CP is an optimal strategy for P.

Complexity

The size of a Rabin automaton for an LTL formula φ is in the worst case doubly
exponential in the size of the set AP . However, studies such as [KB06] show that
in practice, for many LTL formulas, automata are much smaller and manageable.

Once the product P is built, we compute the set MAEC(P) by running |Acc|-
times an algorithm for MEC decomposition, which is polynomial in the size of P.
The size of the set MAEC(P) is in the worst case |Acc| · |SP |. For each MAEC N ,
we compute its reduction Nsur using Algorithm 4 in time O(|SN | · |ActN |O(|SN |)).
The optimal APPC value V ∗N and an optimal finite-memory strategy CVN are then
found in time polynomial in the size of the reduced MDP.

The algorithm for finding the strategy C0 and the optimal set maec∗ are again
polynomial in the size of P. Similarly, computing a stationary strategy CφN for
an MAEC N ∈ maec∗ is polynomial in the size of N .
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Usability

As was proved above, the presented solution to Problem 4 is correct and com-
plete. However, the resulting optimal strategy CP for P, and hence the projected
strategy C for M as well, is not a finite-memory strategy in general. The reason
is that in the second phase of every round i, the strategy CVN is applied for li
surveillance cycles and li is generally growing with i.

This, however, does not prevent the solution to be effectively used. The follow-
ing simple rule can be applied to avoid performing all li ≥ max{i·ki·penPmax, j(

1
i )}

surveillance cycles in every round i. When the computation is in the second phase
of round i and the product is in an MAEC N ∈ maec∗, after completion of ev-
ery surveillance cycle, we can check whether the average cumulative penalty per
surveillance cycle in round i is at most V ∗N + 2

i . If yes, we can proceed to the
next round i + 1, otherwise continue with the second phase of round i. As the
simulation results in Section 3.3.4 show, the use of this simple rule dramatically
decreases the number of performed surveillance cycles in almost every round.

On the other hand, the complexity of the resulting strategy C for M can be
reduced from non-finite-memory to finite-memory in the following case. Assume
that for every N ∈ maec∗, the optimal APPC strategy CVN leads to an EC that
contains a state from F , where N is accepting with respect to the pair (E,F ) ∈
Acc. In this case, the optimal strategy CP can be defined as a finite-memory
strategy that first applies the strategy C0 to reach a state of an MAECN ∈ maec∗,
and from that point on, only applies the strategy CVN .

3.3.4 Case Study

We implemented the solution presented in Section 3.3.3 for a persistent surveil-
lance robotics example. In this section, we report on the simulation results.

Consider a mobile robot moving in a partitioned environment. The motion of
the robot is modeled by the initialized MDP M shown in Figure 3.10a. The set
AP of atomic propositions contains two propositions base and job. As depicted
in Figure 3.10a, state 0 is the base location and state 8 is the job location. At the
job location, the robot performs some work, and at the base, it reports on its job
activity.

The robot’s mission is to visit both base and job location infinitely many times.
In addition, at least one job must be performed after every visit of the base, before
the base is visited again. The corresponding LTL formula is

φ = GF base ∧ GF job ∧ G
(
base⇒ X(¬baseU job)

)
.

While satisfying the formula, we want to minimize the expected average penalty
between two consecutive jobs, i.e., the surveillance proposition asur = job.

In the simulation, we use a Rabin automaton A for the formula that has 5
states and the accepting condition contains 1 pair. The product P of the MDPM
and A has 50 states and one MAEC N of 19 states. The optimal set of MAECs
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(a)

Condition 0 1 2 3 4 5 6 7 8 9

Cinit α – – – – – – – – –

Cp1 before job α β α α α γ γ α α γ

after job α α α α α γ γ α α γ

Cp2 α β α α α γ γ α α γ

(b)

Figure 3.10: (a) Initialized MDP M with initial state 0. The penalties of
applying α, β, γ in any states are 5, 10, 1, respectively, e.g., pen(1, α) = 5.
(b) Definitions of strategies Cinit, Cp1, Cp2 for M, the projections of strategies

C0, C
φ
N , CVN for P, respectively. The condition “before job” means that the

corresponding prescription is used if the job location has not yet been visited
since the last visit of the base. Similarly, the prescription with condition “after
job” is used if the job location was visited at least once since the last visit of the
base.

maec∗ = {N}. The optimal APPC value V ∗N = 40.5. In Figure 3.10b, we list

the projections of strategies C0, C
φ
N , CVN for P to strategies Cinit, Cp1, Cp2 for M,

respectively. The optimal strategy C for M is then defined as follows. Starting
from the initial state 0, apply strategy Cinit until a state is reached, where Cinit is
no longer defined. Start round number 1. In i-th round, proceed as follows. In
the first phase of the round, apply strategy Cp1 until the base is reached and then
for one more step (the product P has to reach a state from the Rabin pair). Let
ki denote the number of steps in the first phase of round i. In the second phase,
use strategy Cp2 for li = max{i · ki · 10, j(1

i )} surveillance cycles, i.e., until the
number of jobs performed by the robot is li. We also use the rule described in
Section 3.3.3 to shorten the second phase, if possible.

Let us summarize the statistical results we obtained for 5 executions of the
strategy C for M, each of 100 rounds. The number ki of steps in the first phase
of a round i > 1 was always 5 because in such case, the first phase starts at
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the job location and the strategy Cp1 needs to be applied for exactly 4 steps to
reach the base. Therefore, in every round i > 1, the number li is at least 50 · i,
e.g., in round 100, li ≥ 5000. However, using the rule described in Section 3.3.3,
the average number of jobs per round was 130 and the median was only 14. In
particular, the number was not increasing with the round. On the contrary, it
appears to be independent from the history of the execution. In addition, at most
2 rounds in each of the executions finished only at the point, when the number of
jobs performed by the robot in the second phase reached li. The average APPC
value attained after 100 rounds was 40.56.

In contrast to our solution, the algorithm proposed in [DSBR11] does not find
an optimal strategy forM. Regardless of the initialization of the algorithm, it al-
ways results in a sub-optimal strategy, namely the strategy Cp1 from Figure 3.10b
that has APPC value 50.5.

3.3.5 Conclusion

In this section, we focused on the problem of designing a control strategy for
an MDP to guarantee satisfaction of an LTL formula with surveillance task, and
at the same time, to minimize the expected average cumulative penalty between
visits of surveillance states. This problem was previously addressed in [DSBR11],
where the authors propose a sub-optimal solution based on dynamic programming.
In contrast to this work, we exploit recent results from theoretical computer sci-
ence, namely game theory and probabilistic model checking, to provide an optimal
solution to this control problem.
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Chapter 4

Control for Dynamic Systems

In this chapter, instead of focusing on control of finite discrete models, we consider
the more general problem of LTL control for infinite dynamic systems. The com-
plexity of dynamic systems vary depending on whether continuous- or discrete-
time is considered and depending on the form of the corresponding differential
or difference equation, respectively. As the use of formal methods might lead to
increased computational complexity, in this chapter we focus on discrete-time sys-
tems with linear dynamics and stochastic uncertainty. While linear dynamics is
suitable to describe many real systems, it is simple enough to analyze. Motivated
by the hierarchical approach, we design an iterative abstraction-refinement algo-
rithm to compute the set of all initial states from which the a given LTL formula
can be satisfied with probability 1 and construct the corresponding strategies.

We start with a motivation for the considered problem and follow with the
formal problem formulation. The proposed solution is presented next, including
illustrative examples. Finally, the solution is demonstrated on a case study.

4.1 Linear Stochastic Systems

4.1.1 Motivation

In this work, we focus on the problem of finding the set of all initial states of a
linear stochastic system from which a given constraint can be satisfied, and syn-
thesizing the corresponding witness control strategies. In particular, we consider
properties expressed as formulas of GR(1) fragment of LTL that offers polyno-
mial computational complexity as compared to the doubly exponential one of
general LTL, while being expressive enough to describe most of the usually con-
sidered temporal properties, see Section 2.2. We require the formula to be sat-
isfied almost-surely, i.e., with probability 1. The almost-sure satisfaction is the
strongest probability guarantee one can achieve while accounting for the stochas-
ticity of the dynamics.

In our proposed approach, we iteratively construct and refine a discrete ab-

85



4.1. LINEAR STOCHASTIC SYSTEMS

straction of the system and solve the synthesis problem for the abstract model.
The discrete model considered in this work is a 21/2-player game introduced in
Section 2.3.3. Every iteration of our algorithm produces a partial solution given
as a partition of the state space into three categories. The first is a set of sat-
isfying initial states together with corresponding witness strategies. The second
is a set of non-satisfying initial states, i.e., those from which the system cannot
be controlled to satisfy the specification with probability 1. Finally, some parts
of the state space may remain undecided due to coarse abstraction. As the ab-
straction gets more precise, more states are being decided with every iteration of
the algorithm. The designed solution is partially correct. That means, we guar-
antee soundness, i.e., almost sure satisfaction of the formula by all controlled
trajectories starting in the satisfying initial set and non-existence of a satisfying
control strategy for non-satisfying initial states. On the other hand, completeness
is not ensured. If a weaker abstraction model, such as 2 player games, was used,
there would be no soundness guarantee on the non-satisfying initial states and no
completeness guarantees. We provide a practical implementation of the algorithm
that ends after a predefined number of iterations.

The main novelty of our work is the abstraction-refinement of a dynamic sys-
tem using a 21/2-player game. While abstraction-refinement exists for discrete
systems such as non-deterministic and probabilistic systems [HJM03, CCD14,
KKNP10, CHJM05], and some classes of hybrid systems [HNP+11, NO14], to the
best of our knowledge, the approach that we present in this paper is the first at-
tempt to construct abstraction-refinement of stochastic systems with continuous
state and control spaces in the form of 21/2-player games. The game theoretic
solutions are necessary to determine what needs to be refined, and the dynamics
of the linear-stochastic systems determine the refinement steps. Thus both game
theoretic aspects and the dynamics of the system play a crucial role in the refine-
ment step, see Remark 6. Also, the almost-sure analysis allows us to effectively
build the game using only polytopic operators and thus avoiding the expensive
and often approximative computation of integrals.

This paper is closely related to [YTv+12, GLB12, LAB12, ADDB11, WTM12b].
Our computation of the abstraction is inspired from [YTv+12], which, however,
does not consider stochastic dynamics and does not perform refinement. The lat-
ter issue is addressed in [GLB12] for non-stochastic dynamics and specifications
with finite-time semantics in the form of syntactically co-safe LTL formulas. The
exact problem that we formulate in this paper was also considered in [LAB12], but
for finite-time specifications in the form of probabilistic Computation Tree Logic
(PCTL) formulas and for the particular case when the control space is finite. Also,
in [LAB12], the abstraction is constructed in the form of an interval-valued MDP,
which is less expressive than the game considered here. An uncontrolled version
of the abstraction problem for a stochastic system was considered in [ADDB11],
where the finite system was in form of a Markov set chain. In [WTM12b], the
authors consider the problem of controlling uncertain MDPs from LTL specifi-
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cation. When restricted to almost sure satisfaction, uncertain MDPs have the
same expressivity as the games considered here. To obtain a control strategy, the
authors of [WTM12b] use dynamic programming (value iteration), as opposed to
games.

The results presented in this section are based on our results in [SKC+15]. The
rest of the section is organized as follows. We formulate the problem and outline
the approach in Section 4.1.2. The abstraction, game, and refinement algorithms
are presented in Section 4.1.3. Finally, in Section 4.1.4, we present a case study
and simulation results.

4.1.2 Problem Formulation

In this work, we assume the system is modeled as a linear stochastic system L
described with an equation of the form

L : xt+1 = Axt +But + wt,

and a set of atomic propositions AP is given as a finite set of linear predicates
over its state space X , see Definition 12.

Problem 5. Given
• a linear stochastic system L,
• a finite set of atomic propositions AP ,
• a GR(1) formula φ over alphabet AP ,

find
(i) the set Xinit ⊆ X of all states x ∈ X such that there exists a control strategy

Cx : RunLfin(x)→ U that satisfies φ with probability 1,
(ii) the corresponding strategies Cx for x ∈ Xinit.

The solution we propose for Problem 5 can be summarized as follows. First,
we abstract the linear stochastic system L using a 21/2-player game based on the
partition of the state space X given by linear predicates Π. The game is built
only using polytopic operations on the state space and control space. We analyze
the game and identify those partition elements of the state space X that provably
belong to the solution set Xinit, as well as those that do not contain any state
from Xinit. The remaining parts of the state space still have the potential to
contribute to the set Xinit but are not decided yet due to coarse abstraction. In
the next step, the partition of state space X is refined using deep analysis of the
constructed game. Given the new partition, we build a new game and repeat the
analysis. The approach can be graphically represented as shown in Figure 4.1.

We prove that the result of every iteration is a partial solution to Problem 5.
In other words, the computed set of satisfying initial states as well as the set of
non-satisfying initial states are correct. Moreover, they are improved or main-
tained with every iteration as the abstraction gets more precise. This allows us
to efficiently use the proposed algorithm for a fixed number of iterations. Finally,
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game analysis

game

formula

part of Xinit
and of X\Xinit

winning and losing states

partition of X

refinement

abstraction

system predicates

linear

Figure 4.1: Graphical representation of the proposed solution to Problem 4.1.2.

we prove that if the algorithm terminates then the result is indeed the solution to
Problem 5.

The main difficulty of the approach is the abstraction-refinement of 21/2-player
game. Abstraction-refinement has been considered for discrete systems [KKNP10,
HJM03, CCD14, CHJM05], and also for some classes of hybrid systems [HNP+11,
NO14]. However, in all of these approaches, even if the original system is consid-
ered to be probabilistic, the distributions are assumed to be discrete and given,
and are not abstracted away during the refinement. The key challenge is the exten-
sion of abstraction-refinement approach to continuous stochastic systems, where
the transition probabilities in the abstract discrete model need to be abstracted.
We show that by exploiting the nature of the considered dynamic systems we can
develop an abstraction-refinement approach for our problem, see Remark 6.

4.1.3 Problem Solution

In this section, we describe the proposed solution in detail and present necessary
proofs. We start with the abstraction procedure that consists of two steps. The
linear stochastic system L is first abstracted using a non-deterministic transition
system which is then extended to a 21/2-player game. The game analysis sec-
tion then describes how to identify parts of the solution to Problem 4.1.2. The
procedure for refinement is presented last.

Recall the set Xout defined in Equation 2.5 that contains all states outside
of the state space X that can be reached within one step in system L. Note
that Xout is generally not a polytope, but it can be represented as a finite set
of polytopes {Xiout}iout∈Iout , or {Xiout} for short. In the following sections, we use
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Table 4.1: Definitions of polytopic operators Post (posterior), Pre (predecessor),
PreR (robust predecessor), PreP (precise predecessor), Attr (attractor) and AttrR
(robust attractor), where X ′ ⊆ X ,U ′ ⊆ U are polytopes, and {Xj}j∈J is a set
of polytopes in X . The algorithms to compute all the operators are listed in
Appendix C.

Post(X ′,U ′) = {x ∈ RN | ∃x′ ∈ X ′,∃u ∈ U ′, ∃w ∈ W : x = Ax′ +Bu+ w}

Pre(X ′,U ′, {Xj}j∈J) = {x ∈ X ′ | ∃u ∈ U ′ : Post(x, u) ∩
⋃
j∈J
Xj is non-empty}

PreR(X ′,U ′, {Xj}j∈J) = {x ∈ X ′ | ∃u ∈ U ′ : Post(x, u) ⊆
⋃
j∈J
Xj}

PreP(X ′,U ′, {Xj}j∈J) = {x ∈ X ′ | ∃u ∈ U ′ : Post(x, u) ⊆
⋃
j∈J
Xj and

∀j ∈ J : Post(x, u) ∩ Xj is non-empty}

Attr(X ′,U ′, {Xj}j∈J) = {x ∈ X ′ | ∀u ∈ U ′ : Post(x, u) ∩
⋃
j∈J
Xj is non-empty}

AttrR(X ′,U ′, {Xj}j∈J) = {x ∈ X ′ | ∀u ∈ U ′ : Post(x, u) ⊆
⋃
j∈J
Xj}

various polytopic operators to analyze the dynamic system. All these operators
are formally defined in Table 4.1 and their computation is described in detail in
Appendix C.

Abstraction

The abstraction consists of two steps. First, the linear stochastic system is ab-
stracted using a non-deterministic transition system which is then extended to a
21/2-player game.

Definition 22 (NTS). A non-deterministic transition system (NTS) is a tuple
N = (S,Act, T,AP ,L), where S is a non-empty finite set of states, Act is a non-
empty finite set of actions, and T : S×Act→ 2S is a non-deterministic transition
function, AP is a non-empty finite set of atomic propositions and L : S → 2AP is
a labeling function.

In order to build an NTS abstraction for L, we assume we are given a partition
{Xi}i∈I , or {Xi} for short, of the state space X . Initially, the partition is given by
the set of linear predicates AP , i.e., it is the partition given by the equivalence
relation ∼AP defined as

x ∼AP x′ ⇐⇒ ∀(a : cx ≤ d) ∈ AP :
(
cx ≤ d ⇔ cx′ ≤ d

)
.

In the later iterations of the algorithm, the partition is given by the refinement
procedure. The construction below builds on the approach from [YTv+12].

We use N{Xi} = (SN , ActN , TN , AP ,LN ) to denote the NTS corresponding to
partition {Xi} defined as follows. The states of N{Xi} are given by the partition
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of the state space X and the outer part Xout, i.e., SN = {Xi} ∪ {Xiout}. Let
Xi ∈ {Xi} ⊂ SN be a state of the NTS, a polytope in X . We use ∼i to denote the
equivalence relation on U such that u ∼i u′ if for every state Xj ∈ {Xi} ∪ {Xiout},
it holds that Post(Xi, u) ∩ Xj is non-empty if and only if Post(Xi, u′) ∩ Xj is
non-empty. Intuitively, two control inputs are equivalent with respect to Xi, if
from Xi the system L can transit to the same set of partition elements of X and
Xout. The partition U/ ∼i is then the set of all actions of the NTS N{Xi} that are

allowed in state Xi. We use UJi to denote the union of those partition elements
from U/ ∼i that contain control inputs that lead the system from Xi to polytopes
Xj , j ∈ J ⊆ I ∪ Iout, i.e.,

UJi = {u ∈ U |∀j ∈ J : Post(Xi, u) ∩ Xj is non-empty and

∀j 6∈ J : Post(Xi, u) ∩ Xj is empty}. (4.1)

The set UJi can be computed using only polytopic computations as described in
Appendix C.1. For a state Xi ∈ {Xi} ⊂ SN and action UJi′ ∈ ActN , we let

TN (Xi,UJi′ ) =

{
{Xj | j ∈ J} if i = i′,

∅ otherwise.

For states Xiout ∈ {Xiout} ⊂ SN , no actions or transitions are defined. Finally, the
labeling function LN for the NTS N{Xi} is defined as

LN (Xi) = {(a : cx ≤ d) ∈ AP | ∀x ∈ Xi : cx ≤ d}. (4.2)

Since the NTS does not capture the probabilistic aspect of the linear stochastic
system, we build a 21/2-player game on top of the NTS. Let Xi be a polytope
within the state space X of L, a state of N{Xi}. When L is in a particular

state x ∈ Xi and a control input u ∈ UJi is to be applied, we can compute the
probability distribution over the set {Xj}j∈J that determines the probability of
the next state of L being in Xj , j ∈ J , using the distribution of the random vector
for uncertainty. The evolution of the system can thus be seen as a game, where
Player 1 acts in states Xi ∈ SN of the NTS and chooses actions from ActN ,
and Player 2 determines the exact state within the polytope Xi and thus chooses
the probability distribution according to which a transition in L is made. This
intuitive game construction implies that Player 2 has a possibly infinite number of
actions. On the other hand, in Problem 5 we are interested in satisfying the GR(1)
specification with probability 1 and in the theory of finite discrete probabilistic
models, it is a well-studied phenomenon that in almost-sure analysis, the exact
probabilities in admissible probability distributions of the model are not relevant.
It is only important to know supports of such distributions, see e.g., [BK08].
That means that in our case we do not need to consider all possible probability
distributions as actions for Player 2, but it is enough to consider that Player
2 chooses support for the probability distribution that will be used to make a
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transition. For a polytope Xi ∈ SN and UJi ∈ ActN , we use Supp(Xi,UJi ) to
denote the set of all subsets J ′ ⊆ J for which there exist x ∈ Xi, u ∈ UJi such
that the next state x′ = Ax + Bu + w of L belongs to Xj , j ∈ J ′ with non-zero
probability and with zero probability to Xj , j 6∈ J ′, i.e.,

Supp(Xi,UJi ) = {J ′ ⊆ J |PreP(Xi,UJi , {Xj}j∈J ′)
is non-empty}, (4.3)

where PreP is the precise predecessor operator from Table 4.1.

Given the NTS N{Xi}, the 21/2-player game G{Xi} = (S1 ∪S2, Act, P,AP ,L) is
defined as follows. Player 1 states S1 = {Xi} ∪ {Xiout} are the states SN of the
NTS and Player 1 actions are the actions ActN of N{Xi}. Player 2 states are given

by the choice of an action in a Player 1 state, i.e., S2 = {Xi}×{UJi }. The Player
2 actions available in a state (Xi,UJi ) are the elements of the set Supp(Xi,UJi )
defined in Equation 4.3. For Player 1, the transition probability function P defines
non-zero probability transitions only for triples of the form Xi,UJi , (Xi,UJi ) and
for such it holds P (Xi,UJi )((Xi,UJi )) = 1. For Player 2, the function δ defines the
following transitions:

P
(
(Xi,UJi ), J ′

)(
Xj
)

=


1
|J ′| if J ′ ∈ Supp(Xi,UJi )

and j ∈ J ′,
0 otherwise.

The definition reflects the fact that once Player 2 chooses the support, the ex-
act transition probabilities are irrelevant and without loss of generality, we can
consider them to be uniform. For a Player 1 state Xi, the labeling function
L(Xi) = LN (Xi) is defined in the same way as in Equation 4.2. For Player 2
states, the labeling function always returns an empty set.

Example 6. Let L be a linear stochastic system of the form given in Definition 12,
where

A =

(
1 0
0 1

)
, B =

(
1 0
0 1

)
,

the state space is X = {x ∈ R2 | 0 ≤ x(1) ≤ 4, 0 ≤ x(2) ≤ 2}, the control space
is U = {u ∈ R2 | −1 ≤ u(1), u(2) ≤ 1}, and the random vector takes values in
polytopeW = {w ∈ R2 | −0.1 ≤ w(1), w(2) ≤ 0.1}. Let AP contain a single linear
predicate a : x(1) ≤ 2. In Figure 4.2a, polytopes X1 and X2 form the partition
of X given by AP , and polytopes X3,X4,X5,X6 form the rest of the one step
reachable set of system L, i.e., Xout. The game G{Xi} given by this partition has
6 states and 18 actions. In Figure 4.2b, we visualize part of the transition function

as follows. In Player 1 state X1, if Player 1 chooses, e.g., action U{1,2,5}1 that leads

from X1 to polytopes X1,X2,X5, the game is in Player 2 state (X1,U{1,2,5}1 ) with
probability 1. Actions of Player 2 are the available supports of the action over
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(a)

Player 1

X1

X2X1 X5

...

...

(X1,U
{1,2,5}
1 ) (X1,U

{1,2,3,5}
1 )

Player 1

Player 2

(b)

Figure 4.2: (a) Partition of state space X of system L in Example 6 given by
linear predicates in AP . Polytopes X3, . . . ,X6 form the set Xout. (b) Part of the
transition function of the game G{Xi} constructed in Example 6.

the set {X1,X2,X5}, which are in this case all non-empty subsets. If Player 2
chooses, e.g., support {X1,X2}, the game is in Player 1 state X1 or X2 with equal
probability 0.5.

The following proposition proves that the game G{Xi} simulates the linear
stochastic system L.

Proposition 6. Let ρ be a run of the linear stochastic system L. Then there
exists a play ρ′ of the game G{Xi} such that ρ(n) ∈ ρ′(2n− 1) for every n ≥ 1.

Proof. The play ρ′ is defined as follows. The states ρ′(2n − 1) = Xi such that
ρ(n) ∈ Xi. The states ρ′(2n) = (Xi,UJi ) such that there exist u ∈ UJi , w ∈ W for
which ρ(n+ 1) = Aρ(n) +Bu+ w.

On the other hand, since G{Xi} is only an abstraction of the system L, it may
contain plays that do not correspond to any trace of the system.

Game analysis

Let G{Xi} be the 21/2-player game constructed for the linear stochastic system L
and partition {Xi} of its state space using the procedure from above. In this
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section, we identify partition elements from {Xi} which are part of the solution
set of initial states Xinit as well as those that do not contain any satisfying initial
states from X .

First, we compute the almost-sure winning set Syes in game G{Xi} with respect
to the GR(1) formula φ from Problem 5, i.e.,

Syes = AlmostG{Xi}(φ). (4.4)

We proceed as follows. Let A = (Q, 2AP , δA, q0, (E,F )) be a deterministic ω-
automaton with Büchi implication acceptance condition for the GR(1) formula φ
constructed as described in Section 2.2.3. We consider the 21/2-player game

P{Xi} = (SP1 ∪ SP2 , Act, PP , AP ,LP)

that is the synchronous product of G{Xi} and A, where SP1 = S1×Q, SP2 = S2×A,

and for every (Xi, q) ∈ SP1 and UJi ∈ Act we have

PP
(
(Xi, q),UJi

)(
(Xi,UJi ), q′)

)
=


P
(
Xi,UJi

)(
(Xi,UJi )

)
if δA(q, L(Xi)) = q′,

0

otherwise,

and similarly, for all ((Xi,UJi ), q) ∈ SP2 and J ′ ∈ Act we have

PP
(
((Xi,UJi ), q), J ′

)(
(Xj , q′)

)
=


P
(
(Xi,UJi ), J ′

)(
Xj
)

if q = q′,

0

otherwise.

When constructing the product game, we only consider those states from S1 ×Q
and S2 ×Q that are reachable from some (Xi, q0), where q0 is the initial state of
the automaton A. Finally, we consider Büchi implication acceptance condition
(EP , FP), where EP = (SP1 ∪ SP2 )× E and FP = (SP1 ∪ SP2 )× F .

Proposition 7. The set Syes defined in Equation 4.4 consists of all Xi ∈ S1 for
which (Xi, q0) ∈ SPyes, where the set

SPyes = AlmostP{Xi}((EP , FP)) (4.5)

can be computed using algorithm in Appendix B.

Proof. Follows directly from the construction of the game P{Xi} above and the
results of [CdAH11].

The next proposition proves that the polytopes from Syes are part of the so-
lution to Problem 5.
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Proposition 8. For every Xi ∈ Syes, there exists a finite-memory strategy CXi for
L such that every run of L under strategy CXi that starts in any x ∈ Xi satisfies
the GR(1) formula φ with probability 1.

Proof. Let Xi ∈ Syes and let CG{Xi} be a finite-memory almost-sure winning
strategy for Player 1 from state Xi in game G{Xi}, see Section 2.3.3. Let CXi
be a strategy for L defined as follows. For a finite run σ ∈ RunLfin(Xi), let
CXi(σ) = u, where u ∈ CG{Xi}(σG{Xi}), where σG{Xi} is finite play of the game
such that σ(n) ∈ σG{Xi}(2n) for every 1 ≤ n ≤ |σ|. Since CG{Xi} for game G{Xi} is
almost-sure winning from state Xi with respect to φ, i.e., every play of the game
that starts in Xi almost-surely satisfies φ, the analogous property holds for CXi
and runs in L.

Next, we consider the set Sno of Player 1 states in game G{Xi} defined as
follows:

Sno = S1 \ Almost
Gcoop
{Xi}(φ). (4.6)

Intuitively, Sno is the set of states, where even if Player 2 cooperates with Player 1,
φ can still not be satisfied with probability 1.

Proposition 9. The set Sno defined in Equation 4.6 consists of all Xi ∈ S1 for
which (Xi, q0) ∈ SPno, where

SPno = SP1 \ Almost
Pcoop
{Xi}((EP , FP)). (4.7)

Proof. Follows directly from the construction of the product game P{Xi}.

We prove that no state x ∈ Xi for Xi ∈ Sno is part of the solution to Problem 5.

Proposition 10. For every Xi ∈ Sno and x ∈ Xi, there does not exist a strategy
Cx for L such that every run of L under Cx starting in x satisfies φ with probability
1.

Proof. Intuitively, from the construction of the game G{Xi}, Player 2 represents
the unknown precise state of the system L within in the abstraction, i.e., he
makes the choice of a state inside each polytope Xi at each step. Therefore, if
φ cannot be almost-surely satisfied from Xi in the game even if the two players
cooperate, in L it translates to the fact that φ cannot be almost-surely satisfied
from any x ∈ Xi even if we consider strategies that can moreover change inside
each Xi arbitrarily at any moment.

Finally, consider the set

S? = S1\(Syes ∪ Sno). (4.8)
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Figure 4.3: Solution of the game in Example 7. The polytopes, i.e., Player 1
states, that belong to sets Syes, Sno, S? are shown in green, white and light blue,
respectively.

These are the polytopes within the state space of L that have not been decided as
satisfying or non-satisfying due to coarse abstraction. Alternatively, from Propo-
sitions 7 and 9, and Equation 4.8, we can define the set S? as the set of all Xi ∈ S1,
for which (Xi, q0) ∈ SP? , where

SP? = SP1 \(SPyes ∪ SPno). (4.9)

Proposition 11. For every Xi ∈ S? it holds that the product game P{Xi} can
be won cooperatively starting from the Player 1 state (Xi, q0). Analogously, for
every (Xi, q) ∈ SP? it holds that the product game P{Xi} can be won cooperatively
starting from (Xi, q).

Proof. The proposition follows directly from Equations 4.8 and 4.9, and Proposi-
tions 7 and 9.

Example 7. Recall the linear stochastic system L from Example 6 and consider
GR(1) formula F¬a over the set AP that requires to eventually reach a state
x ∈ X such that x(1) ≥ 2. The deterministic ω-automaton for the formula has
only two states, q0 and q1. The automaton remains in the initial state q0 until
polytope X2 is visited in L. Then it transits to state q1 and remains there forever.
The Büchi implication condition (E,F ) is E = {q0}, F = {q1}. The solution of
the game G{Xi} constructed in Example 6 with respect to the above formula is
depicted in Figure 4.3.

If the set Sno contains all Player 1 states of the game G{Xi}, the GR(1) formula
φ cannot be satisfied in the system L and our algorithm terminates. If set S? is
empty, the algorithm terminates and returns the union of all polytopes from Syes as
the solution to Problem 5. The corresponding satisfying strategies are synthesized
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as described in the proof of Proposition 8. Otherwise, we continue the algorithm
by computing a refined partition of the state space X as described in the next
section.

Refinement

Refinement is a heuristic that constructs a new partition of X , a subpartition
of {Xi}, that is used in the next iteration of the overall algorithm. We design
two refinement procedures, called positive and negative, that aim to enlarge the
combined volume of polytopes in the set Syes and Sno, respectively, or equivalently,
to reduce the combined volume of polytopes in the set S?. Based on Propositions 7
and 9, both procedures are formulated over the product game P{Xi} and reach

their respective goals through refining polytopes Xi for which (Xi, q) ∈ SP? for
some q ∈ Q.

In this section, we use Jqyes to denote the set of all indices i ∈ I for which
(Xi, q) ∈ SPyes, and Jq? , J

q
no are defined analogously. In the two refinement proce-

dures, every polytope Xi can be partitioned into a set of polytopes in iterative
manner, as (Xi, q) ∈ SP? can hold for multiple q ∈ Q. Therefore, given a partition
of Xi, the refinement of Xi according to a polytope B refers to the partition of Xi
that contains all intersections and differences of elements of the original partition
of Xi and polytope B.

In the positive refinement, we explore the following property of states in SP? . In
Proposition 11, we proved that the product game P{Xi} can be won cooperatively

from every (Xi, q) ∈ SP? . It follows that there exists a Player 1 action UJi and
Player 2 action J ′ such that after their application in (Xi, q), the game is not in
a losing state with probability 1. We can graphically represent this property as
follows:

(Xi, q)
UJi−−→ ((Xi,UJi ), q′)

J ′−→


(Xj1 , q′)

...

(Xjn , q′)

(4.10)

where an arrow a
b−→ represents the uniform probability distribution PP(a, b), and

{j1, . . . , jn} = J ′ ⊆ Jq
′

yes∪Jq
′

? . Note that from the construction of the product game
P{Xi} it follows that q′ is given uniquely over all actions UJi . The following design
ensures that every polytope Xi is refined at least once for every its appearance
(Xi, q) ∈ SP? , q ∈ Q.

Let (Xi, q) ∈ SP? . The positive refinement first refines Xi according to the
robust predecessor

PreR(Xi,U , {Xj}j∈Jq′yes
). (4.11)

That means, we find all states x ∈ Xi for which there exists any control input

under which the system L evolves from x to a state x′ ∈ Xj , j ∈ Jq
′

yes.
Next, the positive refinement considers three cases. First, assume that from

(Xi, q), the two players can cooperatively reach a winning state of the product
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game in two steps with probability 1, and let UJi and J ′ be Player 1 and Player 2
actions, respectively, that accomplish that, i.e., in Equation 4.10, {j1, . . . , jn} =

J ′ ⊆ Jq
′

yes. For every such UJi , J ′, we find an (arbitrary) partition {Uy}y∈Y of the
polytope UJi and we partition Xi according to the robust attractors

AttrR(Xi,Uy, {Xj}j∈Jq′yes
). (4.12)

Intuitively, the above set contains all x ∈ Xi such that under every control input

u ∈ Uy, L evolves from x to a state x′ ∈ Xj , j ∈ Jq
′

yes. Note that the robust
attractor sets partition the robust predecessor set from Equation 4.11, as every
state x that belongs to one of the robust attractor set must lie in the robust
predecessor set as well. In the next iteration of the overall algorithm, the partition
elements given by the robust attractor sets will belong to the set SPyes. In the
second case, assume that the two players can reach a winning state of the product
game cooperatively in two steps, but only with probability 0 < p < 1, while the
probability of reaching a losing state is 0. Let UJi , J ′ be Player 1 and Player 2
actions, respectively, that maximize p, i.e., in Equation 4.10, there exists m < n

such that {j1, . . . , jm} = J ′∩Jq
′

yes, {jm+1, . . . , jn} = J ′∩Jq
′

? and p = m
n is maximal.

Similarly as in the first case, we refine the polytope Xi according to the robust
attractor sets as in Equation 4.12, but we compute the sets with respect to the

set of indices Jq
′

yes ∪ {jm+1, . . . , jn}. Finally, assume that (Xi, q) does not belong
to any of the above two categories. As argued at the beginning of this section,
there still exist Player 1 and Player 2 actions UJi and J ′, respectively, such that in

Equation 4.10, {j1, . . . , jn} = J ′ ⊆ Jq
′

? . Again, we refine the polytope Xi according
to the robust attractor sets as in Equation 4.12, where the sets are computed with

respect to the set of indices Jq
′

? .

Example 8. We demonstrate a part of the the positive refinement for the game
in Example 7. Consider polytope X1 ∈ S?. It follows from the form of the
ω-automaton in Example 7 that X1 appears in SP? only in pair with q0, i.e.,
(X1, q0) ∈ SP? . Note that for state (X1, q0), every successor state is of the form
((X1,UJ1 ), q0), i.e., q′ = q0. First, polytope X1 is refined with respect to the
robust predecessor

PreR(X1,U , {X2}),
since Jq0yes = {X2} because (X2, q0) ∈ SPyes is a winning state of the product game.
The robust predecessor set is depicted in Figure 4.4a in cyan. Next, we decide
which of the three cases described in the positive refinement procedure above

applies to state (X1, q0). Consider for example Player 1 action U{1,2,5}1 and Player
2 action {2}, as shown in Figure 4.2b. It holds that

(X1, q0)
U{1,2,5}1−−−−−→ ((X1,U{1,2,5}1 ), q0)

{2}−−→ (X2, q0),

and (X2, q0) ∈ SPyes is a winning state of the product game. Therefore, the state
(X1, q0) is of the first type. To further refine polytope X1, we first partition the
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(a) (b)

Figure 4.4: (a) Part of the positive refinement for the system in Example 8.
Polytope X1 is first refined according to the robust predecessor as in Equation 4.11,
the robust predecessor is shown in cyan. Next, we consider the polytope of control

inputs U{1,2,5}1 and its partition as depicted in (b). The robust predecessor of U3

is then shown in magenta.

polytope

U{1,2,5}1 = {u ∈ U | 0.1 ≤ u(1), u(2) ≤ 1},

e.g., into 4 parts as shown in Figure 4.4b. The robust attractor

AttrR(X1,U3, {X2})

for one of the polytopes U3 is depicted in magenta in Figure 4.4a. This polytope
will be recognized as a satisfying initial polytope in the next iteration, since start-
ing in any x within the robust predecessor, system L as defined in Example 6
evolves from x under every control input from U3 to polytope X2.

In the negative refinement, we consider all Player 1 states (Xi, q) ∈ SP? such
that if Player 2 does not cooperate, but rather plays against Player 1, the game is
lost with non-zero probability. In other words, for every Player 1 UJi , there exists
a Player 2 action J ′ such that in Equation 4.10, there exists an index j ∈ J ′ such
that (Xj , q′) ∈ SPno. In this case, we refine polytope Xi according to the attractor
set

Attr(Xi,U , {Xj}j∈Jq′no
).

Intuitively, the attractor set contains all states x ∈ Xi such that by applying any

control input u ∈ U , system L evolves from x to a state in Xj for some j ∈ Jq
′

no

with non-zero probability. In the next iteration of the algorithm, the partition
elements given by the attractor set will belong to the set SPno.

98



CHAPTER 4. CONTROL FOR DYNAMIC SYSTEMS

Remark 6. We remark that both game theoretic aspects as well as the linear
stochastic dynamics play an important role in the refinement step. The game
theoretic results compute the undecided states, and thereby determine what parts
of the state space need to be refined and which actions need to be considered in
the refinement. The linear stochastic dynamics allow us to perform the refinement
itself using polytopic operators.

Properties of the solution

We prove that the algorithm presented in this section provides a partially correct
solution to Problem 5.

For n ∈ N, let Snyes, S
n
no be the sets from Equations 4.4 and 4.6, respec-

tively, computed in the n-th iteration of the algorithm presented above. We use
X nyes,X nno ⊆ X to denote the union of polytopes from Snyes and Snno, respectively.

Theorem 5. For every n ∈ N, it holds that X nyes ⊆ X n+1
yes and X nno ⊆ X n+1

no .

Proof. Follows from Propositions 7 and 9, and the fact that the partition of the
state space X used in n+ 1-th iteration is a subpartition of the one used in n-th
iteration.

Theorem 6. For every n ∈ N, it holds that X nyes ⊆ Xinit and X nno ⊆ X\Xinit.

Proof. Follows directly from Propositions 8 and 10.

Theorem 7. If the algorithm from Sec. 4.1.3 terminates, after n-th iteration,
then Xinit = X nyes is the solution of Problem 5 and the corresponding winning
strategies for every x ∈ Xinit are given by the winning strategies in the 21/2-player
game from the last iteration.

Proof. Follows directly from the condition of the algorithm termination and from
Theorems 5 and 6.

It is important to note that if instead of a 21/2-player game a weaker abstraction
model such as a 2 player game, i.e., the NTS N{Xi}, was used, our approach
would not be sound. Namely, some states of X might be wrongfully identified
as non-satisfying initial states based on behavior that has zero probability in the
original stochastic system. In such a case, even after termination, the resulting
set would only be a subset of Xinit. Therefore, the approach with 2-player games
is not complete. The 21/2-player game is needed to account for both the non-
determinism introduced by the abstraction and for the stochasticity of the system
to be able to recognize (non-satisfying) behavior of zero probability.

Note that there exist linear stochastic systems for which our algorithm does
not terminate, i.e., there does not exist a finite partition of the systems’ state
space over which Problem 5 can be solved for a given GR(1) formula.
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Example 9. Let L be a linear stochastic system of the form given in Equa-
tion 4.1.2, where

A =

(
1 0
0 1

)
, B =

(
1 0
0 1

)
,

state space X = {x ∈ R2 | 0 ≤ x(1), x(2) ≤ 3}, control space U = {u ∈ R2 |
−1.5 ≤ u(1), u(2) ≤ 1.5} and the random vector takes values in polytope W =
{w ∈ R2 | −0.5 ≤ w(1), w(2) ≤ 0.5}. Let AP contain four linear predicates
that partition the state space into a grid of three by three equally sized square
polytopes. Assume that the aim is to eventually reach the polytope Xf , where
1 ≤ x(1), x(2) ≤ 2. In this case, the maximal set Xinit of states from which Xf
can be reached with probability 1 is the whole state space X , as for any x ∈ X ,
there exists exactly one control input u = (1.5, 1.5)−x ∈ U that leads the system
L from x to a state in X5 with probability 1. Since the control input is different
for every x ∈ X , there does not exist any finite state space partition, which could
be used to solve Problem 5.

Complexity analysis

Finally, let us analyze the computational complexity of the designed algorithm.
In the abstraction part, the 21/2-player game G{Xi} requires to first compute the

set of actions for every state Xi, i ∈ I, in time in O(2|I|) using algorithm in
Appendix C.1. For every action UJi , the set of valid supports J ′ ⊆ J is then
computed in time in O(2J), see Appendix C. Overall, the abstraction runs in
time in O(22·|I|). The game is then analyzed using the algorithm described in
Appendix B in time in O(|I|3). Finally, the refinement procedure iteratively
refines every polytope Xi at most |Q| × |{UJi }| times, where {UJi } denotes the set
of all actions of Xi. For every q ∈ Q such that (Xi, q) ∈ SP? , Xi is first refined

using the robust predecessor operator in time exponential in |Jq
′

yes|. Then Xi is
refined |Y | times using the robust attractor operator in polynomial time. Negative
refinement is performed again for every q ∈ Q such that (Xi, q) ∈ SP? , using the
attractor operator in polynomial time. Overall, the refinement runs in time in
O(|Q| · 2|I|).

As the game construction is the most expensive part of the overall algorithm,
the refinement procedure is designed in a way that extends both sets Syes, Sno

as much as possible and thus speed up convergence and minimize the number of
iterations of the overall algorithm.

4.1.4 Case Study

We demonstrate the designed framework on a discrete-time double integrator
dynamics with uncertainties. Let L be a linear stochastic system as defined in
Definition 12, where

A =

(
1 1
0 1

)
, B =

(
0.5
1

)
. (4.13)
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The state space is X = {x ∈ R2 | −5 ≤ x(1) ≤ 5,−3 ≤ x(2) ≤ 3} and the control
space is U = {u ∈ R | −1 ≤ u ≤ 1}. The random vector, or uncertainty, takes
values within polytope W = {w ∈ R2 | −0.1 ≤ w(1), w(2) ≤ 0.1}. The set AP
consists of 4 linear predicates:

a1 :x(1) ≤ −1,

a2 :x(1) ≤ 1,

a3 :x(2) ≤ −1,

a4 :x(2) ≤ 1.

We consider GR(1) formula

F(¬a1 ∧ a2 ∧ ¬a3 ∧ a4)

that requires the system to eventually reach a state, where both variables of the
system have values in interval (−1, 1).

As we consider a reachability property, we can compare our approach to the
two following algorithms. First, the algorithm shown in Algorithm 5 is an exten-
sion of the reachability algorithm for Markov decision processes [BK08] to linear
stochastic systems. Intuitively, the algorithm finds the set Xinit using two fixed-
point computations. The first one computes the set of all states that can reach
the given target polytopes with non-zero probability. As a result, the remaining
states of the state space X have zero probability of reaching the target polytopes.
The second fixed-point computation finds the attractor of this set, i.e., all states
that have non-zero probability, under each control input from U , of ever transit-
ing to a state from which the target polytopes cannot be reached. Finally, the
complement of the attractor is the desired set Xinit.

The second algorithm summarized in Algorithm 6 combines the simple ap-
proach from Algorithm 5 that uses only polytopic operations with the abstraction-
refinement method. In every iteration, we build the non-deterministic transition
system N{Xi}, which is the first step of the abstraction in Section 4.1.3. The
partition {Xi}i∈I is then iteratively refined using the two fixed-point algorithms
as in Algorithm 5.

Note that both Algorithms 5 and 6 operate directly on the linear stochastic
system. Algorithm 5 performs polytopic operations only, and it involves nei-
ther refinement nor building a product with an automaton. In Algorithm 6,
abstraction and its refinement are performed using only polytopic operators and
no product is built. Therefore, both algorithms perform considerably faster than
the abstraction-refinement algorithm from Section 4.1.3, as shown in Table 4.2.
However, they have two serious drawbacks.

Firstly, Algorithm 5 computes the set of satisfying initial states of the system,
but no satisfying strategy. In extreme cases, every state may use a different control
input in order to reach polytopes computed during the fixed-point computations,
as in Example 9. In order to extract a finite satisfying strategy (if there is one),
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Table 4.2: Statistical comparison of the specialized algorithms for reachability
and our approach.

Algorithm 5

1st fixed point: in 7 iterations, in ¡1 sec.

2nd fixed point: in 1 iteration, in ¡1 sec.

Algorithm 6

1st fixed point: in 7 iterations, in 3 min.

1st NTS: 13 states, 27 actions

2nd NTS: 25 states 105 actions

3rd NTS: 45 states 289 actions

4th NTS: 63 states, 524 actions

5th NTS: 77 states, 745 actions

6th NTS: 88 states, 994 actions

7th NTS: 92 states, 1139 actions

2nd fixed point: in 1 iteration, in 2 sec.

Abstraction-refinement from Section 4.1.3

Initial partition: in 3 sec.

game: 13 states, 27 actions

1st iteration: in 7 min.

game: 85 states, 712 actions

2nd iteration: in 19 min.

game: 131 states, 1262 actions

3rd iteration: in 56 min.

game: 250 states, 2724 actions
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Algorithm 5 Simple algorithm for computing the set Xinit ⊆ X of states from
which a set of polytopes {Xj}j∈J in X can be reached with probability 1.

Input: linear stochastic system L, polytopes {Xj}j∈J
Output: Xinit ⊆ X
X>0 ← {Xj}j∈J
while X>0 is not a fixed point do
X>0 ← Pre(X ,U ,X>0)

end while
X=0,attr ← Xout ∪ X\X>0

while X=0,attr is not a fixed point do
X=0,attr ← Attr(X ,U ,X=0,attr)

end while
X=1 ← X\X=0,attr

return X=1

these polytopes have to be partitioned to smaller polytopes so that a fixed input
can be used in all states of the new polytope. This partitioning is exactly the
refinement procedure that our method performs when applied to reachability.
Note that the simpler refinement method in Algorithm 6 that constructs only the
NTS N{Xi} is also not sufficient. While it finds the set of satisfying initial states
of the system, it does not provide the satisfying strategies either. However, in
comparison with Algorithm 5, it can provide at least a partial information on the
properties of satisfying strategies. Namely, it specifies for every polytope of the
resulting partition {Xi} of the state space X which control inputs cannot be used
in any satisfying strategy. As we are interested in reachability property, these are
the control inputs for which the corresponding non-deterministic transition leads
from Xi outside of XXinit. The whole 21/2-player game abstraction presented in
Section 4.1.3 is necessary for ensuring the correctness of the constructed strategy.

Secondly, neither of the two algorithms can be used for more complex prop-
erties than reachability. For more complex formulas, the product of the game
with the automaton for the formula needs to be considered, since a winning strat-
egy may require memory and pure polytopic methods can only provide memo-
ryless strategies. In contrast, our abstraction-refinement approach designed in
Section 4.1.3 works for general GR(1) properties. Moreover, it could easily be
extended to the whole LTL at the cost of a higher complexity.

We implemented all three algorithms in Matlab, on a dual-core Intel i7 proces-
sor with 8 GB of RAM. The results are summarized in Figure 4.5 and Table 4.2.
In Figure 4.5, for Algorithm 5, we first depict the initial partition of X according
to AP , with the polytope we aim to reach in green. The following columns show
the two fixed point sets, in blue and red, respectively. The last column shows the
resulting set Xinit. For Algorithm 6, in the first column, we depict the initial par-
tition of X according to AP and polytopes from Xout, with the polytope we aim
to reach in green. The following columns show the fixed point sets, in blue and
red, respectively, together with the obtained partition. The last column shows
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Algorithm 6 Computing the set Xinit ⊆ X of states from which a set of polytopes
{Xj}j∈J in X can be reached with probability 1, using abstraction to an NTS.

Input: linear stochastic system L, partition {Xi}i∈I of state space X , subset J ⊆ I
Output: Xinit ⊆ X
X>0 ← ∅
X ′>0 ← {Xj}j∈J
while X>0 6= X ′>0 do
X>0 ← X ′>0

construct NTS N{Xi} for current partition
for every state Xi 6⊆ X>0 do

refine Xi according to Pre(Xi,U ,X>0)
X ′>0 ← X ′>0 ∪ Pre(Xi,U ,X>0)

end for
end while
X=0,attr ← Xout ∪ X
X ′=0,attr ← Xout ∪ X\X>0

while X=0,attr 6= X ′=0,attr do
X=0,attr ← X ′=0,attr

construct NTS N{Xi} for current partition
for every state Xi s.t. all actions lead to X=0,attr do

refine Xi according to Attr(Xi,U ,X=0,attr)
X ′=0,attr ← X ′=0,attr ∪Attr(Xi,U ,X=0,attr)

end for
end while
X=1 ← X\X=0,attr

return X=1

the resulting set Xinit. Finally, for the abstraction-refinement from Section 4.1.3,
we depict the results of for the initial partition and the next three iterations,
where polytopes from sets Syes, S?, Sno are shown in green, light blue and white,
respectively.

As can be seen in Table 4.2, the set Xinit was computed fast using Algorithm 5
but it is a single polytope that does not provide any information about the satis-
fying strategies. Algorithm 6 also found fixed point sets for both fixed-point com-
putation rather quickly, and in the same number of iterations as the polytopic
algorithm, but it provides only partial information on the satisfying strategies,
as discussed above. For the abstraction-refinement algorithm, we computed the
initial game and the following three iterations. Unlike for Algorithms 5 and 6,
in every iteration, a satisfying strategy for a state x in the partial solution is
constructed as described in the proof of Proposition 8.

4.1.5 Conclusion

In this section, we considered the problem of computing the set of initial states
of a linear stochastic system such that there exists a control strategy to ensure a
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GR(1) specification over states of the system. The solution is based on iterative
abstraction-refinement using a 21/2-player game. Every iteration of the algorithm
provides a partial solution given as a set of satisfying initial states with the sat-
isfying strategies, and a set of non-satisfying initial states.

While the algorithm guarantees progress and soundness in every iteration, it’s
complexity calls for more efficient implementation. The analyzed case study with
a reachability property indicates that the current design would be too complex to
deal with more complex properties such as persistent surveillance. In our future
work, we aim to design efficient heuristic refinements that minimize the overall
computation time for both reachability and general GR(1).
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Chapter 5

Summary and Future Work

In the last few decades, the rapid evolution of mobile and autonomous robotics
has shown the need for provably correct and robust approaches to design and
control of these systems. Formal methods from computer science offer a great
tool to this end. The goal of this thesis was to design control synthesis algorithms
for chosen problems motivated by path planning for mobile robots that leverage
ideas and techniques from theoretical computer science such as formal verification
and game theory. The problems of interest involve a complex model of the system
as well as a complex temporal objective to be satisfied. We embraced the stan-
dard hierarchical approach to employing formal methods in path planning. The
approach consists of first modeling the complex dynamic system using a discrete
model, then synthesizing a provably correct control strategy for the model using
formal methods and finally mapping the control rules to the original system.

In the first part of the thesis, we assumed that a discrete model of the system
is already given and we focused on the second, synthesis step of the hierarchical
approach. We designed algorithms to synthesize strategies that guarantee satis-
faction of an LTL formula, while at the same time optimize a value function over
(possibly) dynamic and partially observed values interpreted either as rewards or
penalties. Such a combination of optimal and temporal logic control is an intrigu-
ing problem with a potentially high impact in applications such as control of a
mobile robot on a complex mission under tight fuel and time constraints. The
solution combined receding horizon control with techniques from game theory and
automata-based model checking.

In the second part, we considered the more general problem of synthesizing
control for a stochastic dynamic system described using a difference equation. The
objective was to satisfy a complex temporal specification over the state space of
the system. We designed an iterative abstraction-refinement algorithm that builds
an abstraction of the system using a 21/2-player game, solves the game obtaining
a partial solution and then builds a new, more precise abstraction using a deep
analysis of the game. In the abstract phase, the probability 1 analysis allowed us
to effectively construct the game using only polytopic operators and thus avoiding
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expensive and often approximative computation of integrals. Similarly, polytopic
operators are used to perform the refinement, while the deep analysis of the game
specifies what parts of the state space need to be refined and which actions need
to be considered in the process.

All designed algorithms build on the standard as well as recent results from
both computer science and control theory and thus make a step towards inter-
connecting the two areas. In our future work, we primarily aim to follow the
line of research considered in the second part of the thesis, i.e., control of dy-
namic systems with respect to temporal objectives. We believe that in order to
maximize the benefit of the combination of formal and engineering methods, the
integration of the techniques must take place on all three levels of the hierarchical
approach such as in Chapter 4, not only in the synthesis step. From the exper-
iments in Section 4.1.4 it appears that this comes with a great computational
cost. In the future, we aim to investigate the causes of this complexity and design
effective solutions that would allow us to demonstrate the algorithms on real-scale
applications such as autonomous driving.
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Deterministic Rabin Automata Translators. In Proc. of Conference on
Logic for Programming, Artificial Intelligence and Reasoning LPAR,
pages 164–172, 2013.

[BKV10] A. Bhatia, L.E. Kavraki, and M.Y. Vardi. Sampling-based motion
planning with temporal goals. In Proc. of IEEE Conference on
Robotics and Automation ICRA, pages 2689–2696, 2010.

[CB12] I. Cizelj and C. Belta. Probabilistically safe control of noisy Dubins
vehicles. In Proc. of IEEE/RSJ Conference on Intelligent Robots and
Systems IROS, pages 2857–2862, 2012.

[CBRZ01] E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded Model Check-
ing Using Satisfiability Solving. Formal Methods in System Design,
19(1):7–34, 2001.

109



BIBLIOGRAPHY
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Receding Horizon Path Planning with Temporal Logic Constraints.
In Proc. of IEEE Conference on Decision and Control CDC, pages
6749–6754, 2012.
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Appendix B

Solving a 21/2-player Game

Here we present an algorithm to solve the almost-sure winning problem for a
21/2-player game G = (S1 ∪ S2, Act, P,AP ,L) with a Büchi implication condition
(E,F ), where E,F ⊆ S. The optimal solution is a rather involved, quadratic
time algorithm that can be found in [Cha07]. In this work, we use a more intu-
itive, cubic time algorithm presented in Algorithm 7, whose correctness follows
from [CdAH11]. The algorithm is a simple iterative fixed-point algorithm that
uses three types of local predecessor operator over the set of states of the game.

Consider sets X,Y, Z such that Y ⊆ Z ⊆ X ⊆ S. Given a state s ∈ S and
an action α ∈ Act, we denote by Succ(s, α) = Supp(δ(s, α)) the set of possible
successors of the state and the action. We define conditions on state action pairs
as follows:

C1(X) = {(s, α) |Succ(s, α) ⊆ X},
C2(X,Y ) = {(s, α) |Succ(s, α) ⊆ X and Succ(s, α) ∩ Y 6= ∅},

C3(Z,X, Y ) = {(s, α) |(Succ(s, α) ⊆ Z) or

(Succ(s, α) ⊆ X and Succ(s, α) ∩ Y 6= ∅)}.

The first condition ensures that given the state and action the next state is in
U with probability 1, the second condition ensures that the next state is in X
with probability 1 and in Y with positive probability. The third condition is the
disjunction of the first two. The three predecessor operators are defined as the
set of Player 1, or Player 2 states, where there exists, or for all, respectively, ac-
tions, the condition for the predecessor operator is satisfied. The three respective
predecessor operators, namely, Pre1,Pre2, and Pre3 are defined as follows:
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Algorithm 7 Solving 21/2-player game with a Büchi implication condition

Input: game G, Büchi implication condition (E,F )
Output: AlmostG((E,F ))
D = S \ (E ∪ F )
X ← S; Z ← S; Y ← ∅;
do

X ← X
do

Y ← Y
do

Z ← Z
Z ← (F ∩ Pre1(X)) ∪ (E ∩ Pre2(X,Y )) ∪ (D ∩ Pre3(Z,X, Y )

while Z 6= Z
Y ← Z
Z ← S

while Y 6= Y
X ← Y
Y ← ∅

while X 6= X
return X

Pre1(X) ={s ∈ S1 | ∃α ∈ Act. (s, α) ∈ C1(X)} ∪
{s ∈ S2 | ∀α ∈ Act. (s, α) ∈ C1(X)},

Pre2(X,Y ) ={s ∈ S1 | ∃α ∈ Act. (s, α) ∈ C2(X,Y )} ∪
{s ∈ S2 | ∀α ∈ Act. (s, α) ∈ C2(X,Y )},

Pre3(Z,X, Y ) ={s ∈ S1 | ∃α ∈ Act. (s, α) ∈ C3(Z,X, Y )} ∪
{s ∈ S2 | ∀α ∈ Act. (s, α) ∈ C3(Z,X, Y )}.
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Appendix C

Polytopic Operators

In this section, we describe in detail the computation of all polytopic operators
introduced in Section 4.1.3.

C.1 Action Polytopes

First, we describe how to compute the action polytopes UJi for every polytope
Xi ∈ {Xi}i∈I , formally defined in Equation 4.1.

For a polytope X ′ ⊂ RN , we use UXi→X ′ to denote the set of all control inputs
from U under which the system L can evolve from a state in Xi to a state in X ′
with non-zero probability, i.e.,

UXi→X ′ = {u ∈ U |Post(Xi, u) ∩ X ′ is non-empty}. (C.1)

The following proposition states that UXi→X ′ can be computed from the V-
representations of Xi,X ′ and W.

Proposition 12. Let H,K be the matrices from the H-representation of the
following polytope:

{y ∈ RN | ∃x ∈ Xi, ∃w ∈ W : Ax+ y + w ∈ X ′}, (C.2)

which can be computed as the convex hull

hull({vX ′ − (AvXi + vW) | vX ′ ∈ V (X ′), vXi ∈ V (Xi), vW ∈ V (W)}). (C.3)

Then the set UXi→X ′ defined in Equation C.1 is the polytope with the following
H-representation:

UXi→X ′ = {u ∈ U | HBu ≤ K}. (C.4)

Proof. To fact that the set in Equation C.2 is a polytope with the V-representation
given in Equation C.3 can be easily shown as follows. Let y ∈ RN be such that
there exist x ∈ Xi, w ∈ W, x′ ∈ X ′ for which Ax+y+w = x′, i.e., y = x′−(Ax+w).
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C.2. POSTERIOR

By representing x′, x and w as an affine combination of the respective vertices in
V (X ′), V (Xi) and V (W), we obtain the V-representation in Equation C.3. Next,
let H,K be the matrices from the H-representation of the set in Equation C.2.
Then the definition of set UXi→X ′ in Equation C.1 can be written as

UXi→X ′ = {u ∈ U | ∃x ∈ Xi, ∃w ∈ W : Ax+Bu+ w ∈ X ′},

that leads to H-representation in Equation C.4.

Corollary 2. Let J ⊆ I ∪ Iout. The set UJi from Equation 4.1 can be computed
as follows:

UJi =
⋂
j∈J
UXi→Xj\

⋃
j′ 6∈J
UXi→Xj′ . (C.5)

Proof. Follows directly from Equations 4.1 and C.1.

Note that UJi is generally not a polytope but can be represented as a finite
union of polytopes.

C.2 Posterior

The posterior operator Post(X ′,U ′), formally defined in Table 4.1, can be easily
computed using Minkowski sum as

Post(X ′U ′) = AX ′ + U ′ +W
= hull({AvX ′ +BvU ′ + vW | vX ′ ∈ V (X ′), vU ′ ∈ V (U ′), vW ∈ V (W)}).

C.3 Predecessor

The predecessor operator Pre(X ′,U ′, {Xj}j∈J), formally defined in Table 4.1, can
be computed as follows. First, note that

Pre(X ′,U ′, {Xj}j∈J) =
⋃
j∈J

Pre(X ′,U ′,Xj).

Proposition 13. Let H,K be the matrices from the H-representation of the
following polytope:

{y ∈ RN | ∃u ∈ U ′,∃w ∈ W : y +Bu+ w ∈ Xj},

which can be computed as the convex hull

hull({vXj − (BvU ′ + vW) | vXj ∈ V (Xj), vU ′ ∈ V (U ′), vW ∈ V (W)}).

Then the set Pre(X ′,U ′,Xj) is the polytope with the following H-representation:

Pre(X ′,U ′,Xj) = {x ∈ X ′ | HAx ≤ K}.

Proof. The proof is analogous to the one of Proposition 12.
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APPENDIX C. POLYTOPIC OPERATORS

C.4 Robust and Precise Predecessor

From definitions of the robust and precise predecessor operators in Table 4.1 it
follows that

PreR(X ′,U ′, {Xj}j∈J) =
⋃

J ′⊆J,J ′ 6=∅

PreP(X ′,U ′, {Xj}j∈J ′).

Below we describe computation of the precise predecessor PreP(X ′,U ′, {Xj}j∈J ′)
for any J ′ ⊆ J .

Let Z denote the polytope, or finite union of polytopes, Z = AX ′ + BU ′,
where + denotes the Minkowski sum. For a polytope P ⊂ RN , we define set

Z(P) = {z ∈ Z | (z +W) ∩ P is non-empty}. (C.6)

For a set of polytopes {P}, Z({P}) can be computed as the union of all Z(P) for
every polytope P in the set {P}.

Proposition 14. The set from Equation (C.6) is the following polytope, or finite
union of polytopes:

Z(P) = hull({vP − vW | vP ∈ V (P), vW ∈ V (W)}) ∩ Z. (C.7)

Proof. The proof is carried out in a similar way as the first part of proof of
Proposition 12.

For J ′ ⊆ J , we use Z(J ′) to denote the set

Z(J ′) =
⋂
j∈J ′
Z(Xj)\

( ⋃
j∈J\J ′

Z(Xj) ∪ Z(X¬J)
)
, (C.8)

where Z(X¬J) = Z((X ∪ Xout)\
⋃
j∈J
Xj).

Proposition 15. Let U ′ = {Ul1}l1∈L1 , J ⊆ J ′ and let Z(J ′) = {Zl2}l2∈L2 . Then
the precise predecessor can be written as

PreP(X ′,U ′, {Xj}j∈J ′) =
⋃
l1∈L1

⋃
l2∈L2

{x ∈ X ′ | ∃u ∈ Ul1 : Ax+Bu ∈ Zl2}. (C.9)

Let l1 ∈ L1, l2 ∈ L2 and let H,K be the matrices from the H-representation of
the following polytope:

{y ∈ RN | ∃u ∈ Ul1 : y +Bu ∈ Zl2}, (C.10)

which can be computed as the convex hull

hull({vZl2 −BvUl1 | vZl2 ∈ V (Zl2), vUl1 ∈ V (Ul1)}). (C.11)

Then the set on the right-hand site of Equation C.9, for l1, l2, is a polytope with
the following H-representation:

{x ∈ X ′ | HAx ≤ K}. (C.12)
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C.5. ATTRACTOR

Proof. From the definition of the set Z(J ′) in Equation C.8, z ∈ Z(J ′) iff z +W
intersects all Xj for j ∈ J ′ and z +W ⊆

⋃
j∈J ′
Xj . Moreover, every z ∈ Z can

be written as z = Ax + Bu and therefore z + W = Post(x, u). This proves
Equation C.9. The rest of the proof is carried out in a way similar to the proof
of Proposition 12.

C.5 Attractor

The attractor operator Attr(X ′,U ′, {Xj}j∈J) from Table 4.1 can be computed
using the robust predecessor operator, since it holds that

Attr(X ′,U ′, {Xj}j∈J) = {x ∈ X ′ | ∀u ∈ U ′ : Post(x, u) ∩
⋃
j∈J
Xj is non-empty}

= X ′\{x ∈ X ′ | ∃u ∈ U ′ : Post(x, u) ⊆ (X ∪ Xout)\
⋃
j∈J
Xj}

= X ′\PreR(X ′,U ′, (X ∪ Xout)\
⋃
j∈J
Xj).

C.6 Robust Attractor

The robust attractor operator AttrR(X ′,U ′, {Xj}j∈J) from Table 4.1 can be com-
puted using the predecessor operator, since it holds that

AttrR(X ′,U ′, {Xj}j∈J)

= {x ∈ X ′ | ∀u ∈ U ′ : Post(x, u) ⊆
⋃
j∈J
Xj}

= X ′\{x ∈ X ′ | ∃u ∈ U ′ : Post(x, u) ∩ (X ∪ Xout)\
⋃
j∈J
Xj is non-empty}

= X ′\Pre(X ′,U ′, (X ∪ Xout)\
⋃
j∈J
Xj).
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