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Abstract

Model checking of finite-state systems with specifications given as formu-
lae of Linear Temporal Logic (LTL) is one of the most common verification
problems. Like other verification problems, LTL model checking suffers
from state explosion. Techniques tackling state explosion usually employ
some specific property of the LTL fragment they are designed for. For ex-
ample, a popular method called partial order reduction is based on the fact
that specifications given by LTL formulae without the ‘next’ operator do
not distinguish between the stutter equivalent behaviours of a system.

We study the properties of LTL fragments that are related to model
checking. In particular, we are interested in the properties that can po-
tentially lead to new techniques suppressing the state explosion problem.
At the same time we study expressiveness and decidability of LTL frag-
ments, and complexity of model checking problem for the fragments. Be-
sides a broad unifying overview of hitherto known results, this thesis
presents some original results about LTL fragments with temporal oper-
ators ‘next’ and ‘until’, where the nesting depths of one or both operators
are bounded. More precisely, we extend the above-mentioned stuttering
principle to these fragments and describe a new concept of characteristic
patterns. In both cases we indicate that our results can improve existing
model checking techniques. Furthermore, we develop the established fact
that LTL is expressively equivalent to alternating 1-weak Büchi automata
(A1W automata). Specifically, we identify the classes of A1W automata
that are expressively equivalent to LTL fragments of the until-release hi-
erarchy and LTL fragments using only future temporal operators with or
without bounded nesting depths. This thesis also contains a collection of
open questions and topics for future work.
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Vojtěch Řehák.

I thank all the people who have contributed to this thesis in some way.
Namely, I thank Michal Kunc for providing the crucial hints which eventu-
ally led to the definition of characteristic patterns, Nicolas Markey for the
clarification of the situation around the chop modality, Lenore Zuck for
sending me an electronic version of her PhD thesis (at the same time I thank
the person who had to scan the whole thesis because of me), Thomas Wilke
for sending me a hard copy of his post-doctoral thesis, Ivana Černá and Jiřı́
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Chapter 1

Introduction

Today, the power of computers and sophisticated software methodologies
and tools enable the design of very complex systems. Together with an in-
crease in complexity, it is still more and more difficult to make the systems
bug-free. Every error found late in the design process can delay the pro-
duction phase and the consequences of a latent error could be catastrophic.
It is extremely important to find all possible bugs and to find them as early
in the design process as possible.

Several so-called design validation methods have been introduced so far
to help developers to find bugs. Two such methods are testing and simula-
tion. Although they are the oldest ones, they are still heavily used. Both of
them are quite effective in early phases of the debugging process, but the
effectiveness dramatically decreases when the system hides only a small
number of bugs. Moreover, these methods are not usually able to confirm
that the design is fully correct as they explore only some of the possible
behaviours of the system.

Another approach to design validation is formal verification. The main
advantage shared by various verification techniques is an ability to pro-
nounce that the system is correct (i.e. the system corresponds to its specifi-
cation) as they explore all the possible behaviours of the system. There are
three basic formal verification techniques.

Theorem proving - The idea is to prove formally that the designed system
has the required properties. Unlike the other formal verification tech-
niques, theorem proving has not yet been automatized. However,
there are some semi-automatic methods and research into this area is
ongoing.

Equivalence checking - Equivalence checking refers to the problem of de-
ciding if a system and its specifications are the same with respect to
a given behavioural equivalence or not. Many behavioural equiva-
lences have been suggested and studied within this context. Several



2 INTRODUCTION

algorithms to solve the equivalence checking problem have been de-
signed and implemented. The main disadvantage of this approach is
the need for a detailed specification.

Model checking - Specification is denoted by a formula of suitable modal
or temporal logic. Model checking is required to decide whether
a given system satisfies the specification formula or not. In the lat-
ter case, the algorithms return a negative answer accompanied by a
counterexample, i.e. a run of the system violating the specification.

These formal verification techniques are aimed at validation of finite-
state as well as infinite-state systems. The motivation for verification
of finite-state systems is obvious; all concrete instances of hardware and
software systems have a finite number of possible states (thanks to the
finiteness of data types, limited address space, etc.). However, there are
good reasons to deal with verification techniques for infinite-state systems.
For example, these techniques can be used for verification of general or
parametrized systems. Further, infinite-state abstractions of large finite-
state systems can be smaller and the verification of such abstractions can
be easier. An example of a natural abstraction that can decrease the com-
plexity is obtained when we forget that in real systems every stack has a
limited height.

Many different modal and temporal logics can serve to express the sys-
tems specifications for model checking purposes. In general, there are two
classes of logics used in this context. The formulae of linear time logics
are interpreted over linear sequences of actions corresponding to possi-
ble runs of the system. The “standard” linear time logic is Linear Temporal
Logic (LTL). On the other hand, the formulae of branching time logics are
interpreted over states (in fact, over computational trees, i.e. the structures
where the successors of each state are all states reachable from the state in
one step). Unlike the linear case, several branching time logics are used, for
example Computational Tree Logic (CTL), CTL�, and �-Calculus.

One of the most prominent instances of the model checking problem is
the problem to decide whether a given finite-state system satisfies specifica-
tions expressed by a given formula of the logic LTL. The problem is known
as the LTL model checking of finite-state systems. In this thesis we restrict our
attention just to this particular problem of formal verification.

As commonly agreed, the major disadvantage model checking suffers
from is the well-known state explosion problem. Roughly speaking, the prob-
lem is that the number of global states of a common system is very large
in contrast to the length of the system’s high level definition (e.g. its source
code). This problem has basically two causes. First, the number of global
states grows exponentially with the number of parallel components or
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threads of the system, which can be high especially in case of communica-
tion protocols or complex hardware systems consisting of many separated
units. The second cause of state explosion is the large data domains that the
common systems are working with. Despite original pessimism, several
methods dealing with the state explosion problem have been introduced.
Besides abstraction, symbolic model checking, and partial order reduction, which
are already well established, there are other promising approaches such as
compositional reasoning or distributed model checking.

Abstraction techniques are usually performed on a high level descrip-
tion of the system under verification. Intuitively, abstraction attempts to
decrease the size (i.e. the number of global states) of the system by focus-
ing on the aspects that are relevant to a given specification. For example, an
abstraction method known as the cone of influence reduction eliminates the
variables that do not influence the variables in the specification. Further,
data abstraction transforms the actual data domains into a smaller abstract
data domains. Abstraction is often combined with the other methods deal-
ing with state explosion.

Symbolic model checking employs Ordered Binary Decision Diagrams
(OBDDs – see e.g. [Weg00]) to represent sets of global states of the sys-
tem. For the systems that are regular in some sense (especially synchronous
hardware chips), the OBDDs are much smaller than the representation by
explicit enumeration. This fact and the existence of fast algorithms for ma-
nipulation with OBDDs have led to the development of many academic
and even some commercial symbolic model checkers, which are used with
satisfactory success for verifying hardware circuits. Unfortunately, the state
spaces of software systems are usually “less regular” than state spaces of
hardware systems. Therefore, the representation by OBDDs is not efficient
enough in this case.

Another few promising techniques tackling state explosion have been
developed for LTL model checking. However, these techniques usually
do not work for a general LTL formulae. In fact, they employ the specific
properties of LTL fragments they are designed for. For example, partial
order reduction methods can be used when a specification formula does
not contain the temporal operator next saying that ‘a subformula holds in
the next state’ – these methods employ the fact that system specifications
given by such a formula are not sensitive to an order of independent actions
(two action are independent when executing them in either of the order
results in the same global state). Other examples are efficient algorithms
for model checking of safety formulae, i.e. formulae saying that there is no
reachable state with particular characteristics. We believe that the research
on properties of LTL fragments can lead to new and more efficient model
checking techniques.
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1.1 Subject of this thesis

The central subject of this thesis are fragments of LTL and their attributes
relevant to model checking. More precisely, we are interested in the follow-
ing properties.

Expressiveness – The expressiveness of an LTL fragment is measured by
languages corresponding to the formulae of the fragment. We study
various characterizations of these language classes in terms of first
order logic, finite automata, regular expressions, and algebraic struc-
tures. The relative expressiveness of LTL fragments is studied as well.

Decidability – A fragment is said to be decidable if there is a procedure
deciding whether a given language can be defined by a formula of
the fragment or not.

Complexity of model checking – We study the asymptotic complexity of
the considered model checking problem and its subproblem called
model checking a path [MS03].

Other properties – We are also searching for all properties of LTL frag-
ments that can potentially improve efficiency or tractability of model
checking.

We have already provided a motivation for the properties in the last item
of the list given above. The motivation for research on expressiveness, de-
cidability, and complexity of model checking is straightforward. Let us
assume that we want to decide whether a finite-state system meets a given
specification. In this situation we have to deal with the questions like: In
what fragments of LTL can the specification be denoted? What is the com-
plexity of model checking for these fragments? Are there any techniques
improving efficiency of model checking (like specialized model checking
algorithms or partial order reduction methods) available for these frag-
ments? Another natural question is whether the specification is satisfiable.
This is why we also study the complexity of the satisfiability problem.

1.2 Thesis contribution

Research in the area of LTL fragments has been vital during the last decade.
There are several papers surveying the results achieved, but they usually
concentrate on a specific aspect of the topic only. For example, the pa-
per [Wil99] is focused on expressiveness and decidability of LTL fragments.
Moreover, it is already out of date. A nice overview of complexity of the
model checking problem for various fragments of LTL, CTL, and CTL�

written by Schnoebelen [Sch03] concentrates on the asymptotic complex-
ity of the problem. To the best of author’s knowledge, there is no paper
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summarizing the properties of LTL fragments that lead to (asymptotic or
nonasymptotic) improvements in model checking.

The contribution of this thesis can be divided into two parts.

� This thesis provides a broad and unifying summary of results regard-
ing LTL fragments and their relations to model checking discussed in
the previous section. This thesis includes

– a comprehensive overview of temporal modalities and various
LTL fragments considered in literature,

– a summary of results on expressiveness and the decidability of
these fragments, and

– a survey of complexity results for satisfiability and model check-
ing problems for LTL fragments.

� Further, this thesis presents the following original results. Most of
them are connected with LTL fragments that contain only widespread
future modalities next and until, and where the nesting depth of next
is bounded by parameter n (denoted LTL(U;X

n

)), or nesting depths
of until is bounded by parameter m (denoted LTL(U

m

;X)), or both
nesting depths are bounded (denoted LTL(U

m

;X

n

)).

– We formulate extended versions of the well-known stuttering
principle. Using these extended principles we show that hier-
archies of the fragments are strict and we also indicate that the
principles can improve partial order reduction methods.

– We introduce a concept of characteristic patterns. This concept
provides new insights into the expressive power of LTL(Um;Xn)
fragments. Further, we suggest three application of characteris-
tic patterns that can potentially improve existing model check-
ing techniques.

– It is known that alternating 1-weak (A1W) automata have the same
expressive power as LTL. We improve the translation of A1W
automata to equivalent LTL formulae. The improved transla-
tion allows us to characterize the language classes correspond-
ing to LTL fragments mentioned above and also to fragments
with the temporal operator eventually. We also provide a charac-
terization of language classes corresponding to fragments of the
until-release hierarchy [ČP03].

– Finally, few original (and almost evident) statements are in-
cluded directly in the overview of known expressiveness results
and in the survey of known complexity results.



6 INTRODUCTION

1.3 Thesis organization

The thesis is organized as follows.

Chapter 2 recalls all formalisms employed in the thesis, namely LTL and
its fragments, first-order monadic logic and its fragments, and se-
lected parts of automata and formal languages theory. We also de-
scribe a classic automata-based algorithm for LTL model checking,
theoretical background of standard partial order reduction methods,
and a subproblem called model checking a path. The definition of LTL
is divided into two parts. First we define the “light version” using
only future modalities next and until. This version is sufficient for al-
most all the original results presented in Chapters 5, 6, and 7. Then
we present an overview of other modalities occurring in literature ac-
companied by basic relations between the modalities.

Chapter 3 summarizes known expressiveness and decidability results for
LTL fragments. Further, this chapter contains a section devoted to the
succinctness of LTL fragments with respect to other equivalent for-
malisms. In this chapter we also mention many fragment properties,
like standard stuttering principle or relations to automata of special
type, that can lead to improvements of model checking algorithms.

Chapter 4 provides a survey of results concerning the asymptotic com-
plexity of satisfiability, model checking, and model checking a path
problems for various LTL fragments.

Chapter 5 extends the standard stuttering principle to more general letter
stuttering, subword stuttering, and general stuttering principles. These
new principles allow us to prove the semantic strictness of natural
hierarchies of LTL(U;Xn), LTL(Um;X), and LTL(U

m

;X

n

) fragments.
Further, we provide an effective characterization of languages defin-
able by LTL(U;X

n

) formulae. We also indicate potential applications
of letter stuttering and general stuttering in partial order reduction.

Chapter 6 gives a new characterization of languages that are definable
in fragments of the form LTL(U

m

;X

n

). We also propose a generic
method for decomposing LTL formulae into an equivalent disjunc-
tion of “semantically refined” LTL formulae, and indicate how this
result can be used to improve the functionality of existing LTL model
checkers. Application of characteristic patterns in model checking a
path and partial order reduction are suggested as well.

Chapter 7 reviews the translations between LTL and A1W automata show-
ing that the two formalisms are expressively equivalent. We improve
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the translation of A1W automata to LTL formulae. Using the im-
proved translation we identify the classes of A1W automata equiv-
alent to LTL(U;X

n

), LTL(Um;X), and LTL(U

m

;X

n

) fragments, and
to those fragments extended with the temporal operator eventually.
Further, we identify the classes of A1W automata equivalent to frag-
ments of the until-release hierarchy [ČP03].

Chapter 8 recapitulates the content of the thesis and the most important
topics for future work.

The last sections of Chapters 3–7 are called “Additional notes”. These
sections contain many open questions and topics for future work related to
the subject of the corresponding chapter.

1.4 Author’s publications

This section lists all publications (co-)authored by the author of this thesis.

Journal articles

1. Antonı́n Kučera and Jan Strejček. The Stuttering Principle Revisited.
Acta Informatica. To appear.

International conference and workshop proceedings

1. Antonı́n Kučera and Jan Strejček. Characteristic Patterns for LTL. In
SOFSEM 2005, Lecture Notes in Computer Science. Springer-Verlag,
2005. To appear.

2. Mojmír Křetı́nský, Vojtěch Řehák, and Jan Strejček. Extended Process
Rewrite Systems: Expressiveness and Reachability. In Philippa Gardner
and Nobuko Yoshida, editors, CONCUR 2004 - Concurrency Theory,
volume 3170 of Lecture Notes in Computer Science, pages 355–370.
Springer-Verlag, 2004.

3. Mojmír Křetı́nský, Vojtěch Řehák, and Jan Strejček. On Extensions of
Process Rewrite Systems: Rewrite Systems with Weak Finite-State Unit.
In Philippe Schnoebelen, editor, INFINITY 2003: 5th International
Workshop on Verification of Infinite-State Systems, volume 98 of Elec-
tronic Notes in Theoretical Computer Science, pages 75–88. Elsevier
Science Publishers, 2004.

4. Antonı́n Kučera and Jan Strejček. The Stuttering Principle Revisited:
On the Expressiveness of Nested X and U Operators in the Logic LTL. In
Julian Bradfield, editor, CSL 2002: 11th Annual Conference of the
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European Association for Computer Science Logic, volume 2471 of
Lecture Notes in Computer Science, pages 276–291. Springer-Verlag,
2002.

5. Jan Strejček. Rewrite Systems with Constraints. In Luca Aceto and
Prakash Panangaden, editors, EXPRESS 2001: 8th International
Workshop on Expressiveness in Concurrency, volume 52 of Electronic
Notes in Theoretical Computer Science. Elsevier Science Publishers,
2002.

Other work

1. Jitka Crhová, Pavel Krčál, Jan Strejček, David Šafránek, and Pavel
Šimeček. YAHODA: Verification Tools Database. In Ivana Černá, editor,
Tools Day, Proceedings, FIMU-RS-2002-05, pages 99–103. Faculty of
Informatics, Masaryk University Brno, 2002.

2. Jan Strejček. Boundaries and Efficiency of Verification. In Proceedings of
summer school on MOdelling and VErification of Parallel processes
(MOVEP 2002), pages 403–408. IRCCyN, Ecole Centrale de Nantes,
2002.

Technical reports

Six technical reports, mostly extended versions of the conference and work-
shop papers.

The results presented in journal article 1 and conference paper 4 form the
base Chapter 5 while the results from conference paper 1 can be found in
Chapter 6.

The other conference and workshop papers deal with extended process
rewrite systems, their expressiveness, and the reachability problem for the
extended systems. The results from this area are not included here as a
mono-thematic thesis is preferred.



Chapter 2

Preliminaries

This chapter recalls the formalisms used in the thesis. We provide defini-
tion of linear temporal logic including a comprehensive survey of temporal
operators introduced so far, definition of first-order monadic logic of order,
and selected parts of formal languages and automata theory. Finally, we
mention the model checking problem and describe some aspects of model
checking area related to our topic.

First of all we establish the following convention. The set of natural
numbers with zero is denoted by N

0

, while the set of natural numbers with-
out zero is denoted by N .

2.1 Linear temporal logic

The genesis of linear temporal logic is linked with modal logic. Modal logic
has been developed by philosophers to study reasoning that involves the
use of modalities, i.e. expressions of the form “it is possible that . . . ” and “it
is necessary that . . . ”. Modal logic is interpreted over a set of possible worlds.
The truth values of atomic propositions are determined by the considered
world. Besides the boolean connectives, the logic uses the unary modal op-
erators (or modalities) possibly and necessarily denoting that a proposition is
true in some possible world or all possible worlds of the considered set re-
spectively. These operators have been already used (also in temporalized
form) by ancient Greek philosophy schools and further refined into differ-
ent variants of necessity and possibility by European and Arabian logicians
during Middle Ages.

The twentieth century brought new wave of interest in modal logics. In
1963, Kripke [Kri63] formalized the semantics of modal logic based on the
idea of possible worlds. Even before that, Prior [Pri57] introduced the tem-
poral variant of modal logic under the name of Tense Logic; a set of possible
worlds is ordered into a (temporal) sequence and the modal operators pos-
sibly and necessarily become the temporal operators eventually and always.
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The variety of other modalities have been proposed during the following
years, particularly the binary modalities until and since (presented by Kamp
in [Kam68]) and the unary modality next.

Many temporal logics have been introduced so far. They can be clas-
sified with respect to the considered model of time flow as linear time or
branching time. In linear time concept, each instant has only one possible
future. That is, a set of possible worlds is ordered into a linear sequence.
In branching time logics, each instant may have several distinct futures
(but only one history). In this case, possible worlds are ordered into a tree
structure. The concept of branching time naturally corresponds to the non-
determinism. However, non-determinism can be modelled in linear time
as well; instead of one linear sequence we can consider a set of linear se-
quences, each one corresponding to a particular course of events.

The best way to document the potential of temporal logic framework is
to mention some of main applications. First applications of temporal log-
ics can be found in the area of natural language analysis. The framework
has been also accepted by artificial intelligence community for dealing with
temporal issues. A concrete application in computer science was proposed
for the first time by Burstall in 1974 [Bur74]. His approach has been elab-
orated by Pnueli in [Pnu77]. The paper is now considered to be the classic
source of program specification and verification based on temporal logic.

A popular examples of branching time temporal logic used in the con-
text of computer science are the Computation Tree Logic (CTL) introduced by
Clarke and Emerson in [CE81] and the CTL* logic introduced by Emerson
and Halpern in [EH86]. No less popular example of linear time temporal
logic is the Linear Temporal Logic (LTL) [Pnu77, GPSS80] – the central subject
of the thesis.

First of all, we should specify a variant of LTL we deal with in the the-
sis. As written above, LTL (as a linear time logic) is interpreted over (sets
of) linear sequences of instants. However, this still allows several distinct
models of time flow. For example, the linear sequence can be discrete or
continuous. At the same time, it can be bounded on both side or just on
one side (the beginning of the sequence is usually given in this case) or
unbounded at all. In the following we work with (finite or infinite) dis-
crete linear sequences with a given beginning. This is a natural choice in
the context of computer science as the beginning of a linear sequence cor-
responds to the launch of a studied system (e.g. software or hardware) that
can terminate after a finite number of steps or run forever.

More or less independently on a model of time flow, one can consider
various extensions of LTL. Here we mention just two important examples
as LTL extensions are out of the scope of the thesis. One of the oldest LTL
extensions is Extended Temporal Logic (ETL) defined by Wolper in [Wol83].
This extension enables LTL to express properties definable by right-linear



2.1 LINEAR TEMPORAL LOGIC 11

grammars. Other LTL extensions have been designed to deal with real time.
For more details about timed logics we refer to the survey [AH92].

2.1.1 Basic syntax and semantics

The linear temporal logic can be equivalently defined with use of various
sets of temporal operators. In the following definition, we employ just
two common temporal operators, namely next and until. We choose these
modalities as they play the main role in Chapters 5, 6, and 7 devoted to re-
sults of our research. Later we introduce the other temporal operators and
argue that they do not change the expressive power of the logic.

The syntax of LTL formulae (ranged over by '; ; : : :) is given by the
following abstract syntax:

' ::= > j p j :' j ' ^ ' j X' j 'U';

where

� > stands for true,

� p ranges over a countable set of atomic propositions At = fo; p; q; : : : g,

� : and ^ are boolean operators negation and conjunction respectively,

� X and U are temporal operators next and until respectively.

Given a formula ', j'j denotes its length and At(') denotes the set of
atomic propositions occurring in '.Other boolean connectives _, ), and
, are derived operators defined via the standard abbreviations. We also
use ? (false), F' (eventually), G' (always), and 'R (release) to abbreviate
:>,>U', :(>U:'), and :(:'U: ) respectively.

In order to reduce the number of parentheses in formulae we establish
a priority order of the operators as follows.

� Unary operators (:;X;F;G, and operators defined later) have higher
priority than all binary operators.

� Binary temporal operators (U;R, and temporal operators defined
later) have higher priority than ^;_;);,.

� ^;_ have higher priority than );,.

� ) has higher priority than ,.

Example 2.1 We write Xp U q ) :o _ Fq instead of ((Xp)U q)) ((:o) _ Fq).
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We define the semantics of LTL in terms of (languages over) infinite or
nonempty finite words. An alphabet is a set �

P

= 2

P , where P � At is a
finite set of atomic propositions. Elements of an alphabet are called letters.
A finite sequence of letters from an alphabet � is called finite word or string
over �. An infinite sequence of letters from an alphabet � is called infinite
word or !-word over �. By word we refer to both finite and infinite words.
A set of words over � is called language over �. Languages of !-words are
sometimes called !-languages. Languages of all strings, nonempty strings,
and !-words over an alphabet � are denoted by �

�, �+, and �

! respec-
tively. We use a; b;  : : : to range over �, u; v; w; : : : to range over ��, and
�; �; : : : to range over �!. Finally, we use � to denote a finite or infinite
word.

Given a word �, by j�j we denote the length of � (for infinite words we
set j�j = 1). An empty word " has a zero length. A concatenation of a
string u and a word � is denoted by u:� or u�. For all 0 � i < j�j by �(i) we
denote the (i+1)th letter of �, i.e. � = �(0)�(1)�(2) : : : �(j�j� 1) if � is finite
and � = �(0)�(1)�(2) : : : otherwise. Further, for all 0 � i < j�j by �

i

we
denote the ith suffix of �, i.e. �

i

= �(i)�(i+1)�(i+2) : : : �(j�j�1) if � is finite
and �

i

= �(i)�(i+1)�(i+2) : : : otherwise. Moreover, for all 0 � i < j�j and
j � 1 such that i+ j � 1 < j�j the symbol �(i; j) denotes the subword of �
of length j which starts with �(i), i.e. �(i; j) = �(i)�(i + 1) : : : �(i + j � 1).
A pointed word is a pair (�; i) of a nonempty word � and a position 0 � i < j�j

in this word.

Let ' be an LTL formula and (�; i) be a pointed word. We define when
a formula ' is valid for the position i in the word �, written (�; i) j= ', by
induction on the structure of '.

(�; i) j= >

(�; i) j= p iff p 2 �(i)

(�; i) j= :' iff (�; i) 6j= '

(�; i) j= ' ^  iff (�; i) j= ' ^ (�; i) j=  

(�; i) j= X' iff i+ 1 < j�j ^ (�; i+ 1) j= '

(�; i) j= 'U iff 9k: (i � k < j�j ^ (�; k) j=  ^

^ 8j: (i � j < k ) (�; j) j= '))

Intuitively, X' says that ' is true in the next position (and this next
position exists). A formula 'U means that  is true either now or in the
future and ' holds since now until that moment.

We say that a word � satisfies ', written � j= ', if (�; 0) j= '. Given
an alphabet �, an LTL formula ' defines the languages of finite or infinite
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words over � in the following way:

L

�

F

(') = fu 2 �

+

j u j= 'g

L

�

(') = f� 2 �

!

j � j= 'g

We omit the superscript � if � = 2

At(').

On the other hand, a language L (of finite or infinite words) over an
alphabet � is said to be LTL language or LTL property if there exists an LTL
formula ' satisfying L = L

�

F

(') or L = L

�

(').

The definition of LTL languages indicates that we work with languages
of finite words and with languages of infinite words, but not with lan-
guages of finite and infinite words together. In this thesis we prefer to
work with infinite words. However, we do not restrict our attention only
to infinite words as some interesting results about LTL (e.g. characteriza-
tion of LTL fragments via forbidden patterns) valid for finite words have
no proper counterparts in terms of infinite words. In the following chapters
the logic is interpreted over infinite words unless stated otherwise.

Contrary to the model checking area, where the presented definition of
LTL fits perfectly, for theoretical study of LTL properties it is often more
convenient to work with the variant of LTL using letters instead of atomic
propositions. More precisely, in syntax of the logic the atomic propositions
are replaced by letters and the second line in the definition of LTL semantics
is replaced by

(�; i) j= a iff a = �(i):

We use a; b; ; : : : to range over letters. The definition of LTL based on letters
is also used in Chapters 5, 6, and 7 presenting the original results. The
difference between the two presented versions of LTL is very subtle and
results proven for one setting can be easily adapted to the other.

2.1.2 Satisfiability, validity, and equivalence

The decision whether we consider all pointed words or just the pointed
words of the form (�; 0) yields different notions of satisfiability, validity,
and equivalence.

Definition 2.2 A formula ' is said to be (initially) satisfiable if there exists
a word � such that � j= '. A formula ' is said to be globally satisfiable if
there exists a word � and a position i such that (�; i) j= '.

Definition 2.3 A formula ' is said to be (initially) valid if for all words � we
have � j= '. A formula ' is said to be globally valid if for all words � and for all
positions 0 � i < j�j we have (�; i) j= '.
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It is easy to see that if a formula is initially satisfiable then it is also
globally satisfiable. On the other hand, if a formula is globally valid, then it
is also initially valid. Moreover, a formula is globally satisfiable if and only
if its negation is not globally valid. Analogous proposition holds for initial
versions of satisfiability and validity.

Definition 2.4 Let ' and  be LTL formulae. The formulae are said to be (ini-
tially) equivalent, written ' �

i

 , if for all words � we have

� j= ' if and only if � j=  :

The formulae are said to be globally equivalent, written ' �
g

 , if for all words
� and for all positions 0 � i < j�j we have

(�; i) j= ' if and only if (�; i) j=  :

One can readily confirm that if two formulae are globally equivalent
then they are also initially equivalent.

Let us mention that there is no difference between initial and global
versions of satisfiability, validity, and equivalence as far as we consider
only so called future modalities like until and next. Indeed, for all pointed
words (�; i) and all formulae ' containing only these modalities it holds
that

(�; i) j= ' if and only if �
i

j= '

and hence the respective initial and global versions coincide. However,
the difference between initial and global versions arises as soon as past
modalities are introduced.

The satisfiability, validity, and equivalence problems are often consid-
ered in context of either finite or infinite words only. However, the al-
gorithms solving these problems for infinite words can be usually trans-
formed to solve the problems for finite words with the same complexity.

2.1.3 Other temporal operators

In this subsection we enrich the syntax of LTL with other modalities con-
sidered in the literature. For the sake of completeness, presented list of
modalities includes the operators already defined as well. The descriptions
of individual operators contain alternative names and notations, formal se-
mantics, and basic relations between modalities. These relations represent
the first step in our study of expressive power of temporal operators.

Let us note that we present only temporal operators that we have found
in LTL related literature. Of course, one can define other temporal opera-
tors like e.g. strict release or past versions of all the presented future oper-
ators. We do not do this as the definition of new temporal operators is not
the goal of this thesis.
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All temporal modalities can be divided into three categories, namely
future modalities, past modalities, and other modalities.

Future modalities

A unary temporal operator M is said to be future operator if the validity
of a formula M' for a pointed word (�; i) is determined by validity of
the subformula ' for pointed words of the form (�; j) where i � j. The
definition of binary future modalities is analogous. It is easy to see that
both X and U are future modalities. In literature dealing with LTL one can
encounter the following future modalities.

X' – The operator called next or nexttime. It is sometimes denoted as 
or X

9

.

X

w

' – The operator weak next. It is sometimes denoted as X
8

. While X' is
never valid for the last position in a finite word, X

w

' is valid in this
case.

(�; i) j= X

w

' iff i+ 1 < j�j ) (�; i + 1) j= '

The operator is dual to X operator:

X' �

g

:X

w

:'

X

w

' �

g

:X:'

'U – The binary operator called until or strong until. It is sometimes de-
noted as U

9

. The same name is sometimes used for the two following
versions of until operator.

'U

s

 – The operator strict until is sometimes denoted as U> or XU. The
strictness means that the validity of 'U

s

 for a pointed word de-
pends on the validity of the subformulae ' and  for strictly future
positions in the word.

(�; i) j= 'U

s

 iff 9k: (i < k < j�j ^ (�; k) j=  ^

^ 8j: (i < j < k ) (�; j) j= '))

Both X and U operators can be expressed using U
s

. Further, U
s

can be
expressed using the operators X and U:

X' �

g

?U

s

'

'U �

g

 _ (' ^ 'U

s

 )

'U

s

 �

g

X('U )

Hence, LTL can be equivalently defined using just one temporal op-
erator U

s

.
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'U

w

 – The operator called weak until or waiting-for or unless is sometimes
denoted as W or U

8

. In contrast to 'U , a formula 'U
w

 does not
say that  must be true now or in the future.

(�; i) j= 'U

w

 iff 8j: (i � j < j�j ) (�; j) j= ') _

_ 9k: (i � k < j�j ^ (�; k) j=  ^

^ 8j: (i � j < k ) (�; j) j= '))

The operator is expressively equivalent to U operator:

'U �

g

'U

w

 ^ :(: U

w

?)

'U

w

 �

g

'U _ :(>U:')

By analogy, the strict version of this operator defined in [Krö87] under
the name unless is equivalent to U

s

.

'R – The operator release. Informally, 'R means that  remains true
forever or at least to the position where ' is true (including this posi-
tion).

(�; i) j= 'R iff 8j: (i � j < j�j ) (�; j) j=  ) _

_ 9k: (i � k < j�j ^ (�; k) j= ' ^  ^

^ 8j: (i � j < k ) (�; j) j=  ))

The operator is dual to U operator:

'U �

g

:(:'R: )

'R �

g

:(:'U: )

'�  – The operator as long as introduced by Lamport [Lam83a]. A for-
mula '�  says that  remains true at least as long as ' does.

(�; i) j= '�  iff 8k: (i � k < j�j )

) ((�; k) j=  _

_ 9j: (i � j � k ^ (�; j) j= :')))

The operator is expressively equivalent to U operator:

'U �

g

: � '

'�  �

g

 U:'

The strict version of this operator (with the arguments swapped) has
been introduced under the name while in [Krö87]. It is equivalent to
U

s

operator.
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'B – The operator called before or precedes. Intuitively, 'B means that
if  is true now or in the future then ' is true in some position before
that moment.

(�; i) j= 'B iff 8k: ((i � k < j�j ^ (�; k) j=  ) )

) 9j: (i � j < k ^ (�; j) j= '))

The operator is expressively equivalent to R operator and thus also to
U operator:

'R �

g

'B: 

'B �

g

'R: 

By analogy, the strict version of this operator defined in [Krö87] is
equivalent to U

s

.

'A – The operator at next or first time introduced in [Krö87]. A formula
'A says that either  is never true in the future or ' is true in the
first position where  is true.

(�; i) j= 'A iff 8k: (i < k < j�j ) (�; k) j= : ) _

_ 9k: (i < k < j�j ^ (�; k) j=  ^ ' ^

^ 8j: (i < j < k ) (�; j) j= : ))

The operator is expressively equivalent to U
s

operator:

'U

s

 �

g

 A ( _ :') ^ :(?A )

'A �

g

: U

s

(' ^  ) _ :(>U

s

 )

F' – The operator called eventually or sometime (in the future). It is some-
times denoted as 3. Informally, F' means that ' is true now or in
some future position.

(�; i) j= F' iff 9k: (i � k < j�j ^ (�; k) j= ')

As already mentioned, the operator can be expressed using U opera-
tor:

F' �

g

>U'

G' – The operator called always (in the future) or globally or henceforth. It is
sometimes denoted as 2. A formula G' means that ' is true now as
well as in all future positions.

(�; i) j= G' iff 8k: (i � k < j�j ) (�; k) j= ')

The operator is dual to F operator:

F' �

g

:G:'

G' �

g

:F:'
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F

s

' – The operator strict eventually is sometimes denoted as F> or XF. Intu-
itively, F

s

' means that ' is true in some future position.

(�; i) j= F

s

' iff 9k: (i < k < j�j ^ (�; k) j= ')

The operator can be expressed using the operator U
s

or the operators
F and X. Further, the operator F can be expressed with F

s

operator:

F

s

' �

g

>U

s

'

F

s

' �

g

XF'

F' �

g

' _ F

s

'

G

s

' – The operator strict always is sometimes denoted as G> or XG. A for-
mula G

s

' says that ' is true in all future positions.

(�; i) j= G

s

' iff 8k: (i < k < j�j ) (�; k) j= ')

The operator is dual to F
s

operator:

F

s

' �

g

:G

s

:'

G

s

' �

g

:F

s

:'

1

F

' – The operator infinitely often. A formula
1

F

' interpreted over an infi-
nite word says that ' is true in infinitely many future positions. The
same formula interpreted over a finite word means that ' is true at
least in the last position in the word. Hence, the operator is some-
times called finally in the context of finite words.

(�; i) j=

1

F

' iff 8k: (i � k < j�j )

) 9j: (k � j < j�j ^ (�; j) j= '))

The operator can be expressed using F operator:

1

F

' �

g

GF' �

g

:F:F'

1

G

' – The operator called almost always or almost everywhere. A formula
1

G

'

interpreted over an infinite word means that ' is true in all but a finite
number of positions. The formula interpreted over a finite word has

the same meaning as
1

F

'.

(�; i) j=

1

G

' iff 9k: (i � k < j�j ^

^ 8j: (k � j < j�j ) (�; j) j= '))

The operator is dual to
1

F

operator:

1

F

' �

g

:

1

G

:'

1

G

' �

g

:

1

F

:'
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Past modalities

The definition of past operators is analogous to the definition of future op-
erators. Roughly speaking, a modality has the adjective past if its validity
for a pointed word (�; i) depends on validity of its immediate subformulae
for pointed words (�; j), where j � i.

Y' – The past version of X operator called previously or lasttime. It is some-
times denoted as X�1 or X�1

9

or - .

(�; i) j= Y' iff 0 < i ^ (�; i � 1) j= '

Y

w

' – The weak version of Y operator called weak previously. It is some-
times denoted as ~

- .

(�; i) j= Y

w

' iff 0 < i ) (�; i� 1) j= '

The operator is dual to Y operator:

Y' �

g

:Y

w

:'

Y

w

' �

g

:Y:'

'S – The past version of U operator called since. It is sometimes denoted
as U�1.

(�; i) j= 'S iff 9k: (0 � k � i ^ (�; k) j=  ^

^ 8j: (k < j � i ) (�; j) j= '))

'S

s

 – The past version of U
s

called strict since. It is sometimes denoted
as YS.

(�; i) j= 'S

s

 iff 9k: (0 � k < i ^ (�; k) j=  ^

^ 8j:(k < j < i ) (�; j) j= '))

Both Y and S operators can be expressed using S

s

. Further, S
s

can be
expressed using the operators Y and S:

Y' �

g

?S

s

'

'S �

g

 _ (' ^ 'S

s

 )

'S

s

 �

g

Y('S )

'S

w

 – The past version of U
w

operator called weak since or back to. It is
sometimes denoted as B.

(�; i) j= 'S

w

 iff 8j: (0 � j � i ) (�; j) j= ') _

_ 9k: (0 � k � i ^ (�; k) j=  ^

^ 8j: (k < j � k ) (�; j) j= '))
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The operator is expressively equivalent to S operator:

'S �

g

'S

w

 ^ :(: S

w

?)

'S

w

 �

g

'S _ :(>S:')

P' – The past version of F operator called sometime in the past or eventually
in the past. It is sometimes denoted as F�1 or 3- .

(�; i) j= P' iff 9k: (0 � k � i ^ (�; k) j= ')

The operator can be expressed using S operator:

P' �

g

>S'

H' – The past version of G operator called always in the past or hitherto. It
is sometimes denoted as G�1 or 2- .

(�; i) j= H' iff 8k: (0 � k � i ) (�; k) j= ')

The operator is dual to P operator:

P' �

g

:H:'

H' �

g

:P:'

P

s

' – The past version of F
s

operator called sometime in the strict past. It is
sometimes denoted as YP.

(�; i) j= P

s

' iff 9k: (0 � k < i ^ (�; k) j= ')

The operator can be expressed using the operator S
s

or the operators
P and Y. Further, the operator P can be expressed with P

s

operator:

P

s

' �

g

>S

s

'

P

s

' �

g

YP'

P' �

g

' _ P

s

'

H

s

' – The past version of G
s

operator called always in the strict past. It is
sometimes denoted as YH.

(�; i) j= H' iff 8k: (0 � k < i ) (�; k) j= ')

The operator is dual to P
s

operator:

P

s

' �

g

:H

s

:'

H

s

' �

g

:P

s

:'
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I' – The operator called initially. A formula I' interpreted over a pointed
word (�; i) says that ' is valid for the initial position in the word.

(�; i) j= I' iff (�; 0) j= '

The operator can be seen as a past version of both
1

F

and
1

G

operators

as each prefix of a word is finite and the formulae
1

F

' and
1

G

' inter-
preted over a finite word say that ' is valid for the last position in the
word. The operator can be expressed using P operator:

I' �

g

HP' �

g

:P:P'

Other modalities

In the following we list the modalities that are not neither future nor past
modalities.

N' – The operator called now or from now on introduced [LS95]. Roughly
speaking, the operator cuts off the history.

(�; i) j= N' iff (�

i

; 0) j= '

It is easy to see that if we restrict the set of temporal operators only to
future ones, the addition of N operator is meaningless as N' �

g

' in
this case. Further, a formula using only past modalities in combina-
tion withN can easily be converted into a globally equivalent formula
without N operator in obvious way. Hence, the operator is used in
combination with some future modalities and some past modalities
as well.

The operator R (and thus also U) can be expressed using the operators
N, F, and P. Moreover, the modality U

s

can be expressed using the
operators N, F, and P

s

:1

'R �

g

NF(' ^ H ) _ G 

�

g

NF(' ^ :P: ) _ :F: 

'U

s

 �

g

NF(:P

s

> ^  ^H

s

(' _ :P

s

>))

�

g

NF(:P

s

> ^  ^ :P

s

(:' ^ P

s

>))

Let us note that the above relations allow to define an expressively
equivalent temporal logic containing only unary modalities.

The last operator covered by this overview is called chop. The operator
has been introduced in [HKP82] and studied in [RP86]. Other two versions

1Let us note that the formula :P
s

> is valid only for the first positions in a word.



22 PRELIMINARIES

of chop have been defined in [MS03] and [Mar03a]. Intuitively, using this
modality one can divide a word (corresponding to a run of a system) into
a prefix (corresponding to a subrun of that run) and a suffix and formulate
their temporal specifications separately. The operator has been considered
only in connection with future modalities so far and its semantics has been
given just for initial positions (semantics for general pointed words is given
only in [Mar03a]). As indicated in [RP86], one has to define a global seman-
tics for every pointed word to make this operator “compatible” with past
modalities. We define the global semantics for the three versions of chop
modality in the following way.

'C

o

 – The original version of chop operator as introduced in [HKP82] and
studied in [RP86]. Intuitively, 'C

o

 is valid for a pointed word if the
word can be divided into a prefix and a suffix (beginning with the last
letter of the prefix) such that the suffix starts at the current or a future
position and it satisfies  , and ' is valid for the current position in
the prefix.

(�; i) j= 'C

o

 iff 9k: (i � k < j�j ^ (�

k

; 0) j=  ^

^ (�(0; k + 1); i) j= ')

We recall that �(0; k+1) = �(0)�(1) : : : �(k) and �
k

= �(k)�(k+1) : : :.
Please note that if a formula 'C

o

 is interpreted over an infinite
word then ' is interpreted over a finite prefix while  is interpreted
over an infinite suffix.

'C – The version of chop operator introduced in [Mar03a] and denoted
there as ��. The difference between this version and the original one
is that the prefix and the suffix do not overlap and' has to be valid for
the prefix only on the assumption that the prefix contains the current
position.

(�; i) j= 'C iff 9k: (i � k < j�j ^ (�

k

; 0) j=  ^

^ (i < k ) (�(0; k); i) j= '))

The operator N can be expressed using the operator C:

N' �

g

?C'

'C

s

 – The version of chop operator considered in [MS03] and called strict
chop here. In contrast to the previous version of chop, the suffix sat-
isfying  has to start at a (strictly) future position. Hence, the prefix
has to satisfy ' in all cases.

(�; i) j= 'C

s

 iff 9k: (i < k < j�j ^ (�

k

; 0) j=  ^

^ (�(0; k); i) j= ')
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The operator C can be expressed using the operators C
s

and N. More-
over, if we work with future modalities only (as mentioned before,
initial and global equivalences coincide in this case) then the opera-
tor C can be expressed by using the operator C

s

only:

'C �

g

'C

s

 _ N 

'C �

i

'C

s

 _  

The results about the chop modality cited in this thesis are valid for all
three versions of chop. In order to improve the presentation we refer to the
operator C only.

U

s

;A

s

s

s

s

s

s

s

s

s

K

K

K

K

K

K

K

K

K

S

s

}

}

}

}

}

}

}

B

B

B

B

B

B

B

X;X

w

U;U

w

;R;�;B F

s

;G

s

s

s

s

s

s

s

s

s

s

Y;Y

w

S;S

w

P

s

;H

s

}

}

}

}

}

}

}

C

C

s

C

o

F;G P;H

N

1

F

;

1

G

I

Figure 2.1: Relations between temporal operators.

To sum up, we have introduced 15 future modalities, 10 past modali-
ties, and 4 modalities that are neither past nor future. In many cases we
have shown that a modality can be equivalently (with respect to global
equivalence) replaced by a formula using another modality and boolean
operators. If this relation is symmetric we say that the two operators are
expressively equivalent. Hence, the operators can be divided into groups
of mutually equivalent operators. Figure 2.1 provides a summary of pre-
sented relations between modalities. A line between two groups of equiv-
alent modalities means that each modality from the lower group can be
expressed using arbitrary modality from the upper group.

The hierarchies of future and past temporal operators presented in Fig-
ure 2.1 are strict. More precisely, modalities from different groups are not
expressively equivalent and if two groups are depicted to be incompara-
ble then they are really incomparable (meaning that there exists a formula
using a modality from one group such that there is no globally equivalent
formula using modalities from the other group instead of the modality, and
vice versa). We do not prove our statements about the strictness of the hi-
erarchies here as it is easy to find examples of formulae and pointed words
proving them.
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The relations depicted in Figure 2.1 often allow to restrict our attention
to set of modalities containing one representative of each group. In this case
we prefer to work with modalities listed on the first positions in the groups
(U

s

;X;U;F

s

;F; : : :). Different situation arises when we put some restrictions
on the applicability of boolean operators (e.g. the until-release hierarchy
given in Definition 2.10 employs a restriction on the applicability of a nega-
tion). In this case, modalities in a group cannot be seen as interchangeable
in general.

2.1.4 Fragments

Fragments of a temporal logic are sets of formulae defined by various re-
strictions on syntax of the logic. A language L is said to be expressible or
definable by/in a fragment F (or F language for short) if the fragment con-
tains a formula ' such that L = L

�

(') or L = L

�

F

(') for some alphabet �.
We sometimes say ‘a fragment’ meaning a set of languages expressible by
the fragment. Finally, we say that a formula ' is expressible in a fragment F
if ' is equivalent to some formula of F .

This section presents all types of fragments we are working with in the
following chapters of this thesis. At first we give a general definition cov-
ering most of the fragments considered in the literature and then we define
the fragments that do not fit into the general scheme.

The general definition employs the notion of nesting depth of a set of
modalities.

Definition 2.5 Let ' be an a formula and M be a set of temporal operators. The
nesting depth of the operators of M in the formula ', written M -depth('), is
defined by induction on the structure of '. The operators Z and Z 0 range over
unary and binary (temporal as well as boolean) operators respectively.

M -depth(>) = 0

M -depth(p) = 0

M -depth(Z') =

8

<

:

M -depth(') + 1 if Z 2M

M -depth(') otherwise

M -depth('
1

Z

0

'

2

) =

8

<

:

maxfM -depth('
1

);M -depth('
2

)g+ 1 if Z 0 2M

maxfM -depth('
1

);M -depth('
2

)g otherwise

To improve our notation we omit the curly brackets whenever M is a singleton.

Example 2.6 Let ' = pU q _ qUX(pU q) _ :Xq. Then fU;Xg-depth(') = 3,
U-depth(') = 2, and X-depth(') = 1.
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Definition 2.7 LetM
1

;M

2

; : : : ;M

k

be mutually disjoint sets of temporal modal-
ities and m

1

;m

2

; : : : ;m

k

2 N

0

[ f1g. By LTL(M

m

1

1

;M

m

2

2

; : : : ;M

m

k

k

) we de-
note the set

f' j ' is a formula using only modalities of M
1

[M

2

[ : : : [M

k

and satisfying M
i

-depth(') �m

i

for every 1 � i � kg:

The set is called simple fragment if m
i

= 1 for all i, and it is called nesting
fragment otherwise.

Let n 2 N

0

. By LTL

n

(M

m

1

1

;M

m

2

2

; : : : ;M

m

k

k

) we denote the set of all
formulae ' 2 LTL(M

m

1

1

;M

m

2

2

; : : : ;M

m

k

k

) such that At(') � n (i.e. the
number of atomic propositions occurring in ' is at most n). Further, by
LTL

+

(M

m

1

1

;M

m

2

2

; : : : ;M

m

k

k

) we denote a positive fragment containing the
formulae of LTL(M

m

1

1

;M

m

2

2

; : : : ;M

m

k

k

) where no temporal operator is in
scope of any negation. By LTL

s

(M

m

1

1

;M

m

2

2

; : : : ;M

m

k

k

) we denote a strat-
ified fragment containing the formulae of LTL(Mm

1

1

;M

m

2

2

; : : : ;M

m

k

k

) where
no future modality is in scope of any past modality [MP91]. Finally, by
LTL

+s

(M

m

1

1

;M

m

2

2

; : : : ;M

m

k

k

) we denote the set

LTL

+

(M

m

1

1

;M

m

2

2

; : : : ;M

m

k

k

) \ LTL

s

(M

m

1

1

;M

m

2

2

; : : : ;M

m

k

k

):

To make the notation more readable, we omit the superscripts m
i

equal to 1 and
curly brackets delimiting sets M

i

with a single element.

For example, LTL(U3;X) denotes nesting fragment of LTL formulae built
with temporal operators U and X such that their U-depth is at most 3. Fur-
ther, LTL(F;P) is simple fragment of the formulae using modalities F and P.
The set of the formulae without any temporal operators can be denoted by
LTL().

The general definition covers also some recognized fragments. For ex-
ample, LTL(X;F) is known as restricted temporal logic [PP04], fragments
LTL(X;F;U

n

) form the until hierarchy [EW00, TW01], and the fragment
LTL(F; U ) called next-free LTL is popular in the model checking area.
Furthermore, fragments LTL(fU;Sgm;F;X;P;Y) form so-called until-since
hierarchy [TW02]. To shorten our notation, we write US

m

instead of
LTL(fU;Sg

m

;F;X;P;Y).

Let us note that a formula of a fragment with temporal operators in
M

1

[M

2

[ : : : [M

k

can contain modalities that are expressible with use
of the modalities in the union. The modalities outside the union are for-
mally viewed as abbreviations. For example, ' = aUGb can be seen as a
formula of fragment LTL(U) as Gb is an abbreviation for :(>U:b). In this
case, U-depth(') equals 2. For similar reason, fragment LTL(U;X) should
be seen as LTL fragment containing all future modalities. By analogy,
LTL(U;X;S;Y) denotes the fragment with all future and past modalities
(this fragment is sometimes denoted by LTL+Past).
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In the following we define other fragments of LTL which are studied in
this thesis.

Hierarchy of temporal properties

The hierarchy of temporal properties has been introduced by Manna and
Pnueli [MP90b, CMP92]. The classes of the hierarchy are characterized
through four views. Besides language-theoretic, automata, and topologi-
cal views they have been also defined with use of LTL. The hierarchy con-
tains classes of safety properties, guarantee properties, obligation properties,
response properties2, persistence properties, and reactivity properties. We de-
fine two fragments of LTL formulae for each of these classes.

First we define canonical fragments.

Definition 2.8 An LTL formula ' is

a canonical safety formula iff ' = G ,

a canonical guarantee formula iff ' = F ,

a canonical obligation formula iff ' =

V

m

i=1

(G 

i

_ F�

i

),

a canonical response formula iff ' =

1

F

 ,

a canonical persistence formula iff ' =

1

G

 ,

a canonical reactivity formula iff ' =

V

m

i=1

(

1

G

 

i

_

1

F

�

i

),

where m 2 N

0

and  ; 
1

; : : : ;  

m

; �

1

; : : : ; �

m

are formulae of LTL(Y;S).

In contrast to the canonical fragments, corresponding future frag-
ments [ČP03] are built only with future modalities.

Definition 2.9 The fragments of future safety ('
S

), future guarantee ('
G

),
future obligation ('

O

), future response ('
R

), and future persistence ('
P

)
formulae are defined inductively.

'

S

::= p j :p j'

S

_ '

S

j'

S

^ '

S

jX'

S

jG'

S

j'

S

R'

S

j :'

G

'

G

::= p j :p j'

G

_ '

G

j'

G

^ '

G

jX'

G

jF'

G

j'

G

U'

G

j :'

S

'

O

::= '

S

j'

G

j'

O

_ '

O

j'

O

^ '

O

jX'

O

j'

O

U'

G

j'

O

R'

S

j :'

O

'

R

::= '

S

j'

G

j'

R

_ '

R

j'

R

^ '

R

jX'

R

jG'

R

j'

R

R'

R

j'

R

U'

G

j :'

P

'

P

::= '

S

j'

G

j'

P

_ '

P

j'

P

^ '

P

jX'

P

jF'

P

j'

P

U'

P

j'

P

R'

S

j :'

R

Further, every LTL(U;X) formula is a future reactivity formula.

In fact, these future fragments coincide with standard fragments [CMP92]
without the formulae containing past modalities.

2The response properties are sometimes called recurrence properties.
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Until-release hierarchy

The until-release hierarchy of LTL fragments has been introduced in [ČP03].
It is based on the alternation depth of the operators U and R. Therefore it is
also called alternating hierarchy. The hierarchy consists of fragments of two
types, namely UR

i

and RU

i

.

Definition 2.10 The fragments UR
i

;RU

i

are defined inductively.

� UR

0

= RU

0

= LTL(X).

� The fragments UR
i+1

is the least set containing RU

i

and closed under the
application of operators ^;_;X; and U.

� The fragment RU
i+1

is the least set containing UR

i

and closed under the
application of operators ^;_;X; and R.

Let us note that there is no temporal operator in scope of any negation in
these fragments.

Deterministic fragment

The deterministic fragment of LTL, denoted detLTL, has been identified as the
common fragment of LTL and CTL [Mai00].

Definition 2.11 The fragment detLTL is the smallest set of formulae such that

� all atomic propositions are in detLTL,

� if '; are formulae in detLTL and p 2 At , then '^ , X', (p^')_ (:p^
 ), (p ^ ')U (:p ^  ), and :((:p _ :')U (p _ : )) are in detLTL.

Flat fragment

The idea of flat fragments of temporal logics have been introduced
in [Dam99] where linear as well as branching temporal logics are under
consideration. Although the paper presents only one flat fragment of LTL,
namely atLTL(U), we give a general definition of flat LTL fragments.

Definition 2.12 Let F be an LTL fragment. Fragment atF consists of all for-
mulae of F such that left subformula of each U operator is from LTL().

These flat fragments can be alternatively defined with use of the special
modality called flat until and denoted U

� [DS02, Sch03]. The modality is
the until operator where only LTL() formulae are allowed on its left-hand
side.
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2.2 First-order monadic logic of order

We recall the syntax, semantics, and definitions of important fragments of
First-Order Monadic Logic of Order (FOMLO).

The signature of FOMLO contains unary predicates P
0

; P

1

; : : : corre-
sponding to atomic propositions p

0

; p

1

; : : : (here we assume that all atomic
propositions are of this form) and binary predicates su and < standing for
successor and less than respectively. We use standard notations for variables,
true, boolean connectives, equality, and quantifiers.

The formulae of FOMLO are defined as follows.

� Atomic formulae >; P
i

(x); su(x; y); x < y; and x = y, where i 2 N

0

and x; y are variables, are formulae of FOMLO.

� Let'; be FOMLO formulae and x be a variable. Then:';'^ ;9x:'
are FOMLO formulae as well.

The length of a FOMLO formula ' is denoted by j'j. The syntax is fur-
ther extended with?, disjunction, and universal quantification defined via
standard abbreviations.

Formulae of FOMLO are interpreted over (finite or infinite) words. Let
� be a word over an alphabet 2P , where P � At . With � we associate the
sets of natural numbers M�

= fn j 0 � n < j�jg and

P

�

i

= fm j m 2M

� and p
i

2 �(m)g

for every i. We define when a FOMLO formula ' is valid for � under a vari-
able assignment v mapping variables toM�, written � j= '[v℄, by induction
on the structure of '.

� j= >[v℄

� j= P

i

(x)[v℄ iff v(x) 2 P

�

i

� j= su(x; y)[v℄ iff v(x) + 1 = v(y)

� j= x < y[v℄ iff v(x) < v(y)

� j= x = y[v℄ iff v(x) = v(y)

� j= (:')[v℄ iff � 6j= '[v℄

� j= (' ^  )[v℄ iff � j= '[v℄ and � j=  [v℄

� j= (9x:')[v℄ iff there exists an assignment v0 such that � j= '[v

0

℄ and
v

0

(y) = v(y) for every variable y different from x

By '(x) we denote the formula 'where at most the variable x is free. To
bring this notation closer to the one for LTL, we write (�; i) j= ' if '(x) is
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valid for a word � under an assignment mapping x to i. Further, we write
� j= ' if (�; 0) j= '.

Given an alphabet� = 2

P , whereP is a finite set of atomic propositions,
a FOMLO formula '(x) defines the languages of finite or infinite words
over � in the following way:

L

�

F

(') = fu 2 �

+

j u j= 'g

L

�

(') = f� 2 �

!

j � j= 'g

2.2.1 Fragments

The FOMLO fragments we are dealing with are given by bounds on num-
bers of variables used in a formula and/or by disallowing the use of su
predicate.

Definition 2.13 For every n 2 N, the fragment FOn consists of all FOMLO
formulae of the form '(x) containing at most n variables. Moreover, by FOn[<℄
we denote the set of formulae from FO

n that contain no su predicate.

In the following, we use mainly the fragments FO3

;FO

2

; and FO

2

[<℄.

2.3 Automata and formal languages

This subsection recalls some definitions from the area of automata and for-
mal languages employed in this thesis. We start with basic theory about
languages of finite words, then we move to !-languages, and we close with
alternating automata.

2.3.1 Finite words

Definition 2.14 A finite automaton is a tuple A = (�; Q; q

0

; Æ; F ), where �
is a finite input alphabet, Q is a finite set of states, q

0

2 Q is an initial state,
Æ : Q��! 2

Q is a transition function, and F � Q is a set of accepting states.
An automaton is called deterministic if for all states q 2 Q and all a 2 � the set
Æ(q; a) is a singleton. The automaton is called nondeterministic otherwise. A run
of the automaton over a word u 2 �

� is a sequence of states p
0

; p

1

; : : : ; p

juj

2 Q

such that p
0

= q

0

and p
i+1

2 Æ(p

i

; u(i)) for all 0 � i < juj. The run is accepting
if p

juj

2 F . A word is accepted by the automaton if there is an accepting run of
the automaton over the word. We say that the automatonA recognizes a language

L(A) = fu 2 �

�

j u is accepted by Ag:
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The transition function Æ can be extended into a function Æ� : Q� �

�

! 2

Q

defined inductively as

Æ

�

(q; ") = fqg and Æ

�

(q; ua) =

[

q

0

2Æ

�

(q;u)

Æ(q

0

; a);

where q 2 Q;u 2 �

�, and a 2 �.
Languages recognized by finite automata are called regular. A deter-

ministic finite automaton (DFA) A is called minimal if there is no DFA
with smaller number of states recognizing the language L(A). The fact
that for each regular language L there exists a unique (up to the labelling
of states) minimal DFA recognizing the language L is a fundamental re-
sult of automata theory. The proof can be found in standard textbooks,
e.g. in [HU79].

Definition 2.15 A regular expression over an alphabet � is given by the follow-
ing abstract syntax:

R ::= " j ; j a j R :R j :R j R+R j R

�

;

where a ranges over � and operations :;:;+, and � denote concatenation, com-
plementation (with respect to ��), union, and iteration (also known as Kleene
or star closure) respectively.

A regular expression R over � denotes a language [R℄ � �

� defined by induc-
tion on the structure of R:

["℄ = f"g [R :R

0

℄ = fuv j u 2 [R℄; v 2 [R

0

℄g

[;℄ = ; [:R℄ = �

�

r [R℄

[a℄ = fag [R+R

0

℄ = [R℄ [ [R

0

℄

[R

�

℄ = [R℄

�

A regular expression without any occurrence of � is called star-free.

In the following a regular expression is identified with the language it de-
fines. Regular expressions define exactly regular languages. Languages
definable by star-free regular expressions are called star-free.

Definition 2.16 Let L � �

� be a language. A syntactic congruence of L is an
equivalence �

L

� �

�

� �

� defined as

u �

L

v if and only if 8w; x 2 �

�

: wux 2 L, wvx 2 L:

Syntactic monoid of L is the quotient ��j
�

L

with the operation concatenation
and the class containing " as an identity element.

A language is regular if and only if its syntactic monoind is finite.
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2.3.2 Infinite words

In contrast to automata over finite words defined above, many various ac-
ceptance conditions has been considered in connection with infinite words.
In the following we use seven of them.

Definition 2.17 A finite automaton (over infinite words) is a tuple A =

(�; Q; q

0

; Æ; F ), where F is an acceptance condition. The meaning of �; Q; q
0

,
and Æ as well as the notions of determinism and nondeterminism are the same as
in Definition 2.14. A run � of the automaton over an infinite word � 2 �

! is a
sequence of states � = p

0

; p

1

; : : : such that p
0

= q

0

and p
i+1

2 Æ(p

i

; �(i)) for each
i � 0. By Inf (�) we denote the set of states occurring infinitely many times in
the run �. The set of all states occurring (at least once) in � is denoted by O(�).
The acceptance of a run depends on chosen acceptance condition.

� Büchi condition (F � Q): a run � is accepting iff Inf (�) \ F 6= ;.

� co-Büchi condition (F � Q): a run � is accepting iff Inf (�) \ F = ;.

� Streett condition (F = f(G

1

; R

1

); : : : ; (G

n

; R

n

)g, where G
i

; R

i

� Q):
a run � is accepting iff 8i : (Inf (�) \G

i

6= ;)) (Inf (�) \R

i

6= ;).

� Muller condition (F � 2

Q): a run � is accepting iff Inf (�) 2 F .

� occurrence Büchi condition (F � Q): a run � is accepting iff O(�) \

F 6= ;.

� occurrence co-Büchi condition (F � Q): a run � is accepting iff O(�)\

F = ;.

� occurrence Streett condition (F = f(G

1

; R

1

); : : : ; (G

n

; R

n

)g, where
G

i

; R

i

� Q): a run � is accepting iff 8i : (O(�) \ G

i

6= ;) )

(O(�) \R

i

6= ;).

An !-word is accepted by the automaton with a given acceptance condition if
there is an accepting run of the automaton over the !-word. We say that the
automaton A with a given acceptance condition recognizes a language

L(A) = f� 2 �

!

j � is accepted by Ag:

The transition function Æ can be extended into a function Æ� : Q� �

�

! 2

Q

in the same way as in the case of automata over finite words.

We say Büchi automaton instead of automaton over infinite words with
Büchi acceptance condition. By analogy we use terms occurrence Büchi au-
tomaton, (occurrence) co-Büchi automaton, (occurrence) Street automaton, and
Muller automaton.
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Languages of !-words recognizable by nondeterministic Büchi au-
tomata are called !-regular. The class of !-regular languages can equiva-
lently be defined as the class of !-languages recognized by (deterministic
or nondeterministic) Streett or Muller automata.

In this thesis we also employ weak and terminating nondeterministic
Büchi automata.

Definition 2.18 Let A = (�; Q; q

0

; Æ; F ) be a Büchi automaton. The automaton
is called weak if there exists a partition of the set Q into sets Q

i

and an ordering
� on these sets such that

� for each Q
i

, either Q
i

\ F = ; or Q
i

� F , and

� for each q 2 Q
j

, p 2 Q
j

, if q 2 Æ(p; a) for some a 2 � then Q
i

� Q

j

.

The automaton is called 1-weak if it is weak and every Q

i

is a singleton. The
automaton is called terminal if for each p 2 F and a 2 � it holds that Æ(p; a) 6= ;

and Æ(p; a) � F .

Several definitions of various syntactic congruences have been pro-
posed for !-languages (see [MS97]). We present the one introduced by
Arnold [Arn85] and sometimes called iteration syntactic congruence.

Definition 2.19 Let L � �

! be an !-language. For each word v 2 �

� we define
the sets �(v) and �(v) as

�(v) = f(u;w; x) j u;w; x 2 �

�

; uvwx

!

2 Lg;

�(v) = f(u;w; x) j u;w; x 2 �

�

; u(wvx)

!

2 Lg:

A syntactic congruence of L is an equivalence �
L

� �

�

� �

� defined as

u �

L

v if and only if �(u) = �(v) and �(u) = �(v):

Syntactic monoid of L is a quotient ��j
�

L

with the operation concatenation and
the class containing " as an identity element.

Let us note that the syntactic monoid of !-regular language is always finite,
but there are nonregular !-languages with finite syntactic monoid.

2.3.3 Alternating automata

In Chapter 7 we work with alternating automata. Transition function of an
alternating automaton combines the nondeterministic (i.e. existential) and
universal mode. More formally, the transition function assigns to each state
and letter a positive boolean formula over states. The set of positive boolean
formulae over a finite set of states Q, denoted B+(Q), contains formulae >
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(true), ? (false), all elements of Q and boolean combinations over Q built
with ^ and _. A subset S of Q is a model of ' 2 B

+

(Q) if the valuation
assigning true just to the states in S satisfies '. A set S is a minimal model of
', denoted S j= ', if S is a model of ' and no proper subset of S is a model
of '.

Definition 2.20 An alternating Büchi automaton is a tuple A =

(�; Q; q

0

; Æ; F ), where �; Q; q
0

; F have the same meaning as in nondeterminis-
tic Büchi automaton (see Definition 2.17) and Æ : Q��! B

+

(Q) is a transition
function.

A run of an alternating automaton is a (potentially infinite) tree. A tree
is a set T � N

�

0

such that if x 2 T , where x 2 N

�

0

and  2 N

0

, then also
x 2 T and x

0

2 T for all 0 � 

0

< . A Q-labelled tree is a pair (T; r) where
T is a tree and r : T ! Q is a labelling function.

Definition 2.21 Let A = (�; Q; q

0

; Æ; F ) be an alternating Büchi automaton. A
run of A over an !-word � 2 �

! is a Q-labelled tree (T; r) with the following
properties:

1. r(") = q

0

.

2. For each x 2 T the set S = fr(x) j x 2 Tg satisfies S j= Æ(r(x); w(jxj)).

A run (T; r) is accepting if for every infinite path � in T it holds that Inf (�) \
F 6= ;, where Inf (�) is a set of all labels (i.e. states) appearing infinitely often on �.
An !-word � 2 �

! is accepted by the automaton if there exists an accepting
run of A over �. We say that the alternating Büchi automaton A recognizes
a language

L(A) = f� 2 �

!

j � is accepted by Ag:

In Chapter 7 we use the following notation and terminology. Let p be
a state of an alternating Büchi automaton A = (�; Q; q

0

; Æ; F ). By A(p) we
denote the automaton A with initial state p instead of q

0

. Further, Su(p)
denotes the set

Su(p) = fq j 9a 2 �; S � Q: S j= Æ(p; a) and q 2 Sg

of all possible successors of p. We also set Su0(p) = Su(p) r fpg. More-
over, we say that a state p has a loop whenever p 2 Su(p). Finally, instead

of S j= Æ(a; p) we write p
a

! S and say that the automaton has a transition
leading from p to S under a.

The alternating 1-weak Büchi automata (A1W automata) defined below are
also known as very weak alternating Büchi automata or linear alternating Büchi
automata.
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Figure 2.2: The automaton accepting the language a�bfa; b; g�! .

Definition 2.22 An alternating Büchi automaton A = (�; Q; q

0

; Æ; F ) is called
1-weak if there exists an ordering < on the set Q such that q 2 Su

0

(p) implies
q < p.

An A1W automaton can be depicted as a graph where nodes corre-

spond to the states of the automaton and every transition p

a

! S is rep-
resented by a branching edge labelled with a and leading from the node p
to the nodes in S. Edges that are not leading to any node correspond to
the case when S is an empty set. An initial state is indicated by a special
unlabelled edge leading to the corresponding node. The nodes correspond-
ing to the accepting states are double-circled. For example, the Figure 2.2
depicts an automaton accepting the language a�bfa; b; g�! .

2.4 Model checking

This section provides a brief introduction into the area of a popular veri-
fication method known as model checking. In general, the model checking
problem is to decide whether a given system satisfies a given specifica-
tions. According to the topic of this thesis, we focus on LTL model check-
ing of finite-state systems. In this case, the question is whether all the pos-
sible runs (or behaviours) of a given finite-state system satisfy a given LTL
formula (called specification formula). We describe the automata-based al-
gorithm proposed in [VW86] and implemented in many model checking
tools like, for example, SPIN [Hol97]. For more information about model
checking see, for example, [CGP99].

A system to be verified is given in a suitable modelling language (for
example, SPIN uses its own C-like language ProMeLa) and it is interpreted
as a Kripke structure.
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Definition 2.23 Kripke structure is a tuple (S; T; s
I

; L), where

� S is a set of states,

� T is a set of transitions (for each t 2 T , t � S � S),

� s

I

2 S is an initial state,

� L : S ! 2

At is a labelling function associating to each state a set of atomic
propositions that are true in the state.

We consider deterministic systems only, hence every t 2 T is seen as a partial
function t : S ! S. A path in a Kripke structure K starting from a state s 2 S
is a maximal (finite or infinite) sequence s

0

; s

1

; : : : of states such that s
0

= s and
for every i there is a transition t

i

2 T satisfying t
i

(s

i

) = s

i+1

.

The validity of an LTL formula for a Kripke structure is defined in the fol-
lowing way.

Definition 2.24 LetK = (S; T; s

I

; L) be a Kripke structure. We say that an LTL
formula ' is valid for a state s 2 S of the Kripke structure K , written K; s j= ',
if for every path s

0

; s

1

; : : : such that s
0

= s it holds that L(s
0

)L(s

1

) : : : j= '.
Further, we write K j= ' instead of K; s

I

j= '.

Formally, the model checking problem is to decide whether a given
Kripke structure K and a given specification formula ' satisfy K j= ' or
not.

For technical reasons, it is assumed that all paths in a Kripke structure
are infinite. This can be achieved by adding a special looped transition to
every terminal state.

Paths of a Kripke structure represent runs of the system. The la-
belling function L translates each path s

0

; s

1

; : : : into an infinite word
L(s

0

)L(s

1

) : : : over alphabet 2At . The range of the labelling function is usu-
ally restricted to 2

At('), where At(') is a set of atomic propositions occur-
ring in a considered specification formula '.

Example 2.25 Figure 2.3 provides an example of a system and associated Kripke
structure. The system is a programme beginning with parallel execution of two
threads A and B. The corresponding Kripke structure reflects the fact that the in-
structions of A and B can be interleaved in arbitrary way. The states carry the
information about variables and about the position of control in the two threads.
The transitions correspond to individual assignment instructions. In the follow-
ing, the system is considered in connection with specification formulae with atomic
propositions depending on the value of x only. In Figure 2.3 we therefore explicitly
indicate the value of x in each state of the Kripke structure (the value is considered
to be 0 at the very beginning). The . direction corresponds to the instructions of
A, and the & direction corresponds to the instructions of B.
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cobegin

A; B;

coend
...

procedure A()

begin

for i=1 to 5 do

begin

x = x + 1;

x = x - 1;

end

end

procedure B()

begin

z = 2;

x = x + 7;

z = 2 * z;

z = z - 1;

end
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Figure 2.3: Programme and associated Kripke structure.

The classic automata-based model checking algorithm works as fol-
lows. The Kripke structure associated with a given system is translated
(by moving labels from states to edges) into a Büchi automaton A accept-
ing words corresponding to all possible runs of the system. A given spec-
ification formula ' is transformed into a Büchi automaton B such that B
recognizes the language of all infinite words (over 2

At(')) satisfying :'
(i.e. L(B) = L(:')). The automaton B is called the property automaton.
The original model checking problem to decide whether L(A) � L(') is
transformed into the problem to decide whether L(A) \ L(B) = ;. Hence,
the Büchi automaton C called the product automaton and accepting the in-
tersection L(A) \ L(B) is constructed. It is now sufficient to check if L(C)
is empty or not. Algorithms checking the emptiness, including the popular
nested depth-first search, employ the observation that L(C) is nonempty if
and only if the automaton contains a cycle such reachable from the initial
state such that there is an accepting state on the cycle. If such a cycle is
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found, an infinite word accepted by C can be derived from it. This word
corresponds to a run of the system that violates the specification formula.

The running time of the indicated algorithm is linear in the size of a
Kripke structure corresponding to the system and exponential in the length
of a specification formula. The exponential complexity with respect to the
length of a formula is not the main problem as the formula is typically very
short. The real problem is that the Kripke structure is usually very large
comparing to the original description of the system given in a modelling
language. This effect, called the state explosion problem, has two main rea-
sons, namely the asynchronous parallelism and large data domains. There
are various strategies how to deal with this problem. For example, one
can reduce the number of states by abstracting the code and/or the data
of the system, use various ‘compositional’ techniques, or use restricted for-
malisms (like, e.g. pushdown automata) which allow for a kind of ‘sym-
bolic’ model checking where the explicit construction of the associated
Kripke structure is not required. One of the most successful methods is
the partial order reduction [Val91, God96, HP95, Pel98], also known as the
model checking using representatives.

2.4.1 Partial order reduction

In fact, the term partial order reduction contains several different algorithms
based on the same idea: it is not needed to check whether a run of the
system satisfies a specification formula if there exists another run that is
checked and the two runs cannot be distinguished by the specification for-
mula.

Design of a partial order reduction method has two steps.

1. First, one have to identify a condition (possibly parametrized by a
specification formula) such that if a pair of runs satisfies the condition
then the runs cannot be distinguished by the specification formula.

2. Second, an algorithm is built. The input of the algorithm is a Kripke
structure and a specification formula. The algorithm uses the con-
dition in order to remove some paths from the structure and thus
produce a smaller but an equivalent (with respect to the specification
formula) Kripke structure.

The condition is usually formulated as an equivalence such that every
two equivalent runs are not distinguished by the specification formula.
Most partial order reduction methods employ the stutter equivalence (see
Definition 3.14 or Chapter 5 devoted to stuttering principles). More pre-
cisely, the methods uses the fact that two runs cannot be distinguished by
any formula ' of LTL(U) formula ' if the words corresponding to these
runs and restricted to alphabet 2At(') are stutter equivalent.
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In Chapters 5 and 6 we propose several new equivalences that can be
potentially used for the construction of new reduction methods. All of
them subsume stutter equivalence. Later we illustrate that applications
of these new equivalences can lead to more efficient reductions (meaning
that the resulting structures are smaller). Unfortunately, we do not pro-
vide any indication of the algorithms based on these equivalences. All the
reductions presented are made by hand.

In order to provide a more concrete idea of the partial order reduc-
tion algorithms we sketch a basic algorithm for the partial order reduction
based on stutter equivalence. This algorithm is implemented, for example,
in SPIN and well described in [CGP99].

Let K be a Kripke structure. For all states s of K , by enabled(s) we de-
note a set of transitions enabled in state s, i.e. t 2 enabled(s) if and only if
t(s) is defined. For each state s, the reduction algorithm computes a sub-
set of enabled(s) called ample(s). The reduced version of the structure K
arises from the original structure by disabling all the transitions leading
form a state s that are not in ample(s). Subsequently, some of the states
become unreachable in the reduced structure. The sets ample(s) should be
large enough as the paths in the reduced structure must contain at least
one representative of each class of stutter equivalent paths in the original
structure. On the other hand, the reduced structure should be substantially
smaller than the original one.

The reduction employs two important principles: independence and in-
visibility. An independence relation I � T � T is a symmetric and antireflex-
ive relation satisfying for every state s and every (t; t

0

) 2 I the following
condition.

If t; t0 2 enabled(s) then t 2 enabled(t0(s)) and t(t0(s)) = t

0

(t(s)):

The dependency relation is the complement of the independence relation I .
A transition t 2 T is invisible with respect to a set of atomic proposi-

tions P � At if for each pair of states s; s0 such that t(s) = s

0 the equation
L(s)\P = L(s

0

)\P holds. In other words, an invisible transition does not
change the validity of atomic propositions in P . In the following, invisibil-
ity is always associated with a set of atomic propositions occurring in the
specification formula.

It has been proved that a reduced system given by sets ample(s) pre-
serves the satisfaction of LTL(U) specification if for every state s the fol-
lowing four conditions hold.

1. ample(s) = ; iff enabled(s) = ;.

2. Along every path in the original structure starting at s it holds that a
transition dependent on a transition in ample(s) cannot be executed
without a transition in ample(s) occurring first.
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Figure 2.4: The Kripke structure reduced by standard partial order reduc-
tion.

3. If ample(s) 6= enabled(s) then every t 2 ample(s) is invisible.

4. A cycle is not allowed if it contains a state in which some transition
t is enabled, but is never included in ample(s) for any state s on the
cycle.

Reduction algorithm uses heuristic for proposing sets ample(s) and it
checks if the conditions are satisfied. In the case that for some s every pro-
posed ample(s) violates some condition, the ample(s) is set to enabled(s).

It does not make much sense to construct the whole Kripke structure
and then try to reduce it. That is why the reduced system is calculated on-
the-fly, meaning that a set ample(s) is computed when the model checking
algorithm running on the reduced system needs to know the successors
of the state s. Hence, for the states that are not reachable in the reduced
system the sets ample(s) are not computed at all.

Example 2.26 Let us consider the system given in Example 2.25 and a specifica-
tion formula of LTL(U) talking only about value of x like, for example, G(x < 8).
The only invisible transitions correspond to the three instructions changing the
value of z. Using the described partial order reduction method based on the stutter
equivalence, the Kripke structure depicted in Figure 2.3 can be reduced into the
Kripke structure given in Figure 2.4.

2.4.2 Model checking a path

Recently, Markey and Schnoebelen [MS03] have introduced a problem of
model checking a finite-state system with a single path. The problem is mo-
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tivated primarily by runtime verification. A Kripke structure correspond-
ing to a system with a single path has one of the two shapes depicted in
Figure 2.5.
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//

: : :

//

� �

//

�

//

: : :

//

�

//

�

//

: : :

//

�

��

Figure 2.5: A Kripke structure with a single finite (left) or infinite (right)
path.

Hence, a word corresponding to a path of such system is either finite
or ultimately periodic. Ultimately periodic words are the words of the form
uv

!, where u; v 2 �

� and v 6= ". They are called loops for short.



Chapter 3

Expressiveness

This chapter provides an overview of results about the expressive power
of linear temporal logic and its fragments. The expressive power of a for-
malism (e.g. LTL or its fragment, FOMLO, or Büchi automata) is measured
by the languages definable by the formalism.1 Formally, given fragments
F

1

;F

2

of LTL or first-order logic, we write F
1

= F

2

meaning that every
language definable in F

1

is also definable in F
2

and vice versa.
Basically, the results we are going to present can be divided into two

groups.

1. Results comparing the expressive power of LTL fragments and the
other formalisms mentioned in the previous chapter. These results
subsume several translations between the fragments and formalisms
under consideration.

2. Results on decidability of the considered LTL fragments. A fragment
F is said to be decidable if there exists an algorithm deciding the prob-
lem whether a given (regular or !-regular) language L can be ex-
pressed in F or not. The problem is sometimes called the membership
problem. If we restrict our attention to languages over strings only, we
refer to decidability (of the membership problem) over strings. Similarly
we talk about decidability over !-words. Complexity of the respective
problems is studied as well.

The first group also contains various characterizations of language express-
ible in the considered fragments. Some characterizations lead directly to
the decision algorithms for these fragments. Such characterizations are
called effective.

Our overview of the expressiveness results is organized as follows.
First, we present various characterizations of languages definable in LTL.

1Let us note that there is also another natural measure of expressive power, namely the
languages of pointed words definable in a given formalism. We do not provide systematic
overview of results using this measure. For more details see [Eme90, Wil98].
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Most of them are classic results originally presented more then twenty
years ago. This part of our overview is partly based on well-written sur-
veys [Eme90] and [Tho90]. The results concerning simple fragments are
discussed thereafter. In particular, we give a hierarchy illustrating expres-
siveness of selected simple fragments. Then we summarize results regard-
ing the other fragments under consideration. The chapter closes with some
succinctness issues.

3.1 Complete LTL

First of all we should explain the term complete LTL. Originally, we have
defined LTL as a temporal logic with two modalities U and X. Later we
have added a plethora of other modalities to the logic that is still called
LTL. This ambiguity in terminology is justified as these two logics are ex-
pressively equivalent, i.e. every language definable in temporal logic with
all modalities mentioned in Subsection 2.1.3 is also definable in LTL(U;X).
This is a consequence of the following facts.

Fact 3.1 Given any formula ' of LTL (with all the mentioned modalities) there
exists a globally equivalent formula '0(x) of FOMLO. The construction of '0(x)
is given by first-order definition of LTL semantics.

Theorem 3.2 ([Kam68, GPSS80]) Given any FOMLO formula '(x) there ex-
ists a globally equivalent formula '0 of LTL(U;X;S;Y).

Theorem 3.3 (Separation Theorem [Gab89]) Every LTL(U;X;S;Y) formula
' can be effectively translated into a boolean combination of formulae of
LTL(U;X) [ LTL(S;Y) that is globally equivalent to '.

Obviously, any LTL(S;Y) formula is initially equivalent to a formula with-
out any modality. Hence, every LTL(U;X;S;Y) formula ' can be effectively
translated into a formula of LTL(U;X) that is initially equivalent.

To sum up, every LTL formula with arbitrary modalities is initially
equivalent to a formula of LTL(U;X).

Corollary 3.4 A language is expressible in LTL if and only if it is expressible in
LTL(U;X).

3.1.1 Finite words

First, we summarize characterizations of LTL languages over finite words.
Roughly speaking, it is known that LTL languages “cannot count modulo
n for any n > 1”. The following definitions formalize this non-counting
property in terms of monoids, formal languages, and finite automata.
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Definition 3.5 A finite monoid (M; �; 1) is called aperiodic if there exists n 2 N
0

such that xn = x

n+1 holds for all x 2M .

Definition 3.6 A language L � �

� is noncounting if there exists k 2 N
0

such
that for all n � k and u; v; w 2 �

� it holds that

uv

n

w 2 L () uv

n+1

w 2 L:

Definition 3.7 Let A = (�; Q; q

0

; Æ; F ) be a finite automaton. A sequence
p

1

; : : : ; p

m

2 Q of distinct states is a counter (of length m) for a string u 2 �

+ if
m > 1 and p

i+1

2 Æ

�

(p

i

; u) for all 1 � i � m, where p
m+1

= p

1

. An automaton
is counter-free if it does not have any counter.

Theorem 3.8 Let � be an alphabet and L � �

+ be a language. The following
statements are equivalent:

1. L is definable in LTL.

2. L is definable in FOMLO.

3. L is definable in FO

3.

4. The minimal deterministic finite automaton recognizing L is counter-free.

5. L is definable by a star-free regular expression.

6. The syntactic monoid of L is finite and aperiodic.

7. L is regular and noncounting.

8. L is regular and (m;n)-stutter closed2 for some m;n 2 N
0

.

The equivalence of conditions 1 and 2 follows from Fact 3.1 and Theo-
rem 3.2. Further, the equivalence of conditions 1 and 3 follows from Corol-
lary 3.4 and the fact that every formula of LTL(U;X) can be transformed
(using the semantics of U and X given by first-order formulae) into a for-
mula of FO3. The equivalence of conditions 2, 4, and 5 has been proved
by McNaughton and Papert [MP71]. A short proof of equivalence between
conditions 2 and 5 can be found in [PP86]. Conditions 5 and 6 are equiv-
alent due to classical theorem of Schützenberger [Sch65]. Finally, it is easy
to see that the remaining conditions 7 and 8 are equivalent to condition 4.

Direct translations between LTL formulae and star-free regular expres-
sions can be found in [Zuc86]. The construction of LTL formula accepting
the same language as counter-free deterministic finite automaton (DFA) is
presented in [Wil99]. Alternative direct proofs of the fact that a counter-free
DFA recognizes an LTL language can be found in [CPP93] and [MP90a].

2Definition of (m;n)-stutter closed languages is given in Chapter 5.
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Some of the conditions presented in Theorem 3.8 lead to algorithms de-
ciding the membership problem for LTL over strings. Namely, given a reg-
ular languageL one can decide whether its syntactic monoid is aperiodic or
whether the corresponding minimal DFA is counter-free. The decision pro-
cedure for counter-freeness employs a consequence of a pumping lemma
saying that an automaton with n states has a counter if and only if it has
a counter for a string u such that juj � n. This bound allows to decide
the problem whether a DFA is counter-free in polynomial space. Moreover,
this problem is PSPACE-complete due to [CH91]. As a minimization of a
deterministic finite automaton can be done in PSPACE, we get the follow-
ing.

Theorem 3.9 The problem whether a given deterministic finite automaton recog-
nizes an LTL language is PSPACE-complete.

3.1.2 Infinite words

We now move to LTL languages of infinite words where the situation is a
bit different. As in the previous case, we start with some definitions.

Definition 3.10 An !-language L � �

! is noncounting if there is k 2 N
0

such
that for all n � k and x; y; z; u 2 �

� the two following equivalences hold:

xu

n

yz

!

2 L () xu

n+1

yz

!

2 L

x(yu

n

z)

!

2 L () x(yu

n+1

z)

!

2 L

Counter-free finite automata over infinite words are defined in the same
way as counter-free finite automata over finite words – see Definition 3.7.

The characterizations of LTL !-languages use the notion of regular ex-
pressions in two different ways. The first approach employs an operator
which maps languages defined by regular expressions to !-languages. The
characterizations work with two operators of this type.

1. The operator infinite repetition (also known as !-iteration). Given a
regular expression R, the expression R! denotes the language of all
!-words of the form u

1

; u

2

; : : :, where each u
i

2 R.

2. The limit operator. Given a regular expressionR, the expression limR

denotes the language of all !-words � such that infinitely many dis-
tinct prefixes of � are in R.

The second approach, mentioned in [Eme90], is to embed the regular ex-
pressions into LTL. This is done via special operator called history, written
[R℄

H

, where R is a regular expression. Roughly speaking, [R℄
H

is true for
(�; i) if a word �(0)�(1) : : : �(i) corresponding to the history of considered
computation is in the language defined by R.

(�; i) j= [R℄

H

iff �(0; i+ 1) 2 R



3.1 COMPLETE LTL 45

Theorem 3.11 Let L � �

! be an !-language. The following statements are
equivalent:

1. L is definable in LTL.

2. L is definable in FOMLO.

3. L is definable in FO

3.

4. L =

S

m

i=1

R

i

S

!

i

, where R
i

; S

i

are star-free regular expressions such that
S

i

:S

i

� S

i

.

5. L =

S

m

i=1

(limR

i

r limS

i

) where R
i

; S

i

are star-free regular expressions.

6. L is obtained from �

! by repeated application of boolean operations and
concatenation with star-free languages L0 � �

� on the left.

7. L =

S

m

i=1

R

i

limS

i

, where R
i

; S

i

are star-free regular expressions.

8. L is definable by a formula of the form
W

m

i=1

(

1

F

[R

i

℄

H

^ :

1

F

[S

i

℄

H

), where
R

i

; S

i

are star-free regular expressions.

9. L is !-regular and its syntactic monoid is aperiodic.

10. L is !-regular and noncounting.

11. L is recognized by a counter-free Muller automaton.

12. L is recognized by an alternating 1-weak Büchi automaton.

13. L is !-regular and (m;n)-stutter closed for some m;n 2 N
0

.

Proof of the equivalence of the first three conditions is the same as in
Theorem 3.8. Condition 6 has been formulated by Ladner [Lad77] as a
definition of star-free !-languages. The equivalence of conditions 2, 4, 5,
and 6 has been established by Thomas [Tho79, Tho81]. A short proof of
equivalence between conditions 2 and 6 can be found in [PP86]. Condi-
tions 7 and 8 mentioned in [Eme90] are another variations on conditions 4
and 5. Further, Perrin [Per84] showed that an !-regular language is star-
free if and only if its syntactic monoid is aperiodic. The equivalence of
conditions 9 and 10 follows directly from Definition 2.19, Definition 3.10,
and finiteness of syntactic monoids of !-regular languages. Condition 11
is equivalent to definability by LTL(U;X) according to [LPZ85]. The equiv-
alence between conditions 1 and 12 is a corollary of two following facts.
First, given an LTL formula ' and an alphabet �, one can construct an
A1W automaton accepting language L�(') [MSS88]. Second, the trans-
lation of A1W automata into language equivalent LTL formulae has been
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developed independently in [Roh97] and [LT00]. Deeper connections be-
tween LTL and A1W automata are studied in Chapter 7, where we also
present the mentioned translations. Finally, the definition of (m;n)-stutter
closed languages as well as the proof of the equivalence between LTL de-
finability and (m;n)-stutter closeness can be found in Chapter 5.

As mentioned in [Tho90], the characterization of star-free !-languages
via aperiodicity of syntactic monoid yields the following decidability re-
sult.

Theorem 3.12 The problem whether an !-language is definable by LTL is decid-
able.

Let us note that the requirement S
i

:S

i

� S

i

in condition 4 cannot be
omitted as noted in [Tho79]. This is documented by the following example.

Example 3.13 Let R = ", S
1

= aa [ b, and S
2

= aa [ ab be star-free regular
expressions. The languages L

1

= RS

!

1

and L
2

= RS

!

2

, are not star-free.3

The language L
1

has been used by Ladner [Lad77] to show that star-free
!-languages form a proper subclass of !-regular languages. The language
L

2

can be defined by formula G
2

a. The modality G

2

has been proposed by
Wolper [Wol83] in order to demonstrate that there are !-languages which
cannot be defined in expressively complete formalisms (the term used at that
time for formalisms with the same expressive power as FOMLO or LTL).
Wolper proposed an extension of LTL called Extended Temporal Logic (ETL).
ETL can express all !-regular languages. Complexity issues for (several
versions of) ETL has been studied in [SC85, VW94, SV89].

As mentioned above, Büchi automata are able to express the wider
class of languages than LTL formalism. In spite of this, the translation of
LTL(U;X) formulae into Büchi automata is very important as it plays a sub-
stantial role in an automata-based approach to the model checking problem
(see Section 2.4). The first translation (designed even for the more gen-
eral fragment LTL(U;X;S;Y)) has been described in [WVS83]. A survey of
translation algorithms together with a tableau-based translation algorithm
implemented in SPIN can be found in [GPVW95]. Improved versions of
this algorithm are presented in [DGV99, EH00, SB00]. More efficient trans-
lation algorithms introduced in [GO01, Tau03] use alternating 1-weak au-
tomata as an intermediate formalism.

3.2 Simple fragments

The study of an expressive power of simple fragments concentrates on the
fragments built up with future modalities only and the symmetric fragments,

3For formal proof we refer to Corollary 5.3. We note that Languages S�
1

and S�
2

represent
languages of finite words that are regular but not star-free.
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i.e. the fragments containing the past counterparts of all the included future
modalities as well.

Before we will give an expressiveness hierarchy covering all these frag-
ments, we recall expressiveness and decidability results about simple frag-
ments. The results are divided into three groups presented in the following
three subsections.

3.2.1 Stuttering and its implications

First, we present some results related to the well-known stuttering princi-
ple.

Definition 3.14 Let � be a word. A letter �(i) is redundant if i + 1 < j�j,
�(i) = �(i+ 1), and � is either finite or there is j > i such that �(j) 6= �(i). The
canonical form of � is the word obtained by deletion of all the redundant letters
from �. Two words �; �0 are stutter equivalent if they have the same canonical
form. A language L is called stutter closed or stutter-invariant if it is closed
under stutter equivalence, i.e. for every pair of stutter equivalent words � and �0

it holds that � 2 L iff �0 2 L.

Theorem 3.15 ([Lam83a]) Every language (of finite or infinite words) express-
ible in LTL(U) is stutter closed.

Theorem 3.16 ([PW97a, Ete00]) Every stutter closed LTL language (of finite or
infinite words) is expressible in LTL(U).

As all the languages definable in LTL(U;S) are stutter closed, the previous
theorem implies that LTL(U;S) = LTL(U). It also says that an LTL(U

s

)

language is expressible in LTL(U) if and only if it is stutter closed. This
relation can be generalized in the following way.

Theorem 3.17 ([Wil98, Wil99]) Let M � fF;P;U;Sg and M 0 be the set con-
taining exactly the strict versions of the modalities in M . A language (of finite or
infinite words) defined by a formula of LTL(M 0

) is expressible in LTL(M) if and
only if the language is stutter closed.

Proof of Theorem 3.16 provides a translation of arbitrary LTL(U;X) for-
mula ' into an LTL(U) formula �(') such that ' and �(') are equivalent if
and only if the language L(') is stutter closed. As it is decidable whether
two formulae are equivalent or not, it is also decidable whether an LTL
formula defines a stutter closed language. Complexity of (a more general
problem covering also) this problem has been studied in [PWW98].

Theorem 3.18 ([PWW98, Wil98]) The problem whether a language defined by a
finite nondeterministic automaton, Büchi automaton, or by an LTL(U;X) formula
(interpreted over strings or !-words) is stutter closed is PSPACE-complete.
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The PSPACE upper bound for !-languages given LTL(U;X) formulae has
been alternatively proven in [Ete00].

As a corollary, we get the decidability of the fragment LTL(U).

Corollary 3.19 The problem whether an LTL(U;X) formula defines a language
(of finite or infinite words) expressible in LTL(U) is PSPACE-complete.

3.2.2 Forbidden patterns

Several simple fragments can be characterized by means of forbidden pat-
terns. The concept of forbidden patterns has been originally introduced
in [CPP93] under the name forbidden configuration. Roughly speaking, a lan-
guage L can be defined by a fragment if and only if a minimal DFA recog-
nizing the reverse of L does not have a structural property given by the
corresponding forbidden pattern. The method can be used for languages
of finite words only.

Given a set N , an N -labelled digraph is a tuple (V;E) where V is an ar-
bitrary set of vertices and E � V � N � V is a set of edges. The transition
graph of a DFA A = (�; Q; q

0

; Æ; F ) is the ��-labelled digraph (Q;E) where

E = f(q; u; q

0

) j q 2 Q;u 2 �

�

; and Æ�(q; u) = fq

0

gg:

So the transition graph of any DFA has a finite number of vertices but po-
tentially infinitely many edges.

A pattern is a labelled digraph whose vertices are state variables and
whose edges are labelled with variables for labels of two different types:
variables ranged over nonempty strings (denoted by u; v; : : : ) and variables
ranged over alphabet symbols (denoted a; b; : : : ). In addition, a pattern
is occupied by side conditions stating which state variables must be inter-
preted as distinct states. The patterns are drawn as graphs and the notation
of side conditions is such that all vertices marked by “�” must be mutually
distinct.

We say that ��-labelled digraph matches a pattern if there is an assign-
ment to the variables satisfying the type constraints as well as the side con-
ditions so that the digraph obtained by replacing each variable by the value
assigned to it is a subgraph of the given digraph.

Let u = u(0)u(1) : : : u(n�1) be a string. The reverse of u is defined as
u

R

= u(n�1)u(n�2) : : : u(1)u(0). Similarly, the reverse of language L is
defined as LR = fu

R

j u 2 Lg.
The following collection of forbidden patterns has been presented

in [Wil99]. The forbidden patterns characterizing full LTL correspond
to counter-freeness as discussed in Section 3.1. The forbidden patterns
for LTL(X;F) and LTL(F

s

) have been deduced in [EW00] with use of
Ehrenfeucht-Fraı̈ssé games. The characterization of LTL(X;F) has been
originally introduced in [CPP93], where the authors proposed the name
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Restricted Temporal Logic (RTL) for the fragment LTL(X;F). The other pat-
terns are easy to obtain.

Theorem 3.20 ([MP71, GPSS80, CPP93, EW00, PW97a]) Let F be one of the
fragments LTL(), LTL(X), LTL(F

s

), LTL(X;F), and LTL. A regular language L
is expressible in F if and only if the transition graph of the minimal DFA recogniz-
ing LR does not match the pattern(s) for F depicted in Figures 3.1–3.5. Further,
a regular language L is stutter closed if and only if the transition graph of the
minimal DFA recognizing LR does not match the pattern depicted in Figure 3.6.

Due to Theorem 3.17, the fragments LTL(F) and LTL(U) are characterized
by forbidden pattern depicted in Figure 3.6 together with the pattern(s)
corresponding to LTL(F

s

) or LTL respectively.
These characterizations are effective due to the following theorem. Let

us note that the number of patterns that must be tested in the case of full
LTL is bounded by the number of states of the minimal DFA under consid-
eration.

Theorem 3.21 ([Wil98]) Let (V;E) be a pattern. The following problem is in
PSPACE. Given an LTL(U;X) formula ', does a transition graph of a minimal
DFA recognizing the reverse of language L

F

(') match the pattern (V;E)?

Corollary 3.22 Let F be one of the fragments LTL(), LTL(X), LTL(F
s

), LTL(F)
LTL(X;F), or LTL(U). The problem whether a language of strings given by an
LTL(U;X) formula can be defined by F is PSPACE-complete.

The PSPACE-hardness of these problems has been proven in [Wil98] by
reduction of the satisfiability problem for LTL(U;X) formulae (which is
known to be PSPACE-complete [SC85]) to each of the respective problems.

Let us note that characterizations of several LTL fragments in terms of
patterns forbidden for minimal DFAs recognizing directly a language L
instead of its reverse can be found in [Wil98].

3.2.3 Connection to FOMLO and its implications

The identity of LTL(U;X) and FO

3 has been discussed in Section 3.1 al-
ready. Here we recall another two identities proven in [EVW02]. Some
decidability results implied by these identities will be mentioned as well.

Theorem 3.23 ([EVW02]) A language is expressible in FO

2 if and only if it is
expressible in LTL(F;X;P;Y). Further, a language is expressible in FO2

[<℄ if and
only if it is expressible in LTL(F

s

;P

s

).

Later on4, it has been shown that expressive power of these fragments co-
incides with another FOMLO fragments.

4The paper [EVW02] is a journal version a conference paper presented at LICS 1997.
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Figure 3.4: Forbidden pattern for LTL(X;F).
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3.2 SIMPLE FRAGMENTS 51

Definition 3.24 The FOMLO fragment �

2

consists of all FOMLO formulae
of the form '(x) = 9x

0

: : : 9x

m

8y

0

: : : 8y

n

 , where  does not contain any
quantifier. Similarly, �

2

consists of FOMLO formulae of the form '(x) =

8x

0

: : : 8x

m

9y

0

: : : 9y

n

 , where  is quantifier-free. By �
2

\�

2

we denote a class
of languages definable by a �

2

formula as well as by a �

2

formula. By analogy,
(�

2

\ �

2

)[<℄ contains languages definable by both �

2

and �

2

formulae without
predicate su.

Theorem 3.25 ([TW98]) A language of finite words is expressible in
LTL(F;X;P;Y) if and only if it is in �

2

\ �

2

. Further, a language of
finite words is expressible in LTL(F

s

;P

s

) if and only if it is in (�

2

\�

2

)[<℄.

Let us note that the theorem cannot be extended to !-languages.
The combination of the theorem above and the result presented

in [PW97b] brings another characterization of LTL(F
s

;P

s

) languages.

Definition 3.26 Let � be an alphabet. A product B�

0

a

1

B

�

1

a

2

: : : a

n

B

�

n

, where
B

i

� � and a
i

2 �, is unambiguous if for every u 2 �

+ there is at most one
sequence (u

0

; u

1

; : : : ; u

n

) such that u
i

2 B

�

i

and u = u

0

a

1

u

1

a

2

: : : a

n

u

n

. A lan-
guage of strings over � is unambiguous if it is a disjoint union of unambiguous
products.

Theorem 3.27 ([TW98]) A language of finite words is definable in LTL(F

s

;P

s

) if
and only if it is unambiguous.

Theorem 3.27 provides an important and fruitful connection between LTL
fragments and deep algebraic results. The two following theorems are
corollaries of this connection. For details and other algebraic characteri-
zations of the fragments LTL(F

s

;P

s

) and LTL(F;X;P;Y) we refer to [TW98]
and [Wil98].

Theorem 3.28 ([TW98, Wil98]) The fragments LTL(F;X;P;Y) and
LTL(F

s

;P

s

) are decidable (over strings as well as over !-words).

Moreover, the following complexity bounds for decidability over strings
are known.

Theorem 3.29 ([TW98]) The problem of determining whether a given
LTL(U;X) formula defines a language of strings expressible in LTL(F

s

;P

s

)

is in EXPSPACE. The problem is PSPACE-hard at the same time. These bounds
remain unchanged if we replace the fragment LTL(F

s

;P

s

) with LTL(F;X;P;Y).

The exact complexity of the problem for LTL(F
s

;P

s

) and LTL(F;X;P;Y) is
an open question formulated in [TW98].

Theorems 3.17, 3.18, and 3.29 imply that the fragment LTL(F;P) is de-
cidable in EXPSPACE as well.
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3.2.4 Expressiveness hierarchy

Three hierarchies reflecting relative expressive power of LTL fragments
have been presented so far. Two of them have been introduced in [Wil98].
The first contains only the fragments built with some of the modalities
X;F;F

s

, and U, while the second consists of symmetric versions of these
fragments. The hierarchy presented in [Mar03a] covers the fragments built
with the operators X;F;U and symmetric versions of these fragment.

The hierarchy depicted in Figure 3.7 subsumes three hierarchies men-
tioned above. An edge between two fragments means that the languages
expressible in the lower fragment form a strict subclass of the languages
expressible in the higher fragment. The hierarchy covers all the fragments
built up with some future modalities and symmetric versions of these frag-
ments; every such a fragment is either represented explicitly or it coin-
cides with some of the represented fragments due to the relations between
modalities described in Subsection 2.1.3.

The shape of the hierarchy is given by definitions of the considered frag-
ments, statements presented hereinbefore in this section, straightforward
observations on expressiveness of the fragments, and the following results.

The following two theorems are formulated and proven in PhD theses
of Markey and Laroussinie.

Theorem 3.30 ([Mar03a]) Fragments LTL(F) and LTL(F;X) are strictly less
expressive than their respective symmetric versions.

The proof can be also modified to show that the fragment LTL(F
s

) is strictly
less expressive than its symmetric version.

Theorem 3.31 ([Lar94]) There is a language expressible in LTL(U) that is not
expressible in LTL(F;X;P;Y).

As a corollary of this theorem we get that LTL(F;P) is strictly less expres-
sive than LTL(U).

Finally, we present one original result.

Theorem 3.32 Fragment LTL(X) is strictly less expressive than LTL(F

s

;P

s

).

Proof: One can easily prove that there are languages definable in
LTL(F

s

;P

s

) but not in LTL(X). We demonstrate that every LTL(X) language
can be defined in LTL(F

s

;P

s

). By Xn' we denote a formula

n

z }| {

XX : : :X':

The expressions F
s

n and P

s

n have analogous meanings. It is sufficient to
deal with LTL(X) formulae of the form X

n

'where n � 0 and ' is a formula
without any temporal operator as every LTL(X) formula can be converted
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LTL(U;X) = FO
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Figure 3.7: Expressiveness hierarchy of simple fragments.
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into a globally equivalent boolean combination of these formulae. To fin-
ish this proof we demonstrate that the following two formulae are initially
equivalent (assuming that ' 2 LTL()):

X

n

' �

i

F

s

n

(' ^ :P

s

n+1

>)

A word � satisfies F
s

n

(' ^ :P

s

n+1

>) if and only if there exists k such that
n � k < j�j and (�; k) j= ' ^ :P

s

n+1

>. Please observe that formula :P
s

> is
valid just for the initial position in an arbitrary word. In general, (�; k) j=
:P

s

n+1

> if and only if k � n. Hence, (�; k) j= ' ^ :P

s

n+1

> is equivalent
to (�; k) j= ' and k � n. To sum up, � j= F

s

n

(' ^ :P

s

n+1

>) if and only
if n < j�j and (�; n) j= '. We are done as this is exactly the meaning of
� j= X

n

'. �

The theorem has some interesting corollaries. First, as the fragments
LTL(X) and LTL(F

s

) have incomparable expressive power, LTL(F

s

) is
strictly less expressive than LTL(F

s

;P

s

). Similarly, as the expressiveness of
LTL(X) and LTL(U;F

s

) is incomparable and there are languages expressible
in LTL(U;F

s

) but not in LTL(F

s

;P

s

) (see Theorem 3.31), we get that frag-
ments LTL(F

s

;P

s

) and LTL(U;F

s

) are incomparable too. This immediately
implies that the fragment LTL(U;F

s

;S;P

s

) is strictly more expressive than
both LTL(F

s

;P

s

) and LTL(U;F

s

).5

3.3 Nesting fragments

Only a few kinds of nesting fragments have been studied so far. Re-
searchers focuses on fragments of the form LTL(U

k

;F;X), US
k

, LTL(Xk;F
s

),
LTL(U;X

n

), LTL(Um;Xn), and LTL(U

m

;X). Fragments of each of these
kinds form a corresponding hierarchy. Two standard questions studied
for all of these hierarchies is whether the hierarchy is (semantically) strict
and whether it is decidable. The precise meaning of the strictness and the
decidability will be given soon.

In Section 7.3 we present an automata-based characterization of lan-
guage classes corresponding to fragments of the form LTL(U

k

;F;X),
LTL(U;X

n

), LTL(Um;Xn), and LTL(U

m

;X). In fact, this characterization
is formulated for all fragments of a more general form LTL(U

m

;X

n

;F

k

),
where m;n; k 2 N

0

[ f1g.

3.3.1 Fragments LTL(Uk; F;X): Until hierarchy

Fragments of the form LTL(U

k

;F;X) form the hierarchy

LTL(U

0

;F;X) � LTL(U

1

;F;X) � LTL(U

2

;F;X) � : : :

5The statement that fragment LTL(U;F
s

) is not as expressive as its symmetric counter-
part LTL(U;F

s

; S;P

s

) has been already formulated (without any evidence) in [Wil98].
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called until hierarchy.
In [EW00] it has been shown that the hierarchy is semantically strict,

i.e. for every k 2 N
0

the class of languages definable by LTL(U

k+1

;F;X) is
strictly larger than the class of languages definable by LTL(U

k

;F;X). The
proof employs a parametrized language FAIR

k+1

(over a three-letter alpha-
bet) expressible in LTL(U

k

;F;X) but not in LTL(U

k�1

;F;X) (this is proven
with use of an appropriate Ehrenfeucht-Fraı̈ssé game designed in the pa-
per).

The decidability of the until hierarchy has been proven in [TW01] ap-
plying deep results from finite semigroup theory.

Theorem 3.33 ([TW01]) Given a regular or !-regular language L and k 2 N
0

,
it is decidable whether L is definable by LTL(Uk;F;X) or not.

Corollary 3.34 For every language given by an LTL formula, one can compute
the minimal k such that the language is expressible in LTL(U

k

;F;X).

It is worth mentioning here that the paper [TW01] also deals with de-
cidability of fragments of the form LTL(S

k

;P;Y) constituting the since hier-
archy. However, languages expressed by these fragments are defined in a
bit different way: given an alphabet �, an LTL(S

k

;P;Y) formula ' defines
the language

L

�

(') = fu 2 �

+

j (u; juj�1) j= 'g:

3.3.2 Fragments US
k

: Until-since hierarchy

Let us recall that US
k

denotes the fragment LTL(fU;Sgk;F;X;P;Y).
The strictness of the until-since hierarchy has been shown in [EW00]

with use of Ehrenfeucht-Fraı̈ssé game.
As the fragment US

0

coincides with LTL(X;F;Y;P), its decidability has
been given by Theorem 3.28 already. The decidability of all US

k

fragments
over strings have been proven in [TW02] with use of deep algebraic results.

Theorem 3.35 [TW02] For every k � 0, the fragment US
k

is decidable over
strings.

Authors of the theorem state that they can prove that fragments US
0

and US

1

are decidable also over !-words and it is possible that their proof
technique can be generalized to higher levels of the until-since hierarchy.

3.3.3 Fragments LTL(Xk; F
s

)

The hierarchy of LTL(Xk;F
s

) fragments, also known as the next hierarchy of
restricted temporal logic, has been studied in [Sch00]. The paper works only
with languages over strings.
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Two characterizations of LTL(Xk;F
s

) fragments have been formulated
and proven. The first one employs the notion of k-rightdeterministic lan-
guages while the second one gives a corresponding forbidden pattern.

Definition 3.36 Let � be an alphabet, k � 0, n > 0, u
0

; : : : ; u

n

2 �

k+1, and
B

0

; : : : ; B

n

� �. By (u

0

B

0

u

1

B

1

: : : u

n

B

n

)

k

we denote a language of all strings
v 2 �

+ such that there exists a sequence of numbers 0 = j

0

< j

1

< : : : < j

n

< jvj

satisfying for every 0 � i � n the following conditions6

� v(j

i

; k + 1) = u

i

,

� v(j; k + 1) 2 B

i

for every j
i

< j < j

i+1

, where j
n+1

= jvj.

Further, a language of the form (u

0

B

0

u

1

B

1

: : : u

n

B

n

)

k

[ D is called k-
rightdeterministic if D � fw 2 �

+

j jwj � kg and u
i

62 B

i

holds for every
1 � i � n.

Æ

w

��

Æ

u

11

a

��

Æ

v

qq

a

��

Æ

w

℄℄

� �

Figure 3.8: Forbidden pattern for LTL(Xk;F
s

) with side condition jwj = k.
In particular, w = " for k = 0 (this is an exception to the definition of
patterns saying that w ranges over nonempty strings).

Theorem 3.37 ([Sch00]) Let L be a regular language. The following statements
are equivalent:

1. L is definable by LTL(Xk;F
s

).

2. L is a finite union of k-rightdeterministic languages.

3. The transition graph of the minimal DFA recognizing LR does not match
the pattern depicted in Figure 3.8.

One can observe that the forbidden pattern for LTL(X0;F
s

) coincides with
the forbidden pattern for LTL(F

s

) (see Figure 3.3). Moreover, it is easy to
prove that the transition graph of a DFA does not match the pattern for
LTL(X;F) (see Figure 3.4) if and only if there exists some k 2 N

0

such that
the transition graph does not match the pattern for LTL(Xk;F

s

).
The characterization via forbidden patterns together with Theorem 3.21

gives us the decidability of the hierarchy.

6We recall that v(j; k + 1) denotes the subword v(j)v(j + 1) : : : v(j + k).
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Corollary 3.38 For every k � 0, the problem whether a language of strings given
by an LTL(U;X) formula can be expressed in LTL(X

k

;F

s

) is PSPACE-complete.

As in the case of Corollary 3.22, the PSPACE-hardness can be proven by
reduction of the satisfiability problem for LTL(U;X) formulae.

The characterization in terms of forbidden patterns is also applied in
the proof of the fact that the next hierarchy of restricted temporal logic is
semantically strict.

We note that the paper [Sch00] provides also forbidden patterns for
minimal DFAs recognizing directly a language under examination instead
of its reverse. Furthermore, analogous results are formulated for fragments
LTL(Y

k

;P

s

), where the languages expressed by these fragments are defined
in the way described at the end of Subsection 3.3.1.

3.3.4 Fragments LTL(U;X

n

), LTL(Um;X

n

), and LTL(U

m

;X)

These fragments are studied in Chapters 5, 6, and 7. We here summarize
the main results regarding the hierarchies of the fragments under consid-
eration.

The LTL(U;X

n

) and LTL(U

m

;X) hierarchies are strict. Further, the
hierarchy of LTL(U

m

;X

n

) fragments is strict in the sense that a frag-
ment LTL(Um;Xn) is strictly less expressive than each of the fragments
LTL(U

m+1

;X

n

) and LTL(U

m

;X

n+1

). In fact, we show a bit stronger state-
ment.

Theorem 3.39 Let F

1

and F

2

be fragments of the form LTL(U;X

n

),
LTL(U

m

;X

n

) or LTL(U

m

;X) (not necessarily of the same form) such that F
1

is syntactically not included in F
2

. Then there is a language expressible in F
1

which cannot be defined in F
2

.

Given a finite alphabet, a fragment of the form LTL(U

m

;X

n

) defines
only finitely many languages. Hence, every such a fragment is decidable.
A decidability of LTL(U;Xn) fragments is proven with use of n-stuttering
(for details see [KS02] dealing with languages of strings or Chapter 5 deal-
ing with !-languages).

Theorem 3.40 For every n � 0, the problem whether a language (of finite or
infinite words) given by an LTL(U;X) formula can be expressed in LTL(U;X

n

) is
PSPACE-complete.

Further, Chapter 6 provides a characterization of !-languages express-
ible by LTL(U

m

;X

n

) in terms of characteristic patterns7.

7Please note that there is no connection to forbidden patterns.



58 EXPRESSIVENESS

3.4 Other fragments

3.4.1 Hierarchy of temporal properties

This hierarchy has been presented and studied in [MP90b], [CMP92],
and [ČP03]. All these papers work with languages of infinite words only.

The characterizations of (canonical or standard) safety, guarantee, obli-
gation, response, persistence, and reactivity fragments are based on the
corresponding classes of (not only LTL definable) !-languages. The def-
initions of these classes employ four operators constructing !-languages
from languages of strings. Let L � �

+ be a language of nonempty strings.

� The language A(L) consists of all !-words � such that every
nonempty prefix of � belongs to L.

� The language E(L) consists of all !-words � such that there exists a
prefix of � that belongs to L.

� The languageR(L) consists of all !-words � such that infinitely many
prefixes of � belong to L.

� The language P (L) consists of all !-words � such that all but finitely
many prefixes of � belong to L.

Definition 3.41 An !-language L is

a safety property iff L = A(L

0

) for some L0 � �

+,

a guarantee property iff L = E(L

0

) for some L0 � �

+,

an obligation property iff L =

T

m

i=1

(A(L

0

i

) [E(L

00

i

)),

where m > 0 and L0
i

; L

00

i

� �

+ for every i,

a response property iff L = R(L

0

) for some L0 � �

+,

a persistence property iff L = P (L

0

) for some L0 � �

+,

a reactivity property iff L =

T

m

i=1

(R(L

0

i

) [ P (L

00

i

)),

where m > 0 and L0
i

; L

00

i

� �

+ for every i.

The classes of safety, guarantee, obligation, response, persistence, and re-
activity properties are closed under intersection and union, the obliga-
tion and reactivity classes are also closed under complementation. An !-
language is a safety property if and only if its complement is a guarantee
property. The same relation holds for response and persistence properties
as well. The inclusions between the classes are indicated in the hierarchy
depicted in Figure 3.9, where an edge between two classes means that the
lower class is a strict subclass of the upper class. Moreover, the obligation
class is exactly the intersection of the response and persistence classes.
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Streett
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Figure 3.9: The hierarchy of temporal properties.

We now explain the relations between these classes and (canonical and
future) formulae of corresponding types. All the following statements
hold for every � 2 f safety, guarantee, obligation, response, persistence,
reactivity g.

Theorem 3.42 ([MP90b, CMP92]) Let L be an LTL language of infinite words.
The following statements are equivalent:

1. L is a � property.

2. L is definable by a canonical � formula.

3. L is definable by a future � formula.

Hence, every canonical � fragment is expressively equivalent to the corre-
sponding future � fragment. Further, as every LTL language is known to be
expressible in the future reactivity fragment LTL(U;X) (see Corollary 3.4),
we get that every !-language definable in LTL is a reactivity property. This
can be also derived from the following theorem.
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Theorem 3.43 ([MP90b]) Every LTL formula is initially equivalent to a canoni-
cal reactivity formula.

To sum up, every class of !-languages definable by (canonical or future)
� fragment coincides with the corresponding class of � properties restricted
to LTL languages. The hierarchy in Figure 3.9 remains strict even under this
restriction [MP90b].

The decidability of the considered LTL fragments is a consequence of
the relations between the six property classes and six types of Streett au-
tomata.

Definition 3.44 Let A = (�; Q; q

0

; Æ; f(G

1

; R

1

); : : : ; (G

n

; R

n

)g) be a determin-
istic Street automaton such that n = 1. Let G = (QrG

1

)[R

1

and B = QrG.
For every q; q0 2 Q we write (q; q0) 2 Æ instead of 9a 2 � such that q0 2 Æ(q; a).
The automaton A is

a safety automaton iff 8q 2 B; q0 2 G : (q; q

0

) 62 Æ,

a guarantee automaton iff 8q 2 G; q0 2 B : (q; q

0

) 62 Æ,

an obligation automaton iff there exists a function r : Q! f0; : : : ; kg

such that:

(q; q

0

) 2 Æ ) r(q) � r(q

0

),

(q 2 B ^ q

0

2 G ^ (q; q

0

) 2 Æ) ) r(q) < r(q

0

),

(q 2 G ^ q

0

2 B ^ (q; q

0

) 2 Æ) ) r(q) < k,

a response automaton iff G
1

= Q,

a persistence automaton iff R
1

= ;.

Further, every deterministic Street automaton8 is a reactivity automaton.

Theorem 3.45 ([MP90b]) An !-regular language is a � property if and only if it
is recognized by a � automaton.

Theorem 3.46 ([MP90b]) It is decidable whether an !-regular language (given
by a deterministic Streett automaton) is a � property.

The decidability of � fragments then follows from the fact that every
!-language definable in LTL is !-regular and from the decidability of LTL.

Corollary 3.47 The canonical and future � fragments are decidable over !-words.

The paper [MP90b] presents an outline of translations from canonical �
formulae to � automata and from counter-free � automata to � formulae.

8Here the acceptance set is not restricted to the form f(G

1

; R

1

)g.
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These translations are based on general constructions described in [LPZ85]
and [Zuc86].

Another automata-based characterizations of � properties have been
suggested in [ČP03] and are indicated in Figure 3.9.

Theorem 3.48 ([ČP03]) An !-regular language is a safety, guarantee, obliga-
tion, response, persistence, or reactivity property if and only if it is recognized by a
deterministic occurrence co-Büchi, deterministic occurrence Büchi, deterministic
occurrence Streett, deterministic Büchi, deterministic co-Büchi, or deterministic
Streett automaton respectively.

3.4.2 Until-release hierarchy

The until-release hierarchy has been defined and studied in [ČP03]. The
hierarchy has a strong connection to the hierarchy of temporal properties
discussed above.

Theorem 3.49 ([ČP03]) An !-language definable by LTL is a safety, guarantee,
response or persistence property if and only if it is definable by a formula of RU

1

,
UR

1

, RU
2

, or UR
2

respectively.

The relations are depicted in Figure 3.9 too.
Further, the equality between LTL !-languages and reactivity proper-

ties definable in LTL (see Theorem 3.43), the definition of reactivity prop-
erty, and the previous theorem give us the following.

Theorem 3.50 ([ČP03]) An !-language is definable in LTL if and only if it is
definable by a positive boolean combination of RU

2

and UR
2

formulae.

This statement directly implies that the hierarchy of RU
i

and UR

i

fragments
collapses.

Corollary 3.51 An !-language is definable in LTL if and only if it is definable by
both RU

3

and UR
3

.

The decidability of RU
i

and UR

i

fragments over !-words is then a direct
consequence of the Corollary 3.47, Theorem 3.49, Corollary 3.51, and the
decidability of LTL.

Corollary 3.52 For every i, the fragments RU
i

and UR
i

are decidable over infinite
words.

Another interesting aspect of this hierarchy is its connection to termi-
nal and weak Büchi automata. It is easy to prove that an LTL !-language
is a guarantee or persistence property if and only if it is recognized by a
terminal or weak Büchi automaton respectively. Moreover, automata of
these types can be constructed directly from formulae of the corresponding
fragments UR

1

and UR

2

.
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Theorem 3.53 ([ČP03]) For every !-language given by a formula of UR
1

or UR
2

one can construct a terminal or weak Büchi automaton recognizing the language,
respectively.

The translation is a modification of the original construction of a Büchi au-
tomaton for a given LTL(U;X;S;Y) formula introduced in [WVS83]. Simi-
lar modification has been presented in [Sch01] as well.

The theorem has some important consequences in the context of model
checking. Recall that the property automaton (see Section 2.4) is a Büchi au-
tomaton corresponding to negation of a given specification formula. Thus,
specification formulae of RU

1

(defining safety properties) can be translated
to terminal property automata while specification formulae of RU

2

(defin-
ing response properties) can be translated to weak property automata.
One can readily confirm that the type of a property automaton carries to
the corresponding product automaton. Several specialized algorithms (ex-
plicit as well as symbolic) for non-emptiness check of weak and terminal
Büchi automata have been proposed. The specialized symbolic algorithms
have lower asymptotic complexity comparing to general symbolic non-
emptiness algorithms. Asymptotic complexity of the specialized explicit
algorithms is linear as in the case of general explicit algorithms. Neverthe-
less, the specialized algorithms have still several benefits including a pos-
sibility of employing some efficient heuristics, simpler implementations of
partial order reductions, or possibility of better distribution. To stress the
significance of the specialized algorithms, authors of [ČP03] have studied
specification patterns system [DAC99] – a collection of the most often verified
properties. They have calculated that safety properties (generating termi-
nal property automata) comprise 41% and response properties (generating
weak property automata) comprise 54%9 of the properties in the collection.
For more information about the specialized algorithms, their benefits, and
discussion about the complexity of property type determination we refer
to [ČP03].

Another characterization of the !-languages definable in RU

i

and UR

i

fragments is given in Subsection 7.3.2. The characterization is formulated
in terms of alternating 1-weak Büchi automata.

3.4.3 Deterministic fragment

The fragment detLTL have been introduced and studied in [Mai00] in the
context of the properties (of Kripke structures) expressible in both LTL and
CTL. As branching time logics are out of the scope of this thesis, we only
give a brief and intuitive summary of the main results without providing
any technicalities.

9The percentage refers to the response properties that are not safety properties.
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In fact, the paper works just with ACTL, i.e. the fragment of CTL formu-
lae which are in positive normal form and have no existential quantifiers.
The fragment detACTL of ACTL is defined in a similar way as detLTL. The
paper proves the following results.

� An ACTL formula is expressible10 in LTL if and only if it is expressible
in detACTL.

� The problem whether a given ACTL formula is expressible in LTL or
not is PSPACE-complete.

� An LTL formula is expressible in ACTL if and only if it is expressible
in detLTL.

It is known that the logics CTL and LTL have incomparable expres-
sive power. Hence, the results mentioned above imply that the expressive
power of detLTL is strictly lesser than the expressive power of LTL. The
same result can be achieved using the following characterization.

Theorem 3.54 ([Mai00]) An LTL formula ' is expressible in detLTL if and only
if there exists a 1-weak Büchi automaton recognizing the language L(:').

Moreover, for every detLTL formula ' there exists a 1-weak Büchi automa-
ton of the size O(j'j) recognizing the language L(:').

The paper [Mai00] also provides several references to other papers deal-
ing with relations between LTL and CTL.

3.4.4 Flat fragment

The fragment atLTL(U) has been studied in [Dam99] (together with flat
fragments of CTL and CTL�). It has been shown that atLTL(U) is strictly
less expressive than LTL(U).

Theorem 3.55 ([Dam99]) There exists an LTL(U

3

) formula which is not equiv-
alent to any formula of atLTL(U). Moreover, every LTL(U

2

) formula is equiva-
lent to a formula of atLTL(U).

Besides the expressive power, the paper studies also the distinguishing
power of flat fragments.

Definition 3.56 Let �; � be !-words and F be an LTL fragment. The words are
distinguishable by fragment F if there exists a formula ' of F such that

� j= ' if and only if � 6j= ':

10Here the expressibility is defined in a more general way; we say that a formula ' of
CTL or LTL is expressible in a fragment/logic F if there exists a formula  of F such that
for every Kripke structure K it holds that K j= ' iff K j=  . The formal semantics of CTL
can be found e.g. in [Eme90].
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Theorem 3.57 ([Dam99]) Let �; � be an !-words. The words are distinguishable
by LTL(U) if and only if they are distinguishable by atLTL(U).

Decidability of atLTL(U) fragment is an open question.

3.5 Succinctness

The previous sections give an overview of expressiveness results related to
LTL and its fragments. In the following we present several results compar-
ing formalisms with respect to their succinctness instead of the raw expres-
sive power.

In Section 3.1 we argue that there is no reason to distinguish between
LTL with modalities U and X and its syntactic supersets as they have the
same expressive power. However, their expressive power is different when
the succinctness is taken into account.

In the light of the fact that LTL(U;X) and LTL(U;X;S;Y) are expres-
sively equivalent and with respect to the syntactic algorithm [Gab89]
translating a formula of LTL(U;X;S;Y) into an initially equivalent for-
mula of LTL(U;X), the past modalities are often dropped from the logic.
However, there are good reasons not to do so. First, the satisfiability
and model-checking are PSPACE-complete for LTL(U;X) as well as for
LTL(U;X;S;Y) [SC85] (for more information about complexity issues see
Chapter 4). Further, some specification formulae are easier to write using
the past modalities as well [LPZ85]. This statement is formally justified by
the following theorem. The undefined term ‘exponentially more succinct’
will be explained by the comment below the theorem.

Theorem 3.58 ([LMS02, Mar03b]) LTL(U;X;S;Y) can be exponentially more
succinct than LTL(U;X).

The proof introduces a parametrized LTL(U;X;S;Y) formula  

n

of
the size O(n) such that the size of an initially equivalent formula '

n

of
LTL(U;X) is in 
(2

n

). Moreover, the formula '
n

has 
(2

n

) distinct sub-
formulae, so it cannot be succinctly represented as a logical circuit (DAG).
Further,  

n

is in fact a formula of LTL(F;P;Y) and authors of the statement
say that the proof could be adapted to use a formula of LTL(F;P).

Theorem 3.58 gives a lower bound of the succinctness gap. The up-
per bounds are given by translations of LTL(U;X;S;Y) formulae into
LTL(U;X). The size of the formulae produced by the Gabbay’s transla-
tion [Gab89] is assumed to be nonelementary (it has not been characterized
precisely so far). Better upper bound has been presented in [Mar03b]; us-
ing the results of [LPZ85, MP90a, MP94] a formula of LTL(U;X;S;Y) can be
translated into an initially equivalent LTL(U;X) formula of (at most) triply
exponential size.
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To sum up, the succinctness gap between LTL with future modalities
and LTL with both future and past modalities is at least single exponential
and at most triply exponential. The precise characterization of this suc-
cinctness gap is an open question.

The modality N can further improve the succinctness of LTL(U;X;S;Y).

Theorem 3.59 ([LMS02]) LTL(U;X;S;Y;N) can be exponentially more suc-
cinct than LTL(U;X;S;Y).

Let us note that this is only a lower bound.

The following results compare the succinctness of LTL and other for-
malism, namely first-order logic and automata over finite or infinite words.

Every LTL formula can be translated into a globally equivalent FOMLO
formula of a linear size. However, FOMLO can be much more succinct than
LTL.

Theorem 3.60 ([Mey75, Sto74]) FOMLO can be nonelementarily more suc-
cinct than LTL(U;X;S;Y).

To be more specific, Stockmeyer [Sto74] defines a sequence ('

n

) of FO3

formulae such that the size of '
n

is linear with respect to n and ev-
ery sequence ( 

n

) of initially equivalent LTL(U;X;S;Y) formulae satisfies

j 

n

j 2 tower(
(n= log n)), where tower(k) denotes the “tower” 22
2

�

�

�

2

of the
height k. The theorem can be also proved using the fact that the satisfiabil-
ity problem for LTL(U;X;S;Y) is PSPACE-complete while the satisfiability
for FOMLO is nonelementary [SM73].

In contrast to this result, formulae of FO2 can be translated into expo-
nentially larger formulae of LTL(X;Y;F;P). Moreover, this translation is
essentially optimal. In the following theorems qdp(') denotes the quanti-
fier depth of a FOMLO formula ' and odp( ) denotes the nesting depth of
all temporal operators in an LTL formula  .

Theorem 3.61 ([EVW02]) Every FO

2 formula '(x) can be translated into a
globally equivalent LTL(F;X;P;Y) formula  of the size 2O(j'j(qdp(')+1)) such
that odp( ) � 2qdp(').

Theorem 3.62 ([EVW02]) There is a sequence ('
n

) of FO2 formulae with one
propositional variable such that the size of '

n

is O(n2) and every sequence ( 
n

)

of initially equivalent LTL(U;X;S;Y) formulae satisfies j 
n

j 2 2


(n).

Similar results hold for FO2

[<℄ and LTL(F

s

;P

s

).

Theorem 3.63 ([EVW02]) Every FO2

[<℄ formula '(x) can be translated into a
globally equivalent LTL(F

s

;P

s

) formula  of the size 2O(j'j(qdp(')+1)) such that
odp( ) � qdp(').
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Theorem 3.64 ([EVW02]) There is a sequence ('

n

) of FO2

[<℄ formulae such
that the size of '

n

is O(n) and every sequence ( 

n

) of initially equivalent
LTL(U;X;S;Y) formulae satisfies j 

n

j 2 2


(n).

Finally, we present some succinctness results regarding finite automata.

Theorem 3.65 ([VW94]) Every !-language defined by an LTL(U;X;S;Y) for-
mula ' is recognized by a (nondeterministic) Büchi automaton with 2O(j'j) states.

This upper bound on the size of the Büchi automaton is known to be tight.

The translation of deterministic counter-free automata over finite words
into LTL given in [Wil99] yields the following upper bound.

Theorem 3.66 ([Wil99]) For every counter-free deterministic finite automaton
over finite words there exists an LTL(U;X) formula ' such that ' defines the

language recognized by the automaton and the size of ' is j�j � 22
O(n log n)

, where n
is the number of states of the automaton and � is its input alphabet.

3.6 Additional notes

The overview of expressiveness, decidability, and succinctness results pre-
sented in this Chapter is far from being complete. For example, we do
not mention connections between some of the presented results and the
dot-depth hierarchy (discussed for example in [TW98, Sch00]). We also omit
the definition and characterizations of liveness properties (see [CMP92] for
some references).

Many natural questions concerning the expressiveness of LTL frag-
ments are still open. Some of them were formulated several years ago,
for example:

� Can the decidability results based on forbidden patterns be adapted
for !-languages?

� Is the fragment atLTL(U) decidable?

� What is the complexity of the problem whether a language given
by an LTL(U;X) formula is expressible in LTL(F

s

;P

s

)? And what
is the complexity of the analogous problem for the fragment
LTL(F;X;P;Y)? See Theorem 3.29.

These questions have been formulated in [EW00], [Dam99], and [TW98]
respectively. Some questions have not been considered before and they
may be easy to solve, for example:

� Are the fragments LTL(
1

F

) and LTL(

1

F

;X) decidable?
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� What is the complexity of the problem whether a language given by
a nondeterministic Büchi automaton is expressible in LTL?

Further, numerous topics for future research can be found in the area of
nesting fragments as only several types of these fragments have been stud-
ied.

Finally, there are many open questions about succinctness of various
LTL fragments. The most prominent one is the precise succinctness of
LTL(U;X;S;Y) in a comparison with LTL(U;X) (see Section 3.5).





Chapter 4

Complexity issues

In this chapter we deal with satisfiability, model checking, and model
checking a path problems for various fragments of LTL. As all these prob-
lems are decidable1, we focus on complexity2 of these problems. The chap-
ter summarizes the results established or cited in [SC85, LP85, LPZ85, DS02,
LMS02, EVW02, Mar04, MS03, Sch03]. The problems are considered in con-
text of infinite words or paths.

First of all we define these three problems more precisely. Let F be
a fragment of LTL.

Satisfiability. Satisfiability problem forF is the problem to decide whether
for a given formula ' 2 F there exists an !-word � such that � j= '.

Model checking. In fact, two versions of this problem are considered in
literature. Up to now we have been discussing the problem whether
a given formula ' 2 F and a given Kripke structure K satisfy K j=

', i.e. whether ' is valid for all paths in the Kripke structure. This
problem is called the universal model checking for F .

Let K = (S; T; s

I

; L) be a Kripke structure and ' a formula. We write
K j=

9

' if there exists a path s

0

; s

1

; : : : in K such that s
0

= s

I

and
L(s

0

)L(s

1

) : : : j= '. The existential model checking for F is the problem
to decide whether for a given Kripke structureK and a formula' 2 F
it holds that K j=

9

', i.e. whether ' is valid at least for one path in
the Kripke structure.

Model checking a path. Model checking a path for F is the problem to
decide whether a given formula ' 2 F and given finite words u; v
(where v 6= ") satisfy uv! j= '. In [MS03], the complexity of analo-
gous problem for finite words is studied as well.

1We consider model checking of finite-state systems only.
2We assume that the reader is familiar with basic terms of computational complexity

theory. We refer to books [Sip97, Pap94] for an introduction to this theory.
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Research focused on computational complexity of LTL model checking
is usually working with existential version of the problem as it is closer
to the satisfiability problem. However, the complexity of universal model
checking can be derived from the complexity results on existential model
checking as these two problems are dual in the following sense:

K j=

9

' if and only if K 6j= :'

Let F be a fragment closed under negation and existential model checking
for F be in a complexity class C . Universal model checking for the frag-
ment is then in complexity class o � C . If F is not closed under negation,
the complexity of universal model checking for F can be derived from the
complexity of existential model checking for the fragment of negated F

formulae. For example, universal model checking for LTL+(G;X) is oNP-
complete as existential model checking for LTL+(F;X) is NP-complete. In
the following we concentrate on existential version of the model checking
problem.

First, we sum up the complexity results for satisfiability and existential
model checking. Then we mention the complexity results of model check-
ing a path. Together with various LTL fragments, the FOMLO fragments
FO

2 and FO

2

[<℄ are also studied in this chapter.

4.1 Satisfiability and model checking

Complexity of satisfiability and model checking problems for LTL frag-
ments was systematically studied for the first time by Sistla and Clark in
a conference version of [SC85] published in 1982. The paper shows that
while these problems are NP-complete for LTL(F) and LTL

+

(F;X), they are
PSPACE-complete for LTL(F;X), LTL(U), LTL(U;X), and LTL(U;S;X) (and
also for the extended temporal logic (ETL) [Wol83]). The PSPACE upper
bounds for existential model checking are achieved due to the following
theorem.

Theorem 4.1 ([SC85]) Let F be a fragment subsuming LTL(F;X) or LTL(U).
Existential model checking for F is polynomial-time reducible to the satisfiability
problem for F .

The proof of PSPACE-completeness of the two problems for
LTL(U;S;X) can be adapted for the fragment LTL(U;X;S;Y). A different
algorithm deciding the satisfiability problem for LTL(U;X;S;Y) with a bet-
ter time complexity has been presented in [LPZ85].

In spite of PSPACE-hardness, model checking of LTL(U;X) properties
has proved to be feasible in practice. Several explanations of this fact has
been provided. A crucial observation formulated in [LP85] says that model
checking is only linear in the size of a Kripke structure.
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Theorem 4.2 ([LP85, VW86]) Given a Kripke structure K = (S; T; s

I

; L) and
a formula ' 2 LTL(U;X), the model checking problem can be solved in time
O(jKj) � 2

O(j'j), where jKj = jSj + �

t2T

jtj is the number of states and edges in
the structure.

The exponential time complexity in the size of a specification formula
is often annotated with arguments that specification formulae are usually
short and have very low nesting depths of modalities. Inspired by this
argumentation, Demri and Schnoebelen [DS02] have studied the theoreti-
cal complexity of satisfiability and model checking for fragments with low
nesting depth of all temporal modalities and/or bounds on the number of
atomic propositions occurring in a formula. Their results are rather nega-
tive in the sense that the complexity of satisfiability and model checking for
fragments LTL(F), LTL(U), and LTL(U;X) remains unchanged when we
restrict the number of atomic propositions to two or bind the nesting depth
of all temporal operators by two. On the other hand, the paper shows that
model checking for LTL(fF;Xgk) isNP-complete while the same problem is
PSPACE-complete for LTL(F;X). For more results see Table 4.1. The paper
develops several logspace reductions of satisfiability, 3SAT, and QBF prob-
lems to the model checking problem for the fragments studied there. The
flat versions of the considered fragments are studied as well. It is proven
that the flattening has no influence on the complexity of satisfiability and
model checking.

We have already mentioned that the addition of past modalities S;Y

to the fragment LTL(U;X) does not change complexities of the considered
problems. This observation brings a question whether allowing past coun-
terparts of included future modalities has no influence on complexities of
the considered problems in general. The results presented in [Mar04] sup-
port an assumed positive answer. The paper studies the complexity of
satisfiability and model checking for LTL(F;P), LTL(X;S;Y), and positive
(and stratified) fragments built with future and past modalities. For more
results see Tables 4.1 and 4.2. The paper [Mar04] provides also complexities
of universal model checking for the considered fragments.

Introducing the modality N the paper [LMS02] also demonstrates that
satisfiability and model checking for LTL(U;X;S;Y;N) are EXPSPACE-
complete. The influence of the temporal operator C on the complexity of
the considered problems has been studied in [RP86]. Both satisfiability and
model checking for LTL(U;X;C) are nonelementary.

The complexity of satisfiability problem for fragments FO

2, FO2

[<℄,
and LTL(F

s

;P

s

) has been studied in [EVW02]. Surprisingly, the problem
is NEXP-complete for FO2 and FO

2

[<℄ (while it is nonelementary for FO3),
and NP-complete for LTL(F

s

;P

s

). We now analyse the complexity of exis-
tential model checking for these fragments.

Theorem 4.3 Existential model checking for FO2 is NEXP-complete.
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Proof: The existential model checking problem for FO2 is polynomial-time
reducible to the satisfiability problem for FO2. The reduction is a straight-
forward analogy of the reduction for LTL(F;X) described in [SC85] (see
Theorem 4.1). This gives us the upper bound.

We show that the existential model checking problem is NEXP-hard
even for the fragment FO2

1

[su℄ which is smaller than FO

2. The fragment
FO

2

1

[su℄ consists of all FOMLO formulae with at most two variables, one
unary predicate, and without the predicate <. The NEXP-hardness of exis-
tential model checking for FO2

1

[su℄ is a direct consequence of the following
two facts.

1. The satisfiability problem for FO2

1

[su℄ is NEXP-hard [EVW02].

2. The satisfiability problem for a FOMLO fragment with the bounded
number of unary predicates is polynomial-time reducible to the exis-
tential model checking problem for the fragment.3 Intuitively, given
a FOMLO formula with n unary predicates P

0

; P

1

; : : : ; P

n�1

the re-
duction creates a Kripke structure with paths corresponding to all !-
words over alphabet 2fp0;p1;:::;pn�1

g. Hence, the formula is satisfiable
if and only if it is valid for at least one path in the structure. More-
over, the Kripke structure has 2n states and thus its size depends only
on n. �

Corollary 4.4 Existential model checking for FO2

[<℄ is in NEXP.

Theorem 4.5 Existential model checking for LTL(F
s

;P

s

) is NP-complete.

Proof: The upper bound can be obtained by a slight modification of anal-
ogous result for LTL(F;P) given in [Mar04]. The lower bound is a con-
sequence of NP-hardness of existential model checking for LTL(F) estab-
lished in [SC85]. �

Tables 4.1 and 4.2 give an overview of the complexity results obtained
or cited in the papers described above. The prefix ‘(at)’ before a fragment
means that the complexity of satisfiability and model checking is the same
for the flat version of the fragment too. The tables are arranged according to
the modalities used in the fragments; Table 4.1 covers the fragments with
future modalities only while the other fragments (together with ETL and
some FOMLO fragments) are contained in Table 4.2.

Let us note that complexities of satisfiability and existential model
checking for many fragments not covered by the tables can be easily de-
rived from the results summarized therein. For example, the two problems

3An analogous reduction for LTL fragments with the bounded number of atomic propo-
sitions is given in [DS02].
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Fragment (1 � n; k < !) Satisfiability Existential MC

LTL() NP-complete L

LTL

n

() L L

LTL(

1

F

) NP-complete NP-complete
LTL(F) NP-complete NP-complete
LTL(F

1

) NP-complete NP-complete
LTL

2

(F) NP-complete NP-complete
LTL

1

(F) P in P, NL-hard
LTL

n

(F

k

) L NL-complete
LTL

+

(F) NP-complete NP-complete
LTL

+

(G) NP-complete NP-complete
(at)LTL(U) PSPACE-complete PSPACE-complete
(at)LTL(U

2

) PSPACE-complete PSPACE-complete
(at)LTL(U

1

) NP-complete NP-complete
(at)LTL

2

(U) PSPACE-complete PSPACE-complete
(at)LTL

1

(U) P in P, NL-hard
(at)LTL

n

(U

k

) L NL-complete
LTL

+

(U) PSPACE-complete PSPACE-complete
LTL(X) NP-complete NP-complete
LTL(X

k

) NP-complete L

LTL

1

(X) NP-complete NP-complete
LTL

n

(X

k

) L L

LTL

+

(X) NP-complete NP-complete
LTL(F;X) PSPACE-complete PSPACE-complete
LTL(fF;Xg

1+k

) PSPACE-complete NP-complete
LTL(fF;Xg

1

) NP-complete NP-complete
LTL

1

(F;X) PSPACE-complete PSPACE-complete
LTL

n

(fF;Xg

k

) L NL-complete
LTL

+

(F;X) NP-complete NP-complete
LTL

+

(G;X) PSPACE-complete PSPACE-complete
(at)LTL(U;X) PSPACE-complete PSPACE-complete
(at)LTL(fU;Xg

2

) PSPACE-complete PSPACE-complete
(at)LTL(fU;Xg

1

) NP-complete NP-complete
(at)LTL

1

(U;X) PSPACE-complete PSPACE-complete
(at)LTL

n

(fU;Xg

k

) L NL-complete

LTL(fU;

1

F

;Xg

1

) NP-complete NP-complete

Table 4.1: Complexity of satisfiability and existential model checking.
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Fragment/Logic Satisfiability Existential MC

LTL(F;P) NP-complete NP-complete
LTL(F

s

;P

s

) NP-complete NP-complete
LTL(X;S;Y) NP-complete NP-complete
LTL(U;X;S) PSPACE-complete PSPACE-complete
LTL(U;X;S;Y) PSPACE-complete PSPACE-complete
LTL

+s

(F;Y) NP-complete NP-complete
LTL

+s

(G;Y) NP-complete PSPACE-complete
LTL

+

(F;X;P;Y) NP-complete NP-complete
LTL

+

(G;X;H;Y) PSPACE-complete PSPACE-complete
LTL

+s

(G;S;Y) NP-complete PSPACE-complete
LTL

+

(G;S;Y) NP-complete PSPACE-complete
LTL

+s

(F;S) PSPACE-complete PSPACE-complete
LTL

+s

(G;S) NP-complete PSPACE-complete
LTL

+

(G;S) NP-complete PSPACE-complete
LTL

+

(U;S) PSPACE-complete PSPACE-complete
LTL

+

(U;X;S;Y) PSPACE-complete PSPACE-complete
LTL(U;X;S;Y;N) EXPSPACE-complete EXPSPACE-complete
LTL(U;X;C) nonelementary nonelementary
ETL PSPACE-complete PSPACE-complete
FO

2

[<℄ NEXP-complete NEXP

FO

2

NEXP-complete NEXP-complete
FO

3 nonelementary nonelementary
FOMLO nonelementary nonelementary

Table 4.2: Complexity of satisfiability and existential model checking.

are NP-complete for LTL(F
s

) as the fragment subsumes LTL(F), it is sub-
sumed in LTL(F

s

;P

s

), and the problems are NP-complete for both LTL(F)

and LTL(F

s

;P

s

).

For more information on the complexity results of model checking for
LTL, CTL, and CTL� (and their fragments) we refer to a nicely written
summary [Sch03]. This paper contains all the basic definitions, theorems,
and proof techniques used in the area together with references to many
related papers. Besides the results discussed in the paragraphs above,
the paper also deals with complexities of the model checking problem for

LTL(

1

F

) and LTL(fU;

1

F

;Xg

1

), and the complexity of symbolic model check-
ing (where the size of Kripke structure is defined as a sum of sizes of its
parallel components).

The paper [Sch03] also recapitulates some basic results on program-
complexity and formula-complexity of model checking. The last two terms
have been defined in [VW86]. The program-complexity of model checking is
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its complexity measured as a function of the size of a Kripke structure only.
By analogy, the formula-complexity is measured in the size of a specification
formula only.

The program-complexity is connected with NL-complete problem
whether a given state is reachable in a given structure. The program-
complexity of existential model checking for LTL with all the modali-
ties defined so far is in NL as the problem reduces to reachability in the
corresponding product automaton. The reachability problem reduces to
the existential model checking problem for all the fragments subsuming
LTL

+

(F

1

). Hence, the program-complexity for these fragments is NL-hard.

The formula-complexity is not higher than the (standard) complexity.
Further, for every fragment defined over a finite set of atomic proposi-
tions P � At , the satisfiability problem reduces to existential model check-
ing where the Kripke structure is fixed and generates all infinite words
over 2P . As satisfiability of LTL

1

(F;X) or LTL
2

(U) is PSPACE-complete,
the formula-complexity for all the fragments subsuming LTL

1

(F;X) or
LTL

2

(U) is PSPACE-hard. To sum up, the formula-complexity for
all the fragments subsuming LTL

1

(F;X) or LTL

2

(U) and subsumed in
LTL(U;X;S;Y) is PSPACE-complete. The formula-complexity of existential
model checking for LTL(U;X;S;Y;N) is EXPSPACE-complete [LMS02].

4.2 Model checking a path

Roughly speaking, the previous section shows that the model checking
problem for all LTL fragments with “reasonable” expressive power is
PSPACE-hard. In contrast, model checking a path represents an interesting
subproblem with significantly lower asymptotic complexity. The problem
has been identified only recently by Markey and Schnoebelen in [MS03].

We recall that model checking a path is model checking of finite Kripke
structures with a single path. For brevity of notation, instead of Kripke
structures defining one (infinite) path we work directly with words of the
form uv

! , where u; v 2 �

� and v 6= ". As CTL interpreted over linear
structures coincides with LTL, the problem whether a given formula ' 2

LTL(U;X) and a given words u; v satisfy uv

!

j= ' can be solved in time
O(juvj � j'j) using the standard algorithm for CTL model checking of finite-
state systems [CES86].

The paper [MS03] studies the same problem for other three LTL frag-
ments and FOMLO as well. Table 4.3 provides an overview of the com-
plexity results presented in the paper. For all the fragments occurring in
the table, the complexities in the middle column correspond to both exis-
tential and universal model checking problems.

For some specialized algorithms solving the problem, more accurate
evaluations of their complexity, and analogous results for model check-
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Fragment/Logic Model checking Model checking a path

LTL(U;X) PSPACE-complete in P

LTL(U;X;S;Y) PSPACE-complete in P

LTL(U;X;S;Y;N) EXPSPACE-complete P-complete
LTL(U;X;C) nonelementary P-complete
FOMLO nonelementary PSPACE-complete

Table 4.3: Complexity of model checking and model checking a path.

ing of compressed paths (defined by grammars) and finite paths, we refer
to [MS03].

Another algorithm solving the problem of model checking a path for
LTL(U;X) formulae is presented in Subsection 6.2.2.

4.3 Additional notes

Some of the papers cited in this chapter also deal with the complexity of va-
lidity and universal model checking, or provide more detailed complexity
analyses.

The subject area of this chapter still suggests several open questions.
The most prominent ones correspond to the lines in Tables 4.1, 4.2, and 4.3
where the lower bounds do not match the upper bounds. More precisely,
open questions are whether the existential model checking problems for
LTL

1

(F), LTL
1

(U), and atLTL

1

(U) are P-complete or they are in a lower
complexity class. Further, the paper [EVW02] contains a question whether
satisfiability for FO2

n

[<℄ (fragment of FO2

[<℄ formulae with at most n unary
predicates) remains NEXP-hard. A positive answer would imply NEXP-
hardness of existential model checking for FO2

[<℄. The most important
open questions regarding model checking a path are connected with the
complexity of this problem for LTL(U;X) and LTL(U;X;S;Y). The best
known algorithms work in polynomial time, but there are no reasonable
lower bounds. The authors of [MS03] mention that they have been unable
to prove even L-hardness for LTL(U;X;S;Y) or to find a better (memory-
efficient or parallel) algorithm even for model checking of finite paths for
LTL(F). However, they conjecture that the problems are not P-hard.

Finally, we note that there are still some interesting LTL fragments
which have not been studied in context of the satisfiability and model
checking problems at all. For example, the complexity of these problems for

LTL(

1

F

;X) can be of a particular interest as this fragment subsumes LTL(X)

and LTL(

1

F

) (where these problems are NP-complete) and is subsumed in
LTL(F;X) (where these problems are PSPACE-complete).



Chapter 5

Stuttering principles

This chapter presents the results originally introduced in papers [KS02,
KS04, KS05b].

More than twenty years ago Lamport [Lam83b] argued that the valid-
ity of LTL(U) formulae does not depend on numbers of adjacent copies of
letters in a word. This observation is called stuttering principle. Later this
principle became one of the cornerstones of partial order reduction meth-
ods. In the following section we recall the stuttering principle and extend
it to general LTL(Um;Xn) formulae. Roughly speaking, the general stut-
tering theorem says that under certain ‘local-periodicity’ conditions (which
depend on m and n) one can remove a given subword u from a given word
� without influencing the (in)validity of LTL(Um;Xn) formulae (we say
that u is (m;n)-redundant in �). In order to give some intuition for general
stuttering, we define other two stuttering principles: letter stuttering (also
known as n-stuttering) connected with nesting depth of X operators, and
subword stuttering associated with formulae without X operator and with
given bound on nesting depth of U operator.

Peled and Wilke [PW97a] have proved that if a language definable by
LTL is closed under stuttering (i.e. it does not distinguish between words
that are the same if we remove all adjacent copies of letters in the words)
then the language can be defined even by an LTL formula without any X

operator. In Section 5.2 we prove that every LTL language closed under
n-stuttering can be defined in LTL(U;X

n

). Further, we show that general
stuttering can be used for characterization of !-regular languages that are
definable in LTL.

Section 5.3 provides several theoretical applications of general stut-
tering theorem. The section addresses some basic problems regarding
three hierarchies of LTL fragments, namely LTL(U

m

;X);LTL(U;X

n

), and
LTL(U

m

;X

n

). In particular, the following problems seem to be among the
most natural ones:

Question 1 Are those hierarchies semantically strict? That is, if we increase
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m or n just by one, do we always obtain a strictly more expressive
fragment of LTL?

Question 2 If we take two fragments F ;F

0 in the above hierarchies
which are syntactically incomparable (for example, we can consider
LTL(U

4

;X

3

) and LTL(U

2

;X

5

), or LTL(U

3

;X

0

) and LTL(U

2

;X)), are
they also semantically incomparable? That is, are there formulae
'

F

2 F and '

0

F

2 F

0 such that L('
F

) is not expressible in F 0 and
L('

0

F

) is not expressible in F?

Question 3 In the case of LTL(Um;Xn) hierarchy, what is the semantic in-
tersection of LTL(Um1

;X

n

1

) and LTL(U

m

2

;X

n

2

)? That is, what lan-
guages are expressible in both fragments?

We provide (positive) answers to Question 1 and Question 2. Here the
results on the LTL(U

m

;X

n

) hierarchy seem to be particularly interesting.
As for Question 3, one is tempted to expect the following answer: The se-
mantic intersection of LTL(Um1

;X

n

1

) and LTL(U

m

2

;X

n

2

) is exactly the set
of languages expressible in LTL(U

m

;X

n

), where m = minfm

1

;m

2

g and
n = minfn

1

; n

2

g. Surprisingly, this answer turns out to be incorrect. For all
m � 1, n � 0 we give an example of a language L which is definable both
in LTL(U

m+1

;X

n

) and LTL(U

m

;X

n+1

), but not in LTL(U

m

;X

n

). This shows
that the answer to Question 3 is not as simple as one might expect. It is
worth mentioning here that the class of languages expressible in both frag-
ments LTL(U

m

1

;X

n

1

) and LTL(U

m

2

;X

n

2

) is decidable as these fragments
are decidable (see Subsection 3.3.4). In fact, we are looking for an answer
providing us better insight into expressiveness of LTL(Um;Xn) fragments.

The results concerning Question 1 are closely related to the work of
Etessami and Wilke [EW00]. They prove the strictness of until hierarchy
(see Subsection 3.3.1) in the following way: First, they design an appro-
priate Ehrenfeucht-Fraı̈ssé game for LTL (the game is played on a pair of
words) which in a sense characterizes those pairs of words that can be dis-
tinguished by LTL formulae where the temporal operators are nested only
to a certain depth. Then, for every k � 1 they construct a language FAIR

k+1

definable by a LTL(U

k

;F;X) formula and prove that this particular lan-
guage cannot be expressed by any formula from LTL(U

k�1

;F;X). Here the
previous results about the designed EF game are used. Since the formula
defining FAIR

k+1

contains just one F operator and many nested X and
U operators, this proof carries over to our LTL(Um;X) hierarchy. In fact,
[EW00] is a ‘stronger’ result in the sense that one additional nesting level
of U cannot be ‘compensated’ by arbitrarily-deep nesting of X and F. On
the other hand, the proof does not allow to conclude that, e.g. LTL(U3;X0)
contains a formula which is not expressible in LTL(U

2

;X) (because the for-
mula defining FAIR

k+1

contains the nested X modalities).
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Our method for solving Questions 1 and 2 is different. The general stut-
tering theorem gives us a simple (but surprisingly powerful) tool allowing
to prove that a certain formula ' is not definable in LTL(U

m

;X

n

). The prin-
ciple is applied as follows: we choose a suitable alphabet �, consider the
language L�('), and find an appropriate � 2 L

�

(') and its subword u

such that

� u is (m;n)-redundant in �;

� �

0

6j= ' where �0 is obtained from � by deletion of the subword u.

If we manage to do that, we can conclude that ' is not expressible in
LTL(U

m

;X

n

).
Using this tool, the proofs of answers to Questions 1 and 2 are remark-

ably short though it took us some time to find appropriate formulae which
witness the presented claims. It is worth noting that some of the known
results about LTL (e.g. the formula ‘G

2

a’ is not definable in LTL) admit a
one-line proof if our general stuttering principle is applied.

In section 5.4 we indicate that the general stuttering principle has the
potential to improve the partial order reduction methods.

The last section of this chapter contains additional notes about stutter-
ing including the situation on finite words.

5.1 A general stuttering theorem

In this section we formulate and prove the promised general stuttering the-
orem for LTL(Um;Xn) languages. General stuttering combines and extends
two independent principles of letter stuttering (n-stuttering) and subword
stuttering, which are applicable to the LTL(U;X

n

) and LTL(U

m

;X

0

) frag-
ments of LTL, respectively. We start by explaining these two principles in
Section 5.1.1 and Section 5.1.2. This material has been included for two
reasons. First, the two simplified principles are interesting on their own.
In Section 5.2.1 we present special results about letter stuttering which do
not hold for general stuttering. Secondly, the remarks and proof sketches
given in Section 5.1.1 and Section 5.1.2 should help the reader in gaining
some intuition about the functionality and underlying principles of gen-
eral stuttering.

5.1.1 Letter stuttering (n-stuttering)

Letter stuttering is a simple generalization of the well-known principle of
stutter invariance of LTL(U;X0) formulae [Lam83b] saying that LTL(U;X0)
formulae cannot distinguish between one and more adjacent occurrences
of the same letter in a given word. Formally, a letter �(i) of an !-word � is
called redundant if �(i) = �(i + 1) and there is j > i such that �(i) 6= �(j).
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The canonical form of � is the !-word obtained by deletion of all redun-
dant letters from �. Two !-words �; � are stutter equivalent if they have the
same canonical form. A language is stutter closed if it is closed under stutter
equivalence.

Theorem 5.1 ([Lam83b]) Every LTL(U;X0) language is stutter closed.

Intuitively, it is not very surprising that this principle can be extended to
LTL(U;X

n

) formulae (where n 2 N
0

). The so-called n-stuttering is based on
a simple observation that LTL(U;Xn) formulae cannot distinguish between
n+1 and more adjacent occurrences of the same letter in a given !-word.
Formally, a letter �(i) is n-redundant if �(i) = �(i+ 1) = : : : = �(i + n+ 1)

and there is some j > i such that �(i) 6= �(j). The n-canonical form, n-stutter
equivalence, and n-stutter closed languages are defined in the same way as
above.

Theorem 5.2 (n-stuttering) Every LTL(U;Xn) language is n-stutter closed.

Proof: The theorem can be proven directly by induction on n. Since it is a
consequence of Theorem 5.9, we do not give an explicit proof here1. �

Theorem 5.2 can be used to show that a given property is not expressible
in LTL(U;X

n

) (or even in LTL). The following corollary is an evidence of
this statement.

Corollary 5.3 The languages L
1

= ((aa)

�

b)

! and L
2

= faa; abg

! are not defin-
able in LTL.

Proof: These languages (already mentioned in Example 3.13) are standard
examples of !-regular languages that are not definable in LTL, i.e. not star-
free.

We start with language L
1

. For the sake of contradiction, let us assume
that there exists a formula ' 2 LTL(U;X) such that L

1

= L

fa;bg

('). Then
' 2 LTL(U;X

n

) where n = U-depth('). Theorem 5.2 implies that L
1

is
n-stutter closed. This is a contradiction as words � = (a

2n+2

b)

! and � =

(a

2n+3

b)

! are n-stutter equivalent and � 2 L
1

while � 62 L
1

.
The proof for L

2

is analogous. Again, we assume that the language is
expressible in LTL. Hence, there is n 2 N

0

such that L
2

is expressible in
LTL(U;X

n

). Theorem 5.2 gives us that L
2

is n-stutter closed. This is not
true as !-words a2n+1ba! 2 L

2

and a2n+2ba! 62 L
2

are n-stutter equivalent.
�

Let us recall that the language L
2

can be defined by a formula ‘G
2

a’ with
the meaning that a holds at every even position [Wol83].

1A direct proof of Theorem 5.2 is of course simpler than the proof of Theorem 5.9. It can
be found in [KS04].
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5.1.2 Subword stuttering

Since letter stuttering takes into account just the X-depth of LTL formulae, a
natural question is whether there is another form of stutter-like invariance
determined by the U-depth of a given LTL formula. We provide a (positive)
answer to this question by formulating the principle of subword stuttering,
which is applicable to LTL(Um;X0) formulae (wherem � 1). The term ‘sub-
word stuttering’ reflects the fact that we do not necessarily delete/pump
just individual letters, but whole subwords. The essence of the idea is for-
mulated in the following claim:

Claim 5.4 Let ' 2 LTL(U

m

;X

0

) where m � 1. For all v; u 2 �

� and � 2 �

!

we have that vum+1

� j= ' iff vum� j= '.

In other words, LTL(Um;X0) cannot distinguish between m and more ad-
jacent occurrences of the same subword u in a given word. Note that there
are no assumptions about the length of u.

Claim 5.4 can be easily proven by induction on m. We just sketch the
crucial part of the argument (a full proof is in fact contained in the proof of
Theorem 5.9). Let us suppose that ' =  U %, where  ; % 2 LTL(U

m�1

;X

0

).
We want to show that vum+1

� j= ' iff vum� j= '. We concentrate just on
the ‘=)’ part (the other direction is similar). By induction hypothesis, the
following equivalences hold for all 0 � ` < jvuj:

(vu)

`

u

m

� j=  iff (vu)

`

u

m�1

� j=  (5.1)

(vu)

`

u

m

� j= % iff (vu)

`

u

m�1

� j= % (5.2)

Let vum+1

� j=  U %. Then there is j 2 N

0

such that (vum+1

�)

j

j= % and
(vu

m+1

�)

i

j=  for all 0 � i < j. If j < jvuj, we immediately obtain
vu

m

� j=  U % by applying (5.1) and (5.2) above. If j � jvuj, we can imagine
that the word vum� was obtained from vu

m+1

� by deletion of the first copy
of u (from now on, we denote the kth copy of u in vu

m+1

� by u[k℄). The
situation is illustrated by Figure 5.1. Realize that the (in)validity of  and

v

�

 

%

u[1℄ u[2℄ u[3℄
u[m+1℄

Figure 5.1: Intuition for proof of Claim 5.4.

% for any suffix of u[2℄u[3℄ : : : u[m+1℄� is not influenced by deletion of
the u[1℄ subword (LTL(U;X) contains only future modalities). That is, it
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eplacements

v �y
u[1℄

u[2℄

u[3℄

u[m�1℄

u[m℄

u[m+1℄

m�1 letters

Figure 5.2: Illustration of the first condition of Claim 5.5.

suffices to show that for each suffix v

0 of v we have that v0um+1

� j=  

implies v0um� j=  . However, this follows from (5.1) above.

The principle of subword stuttering, as formulated in Claim 5.4, is quite
simple and intuitively clear. Now we refine this principle into a stronger
form.

Claim 5.5 Let ' 2 LTL(U

m

;X

0

) where m � 0. For all v; y 2 �

�, u 2 �

+, and
� 2 �

! such that

� jyj = juj �m�m+ 1 and

� y is a prefix of u!

we have that vuy� j= ' iff vy� j= '.

The structure of vuy� can be illustrated by Figure 5.2. In other words,
the u subword has to be repeated ‘basically’ m+1 times as in Claim 5.4, but
now we can ignore the last m� 1 letters of u[1℄ : : : u[m+1℄. Note that there
is no assumption about the length of u; if u is ‘short’ and m is ‘large’, it can
happen that the last m�1 letters actually ‘subsume’ several trailing copies
of u.

Claim 5.5 can also be proven by induction on m. Again, we concentrate
just on the crucial step when ' =  U % and  ; % 2 LTL(U

m�1

;X

0

). We only
show the ‘=)’ part (the other direction is similar). So, let vuy� j=  U %.
Then there is j 2 N

0

such that (vuy�)
j

j= % and (vuy�)

i

j=  for all 0 � i <

j. We distinguish three possibilities (the first two of them are handled in
the same way as in Claim 5.4):

(i) j < jvj. To prove that vy� j=  U %, it suffices to show that for every
suffix v0 of v we have that

– v

0

uy� j=  implies v0y� j=  ,

– v

0

uy� j= % implies v0y� j= %.

However, this follows directly from induction hypothesis.
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%

v �y

v

0

�

y

0

u

u

0

Figure 5.3: Situation in case (iii) of the proof of Claim 5.5.

(ii) j � jvuj. First, realize that the (in)validity of  and % for any suffix of
y� is not influenced by deletion of the u subword. Hence, it suffices
to show that v0uy� j=  implies v0y� j=  for each suffix v0 of v. This
follows from the induction hypothesis in the same way as in (i).

(iii) jvj � j < jvuj. This requires more care. A key observation is that the
word vuy� can be seen as v0u0y0� = vuy�, where jv0j = j, ju0j = juj,
and jy0j = jyj + jvj � jv

0

j. Figure 5.3 depicts the situation. Due to the
periodicity of y we have that vy� = v

0

y

0

�. Hence, it suffices to show
that y0� j= % and v

00

y

0

� j=  for every nonempty suffix v00 of v0. We
know that u0y0� j= % and v00u0y0� j=  ; so, if y0 is ‘sufficiently long’, we
can use induction hypothesis to finish the proof. That is, we need to
verify that jy0j � ju0j�(m�1)�(m�1)+1, but this follows immediately
from the known (in)equalities jy0j = jyj + jvj � jv

0

j, ju0j = juj, and
jvj > jv

0

j � juj.

5.1.3 General stuttering

In this section we combine the previously discussed principles of letter
stuttering and subword stuttering into a single ‘general stuttering theorem’
which is applicable to LTL(U

m

;X

n

) formulae.

Definition 5.6 Let � be an alphabet and m;n 2 N
0

.

� A subword �(i; j) of a given � 2 �

! is (m;n)-redundant if the word
�(i+ j;m � j �m+ 1 + n) is a prefix of �(i; j)! .

� The relation�
m;n

� �

!

��

! is defined as follows: � �
m;n

� iff � can be ob-
tained from � by deletion of some (possibly infinitely many) non-overlapping
(m;n)-redundant subwords. The (m;n)-stutter equivalence is the least
equivalence over �! subsuming the relation �

m;n

.

� A language L � �

! is (m;n)-stutter closed if it is closed under
(m;n)-stutter equivalence.
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eplacements

v

�

0periodic patternu[1℄ = �(i; j)

u[2℄

u[3℄

u[m�1℄

u[m℄

u[m+1℄

m�1 letters

n letters

Figure 5.4: Structure of an !-word with an (m;n)-redundant subword.

The structure of an !-word � with an (m;n)-redundant subword �(i; j)
is illustrated by Figure 5.4. The �(i; j) subword has to be repeated ‘basi-
cally’ m+1 times but we can ignore the last (m�1)�n letters (if (m�1)�n

is negative, we must actually prolong the repetition ‘beyond’ the m + 1

copies of �(i; j) – see Figure 5.4). Note that there are no assumptions about
the sizes of m, n, and j.

Our goal is to prove that the (in)validity of LTL(Um;Xn) formulae is not
influenced by deleting/pumping (m;n)-redundant subwords. First, let us
realize that this result is a proper generalization of both Theorem 5.2 and
Claim 5.5. If we compare the ‘periodicity assumptions’ of Theorem 5.2,
Claim 5.5, and Definition 5.6, we can observe that

� a letter �(i) is n-redundant iff it is consecutively repeated at least n+1

times. That is, �(i) is n-redundant iff �(i + 1; n + 1) is a prefix of
�(i; 1)

! . For every m 2 N

0

we get that �(i) is n-redundant iff �(i; 1) is
(m;n)-redundant as �(i+1; n+1) = �(i+1;m �1�m+1+n). In other
words, the notion of n-redundancy coincides with (m;n)-redundancy
for subwords of length 1.

� the condition of Claim 5.5 matches exactly the definition of (m; 0)-
redundancy.

Before formulating and proving the general stuttering theorem, we
need to state two auxiliary lemmata.

Lemma 5.7 Let � be an alphabet, m;n 2 N
0

, and � 2 �

!. If a subword �(i; j) is

(i) (m;n)-redundant then it is also (m0

; n

0

)-redundant for all 0 � m

0

� m and
0 � n

0

� n.

(ii) (m;n+ 1)-redundant then the subword �(i+ 1; j) is (m;n)-redundant.

(iii) (m+1; n)-redundant then the subword �(i+ k; j) is (m;n)-redundant for
every 0 � k < j.
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Proof: (i) follows immediately as j > 0 implies m0

� j � m

0

+ 1 + n

0

�

m � j �m+ 1 + n. (ii) is also simple – due to the (m;n+1)-redundancy of
�(i; j) we know that the subword is repeated at least on the next m � j �

m+ 2 + n letters. Hence, the subword �(i+1; j) is repeated at least on the
next m � j �m + 1 + n letters and thus it is (m;n)-redundant. A proof of
(iii) is similar; if �(i; j) is repeated on the next (m+1) � j �m + n letters,
then the subword �(i+k; j) (where 0 � k < j) is repeated on the next
(m+1) � j � m + n � k = m � j � m + n + j � k letters, i.e. �(i+k; j) is
(m;n+ j � k � 1)-redundant. The (m;n)-redundancy of �(i+k; j) follows
from (i) and k < j. �

Lemma 5.8 For all m � 1, n � 0, and all �; � 2 �

! such that � �
m;n

� there
exists a surjective function g : N

0

�! N

0

such that

(i) for all `; x 2 N
0

, where 0 � x < g(`), there exists 0 � `

0

< ` such that
g(`

0

) = x,

(ii) for each ` 2 N
0

we have that �
`

�

m�1;n

�

g(`)

.

Proof: Let m � 1, n � 0 and �; � 2 �

! such that � �

m;n

�. Let D =

�(i

0

; j

0

); �(i

1

; j

1

); : : : be the (finite or infinite) sequence of non-overlapping
(m;n)-redundant subwords which were deleted from � to obtain � (we
assume that i

0

< i

1

< : : :). We say that a given ` 2 N

0

is covered by a
subword �(i

q

; j

q

) of D if i
q

� ` � i

q

+j

q

�1. For each such ` we further
define jump(`) = ` + j

q

and pos(`) = ` � i

q

+ 1. If ` is not covered by any
subword of D, we put pos(`) = 0 and jump(`) = `. The set of all `’s that are
covered by the subwords of D is denoted ov(D). For each ` 62 ov(D), by
length(`) we denote the total length of all subwords of D which cover some
k � `.

The function g is defined as follows:

g(`) =

�

`� length(`) if ` 62 ov(D);

g(jump(`)) otherwise.

Figure 5.5 provides an example of a function g.

In particular, note that uncovered letters of � are projected to the
“same” letters in �, and covered letters are in fact mapped to uncovered
ones by performing one or more jumps of possibly different length. Also
note that g is not monotonic in general.

First we show that g is well-defined, i.e. for each ` 2 ov (D) there is
k 2 N such that jump

k

(`) 62 ov(D) (here jump

k denotes jump applied k-
times). This is an immediate consequence of the following observation:

For each ` 2 ov (D) there is k 2 N such that pos(jump

k

(`)) < pos(`).
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� :

� :

�(i

0

; j

0

)

�(i

1

; j

1

)

�(i

2

; j

2

)

�(i

3

; j

3

)

Figure 5.5: An example of a function g constructed in the proof of
Lemma 5.8.

Proof of the observation: First, let us realize that pos(`) � pos(jump(`)) for
every ` 2 ov(D). Now assume that the observation does not hold. Then
there is ` 2 ov (D) such that pos(jump

k

(`)) = pos(`) for every k 2 N .
Let �(i

q

; j

q

) be the subword of D covering `, and let D
q

be the sequence
obtained from D by removing the first q elements. Since pos(jump

k

(`)) =

pos(`) for every k 2 N , all subwords of D
q

are adjacent and the length
of each of them is at least pos(`). Hence, each `

0

� ` is covered by some
subword of D

q

, which contradicts the assumption that � is infinite.
Proof of (i): First we show that for every ` 2 N

0

we have that g(` + 1) �

g(`) + 1. Let us assume that there is some `0 2 N

0

such that g(`0 + 1) >

g(`

0

) + 1, and let k 2 N

0

be the least number such that ` = jump

k

(`

0

) is
either uncovered or satisfies g(jump(`) + 1) � g(jump(`)) + 1. Observe
that such a k must exist, and that ` satisfies g(` + 1) > g(`) + 1 (otherwise
we get a contradiction with the minimality of k). Now we distinguish two
possibilities:

� pos(` + 1) � 1. Let `00 be the least uncovered index greater or equal
to ` + 1. It follows easily from the definition of g that g(` + 1) =

g(`

00

). Hence, g(`) is either equal to g(` + 1) � 1 (if ` 62 ov(D)), or
greater or equal to g(`+ 1) (if ` 2 ov(D)). Again, this contradicts the
assumption that g(`+ 1) > g(`) + 1.

� pos(` + 1) � 2. Then `; ` + 1 are covered by the same subword of D.
By applying the definition of g we obtain g(`) = g(jump(`)) and g(`+
1) = g(jump(`+1)). Moreover, jump(`+1) = jump(`)+1 because `; `+
1 are covered by the same subword of D. If pos(jump(`) + 1) equals
to 0 or 1, we derive a contradiction using the arguments of previous
cases. If pos(jump(`) + 1) � 2, we have that jump(`) 2 ov(D), hence
g(jump(`)+1) � g(jump(`))+1 due to the assumption adopted above.
Altogether, we derived a contradiction with g(`+ 1) > g(`) + 1.

Now we are ready to finish the proof of (i). Let us assume that (i) does
not hold, and let ` 2 N

0

be the least number such that (i) is violated for
` and some 0 � x < g(`). Clearly ` > 0, because g(0) = 0. Further,
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g(` � 1) � g(`) � 1 due to the claim just proved. This means that either
g(`� 1) = x, or `� 1 also violates (i). In both cases we have a contradiction
with our choice of `.

Proof of (ii): We show that �
`

�

m�1;n

�

g(`)

for each ` 2 N
0

. We proceed
by induction on pos(`).

Basis. pos(`) = 0. This means that ` 62 ov(D). Clearly �

`

�

m;n

�

g(`)

because �
g(`)

is obtained from �

`

by deletion of all those subwords
�(i

q

; j

q

) of D such that i
q

> `. Hence, we also have �
`

�

m�1;n

�

g(`)

by
applying Lemma 5.7 (i).

Induction step. Let pos(`) > 0 and let k 2 N be the least number such
that pos(jump

k

(`)) < pos(`). To simplify our notation, we put `0 =
jump

k

(`). Clearly g(`) = g(`

0

) by definition of g. By induction hy-
pothesis we have that �

`

0

�

m�1;n

�

g(`

0

)

. Hence, it suffices to show
that �(`; `0 � `) is a sequence of (m�1; n)-redundant subwords. Let
us assume that ` is covered by �(i

q

; j

q

). Consider the sequence of
subwords

�(i

q

; j

q

); : : : ; �(i

q+k�1

; j

q+k�1

):

From the minimality of k we obtain that these subwords are adjacent
and the length of each of them is at least pos(`). Hence, �(`; `0�`) can
be seen as a sequence of words

�(i

q

+pos(`)�1; j

q

); : : : ; �(i

q+k�1

+pos(`)�1; j

q+k�1

):

Moreover, each of these words is (m�1; n)-redundant by
Lemma 5.7 (iii). �

Theorem 5.9 (general stuttering) Every LTL(U

m

;X

n

) language is (m;n)-
stutter closed.

Proof: Let m;n 2 N
0

and ' 2 LTL(U

m

;X

n

). It suffices to prove that for all
�; � 2 �

! such that � �
m;n

� we have that � j= ' () � j= '. We proceed
by a simultaneous induction on m and n (we write (m

0

; n

0

) < (m;n) iff
m

0

� m and n0 < n, or m0

< m and n0 � n).

Basis. m = 0 and n = 0. Let �; � 2 �

! be !-words such that � �

0;0

�. Let D denote the sequence of non-overlapping (0; 0)-redundant
subwords D = �(i

0

; j

0

); �(i

1

; j

1

); : : : which were deleted from � to
obtain � (we assume that i

0

< i

1

< : : : ). Since LTL(U0;X0) formulae
are just ‘Boolean combinations’ of letters and >, it suffices to show
that �(0) = �(0). If i

0

> 0 then it is clearly the case. Now let i
0

= 0,
and let k 2 N

0

be the least number such that the subwords �(i
k

; j

k

)

and �(i

k+1

; j

k+1

) are not adjacent (i.e. i
k+1

> i

k

+ j

k

). Hence, �(0) =
�(i

k

+ j

k

) and (0; 0)-redundancy of the subwords in D implies that

�(0) = �(i

0

) = �(i

1

) = �(i

2

) = � � � = �(i

k

) = �(i

k

+ j

k

) = �(0):
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Induction step. Let m;n 2 N
0

, and let us assume that the theorem holds
for all m0

; n

0 such that (m0

; n

0

) < (m;n). Let �; � 2 �

! be !-words
such that � �

m;n

�, and let D = �(i

0

; j

0

); �(i

1

; j

1

); : : : (i
0

< i

1

<

: : : ) be the sequence of non-overlapping (m;n)-redundant subwords
which were deleted from � to obtain �. We distinguish four possibil-
ities:

� ' 2 LTL(U

m

0

;X

n

0

) for some (m

0

; n

0

) < (m;n). Since every
�(i; j) from D is (m

0

; n

0

)-redundant by Lemma 5.7 (i), we just
apply induction hypothesis.

� ' = X . We need to prove that �
1

j=  () �

1

j=  . By
induction hypothesis,  cannot distinguish between (m;n�1)-
stutter equivalent !-words. Hence, it suffices to show that
�

1

�

m;n�1

�

1

. If i
0

> 0, then �
1

(i

0

� 1; j

0

); �

1

(i

1

� 1; j

1

); �

1

(i

2

�

1; j

2

); : : : are (m;n)-redundant and due to Lemma 5.7 (i) they
are also (m;n�1)-redundant. Moreover, �

1

can be obtained from
�

1

by deletion of these subwords.

If i
0

= 0, then let k 2 N
0

be the least number such that the sub-
words �(i

k

; j

k

) and �(i

k+1

; j

k+1

) are not adjacent. The !-word
�

1

can be obtained from �

1

by deletion of the subwords

�

1

(i

0

; j

0

); : : : ; �

1

(i

k

; j

k

); �

1

(i

k+1

� 1; j

k+1

); �

1

(i

k+2

� 1; j

k+2

); : : : :

The subwords �
1

(i

0

; j

0

); �

1

(i

1

; j

1

); : : : ; �

1

(i

k

; j

k

) are (m;n � 1)-
redundant by Lemma 5.7 (ii), and the other subwords are
(m;n� 1)-redundant by applying Lemma 5.7 (i).

� ' =  U �. By induction hypothesis,  ; � cannot distinguish
between (m�1; n)-stutter equivalent !-words. Let g be the
function of Lemma 5.8 constructed for the considered m;n; �; �

(i.e. �
`

�

m�1;n

�

g(`)

for every ` 2 N
0

).

Now we show that if � j=  U � then also � j=  U �. If � j=  U �,
there is  � 0 such that �



j= � and for every d <  we have that
�

d

j=  . By induction hypothesis we get �
g()

j= �. Further, for
every d0 < g() there is d <  such that g(d) = d

0. By Lemma 5.8,
for every d0 < g() there is d <  such that �

d

�

m�1;n

�

g(d)

= �

d

0

and hence �
d

0

j=  . Altogether, we obtain that � j=  U �.

Similarly, we also show that if � j=  U� then � j=  U �. If � j=
 U �, there is  � 0 such that �



j= � and for every d < we have
that �

d

j=  . Let 0 be the least number satisfying g(0) =  (there
is such a 0 because g is surjective). Then �



0

j= � by induction
hypothesis. From the definition of g we get that for every d0 < 

0

it holds that g(d0) < g(

0

) =  (otherwise we would obtain a
contradiction with our choice of 0). Thus, �

d

0

j=  and hence
� j=  U �.
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� ' is a ‘Boolean combination’ of formulae of the previous cases.
Formally, this case is handled by an ‘embedded’ induction on
the structure of '. The basic step (when ' is not of the form : 

or  ^ �) is covered by the previous cases. The induction step
(' = : or ' =  ^ � where we assume that our theorem holds
for  ; �) follows immediately. �

5.2 Stuttering as a sufficient condition

In Section 5.1 we have shown that formulae of certain LTL fragments are
invariant under certain forms of stutter equivalence of !-words. These re-
sults (Theorem 5.2, Claim 5.4, Claim 5.5, and Theorem 5.9) were formulated
as “pumping lemmata”, i.e. necessary conditions which must be satisfied
by languages of the respective LTL fragments. In this section we show that
certain forms of stutter invariance together with some additional assump-
tions in fact characterize certain LTL fragments.

5.2.1 Letter stuttering

It has been proved by Peled and Wilke [PW97a] that every LTL lan-
guage closed under stuttering is definable in LTL(U;X

0

). This proof can
be straightforwardly generalized to n-stuttering. Hence, every n-stutter
closed LTL property is definable in LTL(U;X

n

). For the sake of complete-
ness, we present this proof explicitly. (Later we formulate further observa-
tions which refer to technical details of this proof.)

Theorem 5.10 Let L � �

!. The following conditions are equivalent:

(a) L is definable in LTL(U;X

n

).

(b) L is definable in LTL and n-stutter closed.

Proof: The (a) =) (b) direction follows from Theorem 5.2. We prove the
opposite direction. Given an LTL(U;X) formula ' and n 2 N

0

, we con-
struct an LTL(U;X

n

) formula �
n

(') and prove that the following observa-
tion holds for every alphabet �.

L

�

(') is n-stutter closed if and only if L�(') = L

�

(�

n

(')).

This is sufficient as every LTL language is definable in LTL(U;X) due to
Corollary 3.4.

Let � be the set of letters occurring in '. We set � =

W

a2�

p. Further,
for all a 2 � and i > 0 we define formulae �

a

i
, �

a

i

:a

, �
:�

i
, and �

:�

i

�

as
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follows:
�

a

1
= a �

a

i+1

= a ^ X�

a

i

�

a

0

:a

= :a �

a

i

:a

= a ^ X�

a

i�1

:a

�

:�

1
= :� �

:�

i+1

= :� ^ X�

:�

i

�

:�

0

�

= � �

:�

i+1

�

= :� ^ X�

:�

i

�

Observe that

X-depth(�
a

i+1

) = X-depth(�
a

i

:a

) = X-depth(�
:�

i+1

) = X-depth(�
:�

i

�

) = i:

The translation �
n

(') is defined inductively on the structure of ':

� �

n

(a) = a

� �

n

(: ) = :�

n

( )

� �

n

( ^ �) = �

n

( ) ^ �

n

(�)

� �

n

( U �) = �

n

( )U �

n

(�)

� �

n

(X ) = �( ) _ �( ), where

�( ) = (G:� _

_

a2�

Ga) ^ �

n

( )

and

�( ) =

_

1�i�n+1

( �( ;:�; i) _

_

a2�

�( ; a; i) ):

The subformulae �( ; a; i) and �( ;:�; i) of �( ) are constructed as
follows:

�( ; a; i) =

�

�

a

i

:a

^ aU (�

a

i�1

:a

^ �

n

( )) if i � n

�

a

n+1
^ aU (�

a

n

:a

^ �

n

( )) if i = n+1

�( ;:�; i) =

�

�

:�

i

�

^ :�U (�

:�

i�1

�

^ �

n

( )) if i � n

�

:�

n+1
^ :�U (�

:�

n

�

^ �

n

( )) if i = n+1

One can readily confirm that the X-depth(�
n

(')) equals n. We need to prove
that if L�(') is n-stutter closed, then the languages L�(') and L

�

(�

n

('))

are the same (the other implication follows directly from Theorem 5.2).
Since ' and �

n

(') cannot distinguish between letters which do not belong
to �, we can assume that � � � [ feg, where e 62 � represents all letters
not occurring in '.

As both L�(') and L

�

(�

n

(')) are n-stutter closed (in the latter case we
apply Theorem 5.2), it actually suffices to prove that ' and �

n

(') cannot
be distinguished by any n-stutter free !-word � 2 �

! (an !-word � is n-
stutter free if � has no n-redundant letters). That is, for every n-stutter free
� 2 �

! we show that � j= ' iff � j= �

n

('). We proceed by induction on
the structure of '. All subcases except for ' = X are trivial. Here we
distinguish two possibilities:
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� � = a

! for some a 2 �. Then �

1

= � and thus we get � j= X 

iff �
1

j=  iff �
1

j= �

n

( ) (by induction hypothesis) iff � j= �

n

( ).
Hence, this subcase is ‘covered’ by the formula �( ) saying that � is
of the form a

! and that �
n

( ) holds (the particular case when � = e

!

corresponds to G:�).

� � = a

i

b� where a; b 2 �, a 6= b, 1 � i � n+ 1, and � 2 �

!.

Let us first consider the case when a = e. Then aib� j= X iff ai�1b� j=
 iff ai�1b� j= �

n

( ) (we use induction hypothesis). If i � n, then the
last condition is equivalent to aib� j= �

:�

i

�

^:�U (�

:�

i�1

�

^ �

n

( )).
If i = n+1, then the condition is equivalent to a

n+1

b� j= �

:�

n+1
^

:�U (�

:�

n

�

^�

n

( )). In both cases, the resulting formula corresponds
to �( ;:�; i).

The case when a 2 � is handled similarly; we have that aib� j= X iff
a

i�1

b� j=  iff ai�1b� j= �

n

( ) (by induction hypothesis). If i � n then
the last condition equals aib� j= �

a

i

:a

^ aU (�

a

i�1

:a

^ �

n

( )). If i =
n+1 then the condition equals an+1b� j= �

a

n+1 ^ aU (�

a

n

:a

^ �

n

( )).
Anyway, the resulting formula corresponds to �( ; a; i).

To sum up, the case when � = a

i

b� is ‘covered’ by the formula �( ).
�

In general, the size of �
n

(') is exponential in X-depth('). However, the
size of the circuit2 representing �

n

(') is only O((n + 1) � j'j

2

). To see this,
realize the following:

(1) The total size of all circuits representing the formulae �
a

n

:a

; �

a

n+1
(for

all a 2 �) and �
:�

n

�

; �

:�

n+1
is O((n+ 1) � j'j). Moreover, all circuits

representing the formulae �
a

i

:a

and �

:�

i

�

(for all 0 � i � n) are
contained in the circuits representing �

a

n

:a

or �
:�

n

�

, respectively.

(2) Assuming that the circuits of (1) and the circuit representing �
n

( ) are
at our disposal, we need to add only a constant number of new nodes
to represent the formulae �( ;:�; i) and �( ; a; i) for given a 2 �

and 1 � i � n+1. This means that we need to addO((n+1) � j'j) new
nodes when constructing the circuit for �

n

(X ).

(3) Since ' contains O(j'j) subformulae of the form X , the circuit rep-
resenting ' has O((n+ 1) � j'j

2

) nodes in total.

Theorem 5.11 Let ' be an LTL(U;X) formula and n 2 N
0

. The problem whether
there is a formula in LTL(U;X

n

) equivalent to ' is PSPACE-complete (assuming
unary encoding of n).

2A circuit (or DAG) representing a given LTL formula ' is obtained from the syntax tree
of ' by identifying all nodes which correspond to the same subformula.
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Proof: The proof employs the fact that validity problem for LTL(U;X) for-
mulae is PSPACE-complete [SC85].

The observation formulated in proof of Theorem 5.10 directly implies
that if there exists an LTL(U;X

n

) formula equivalent to ' then ' �
i

�

n

(').
The circuit representing �

n

(') is of size O((n+ 1) � j'j

2

). The upper bound
then follows from the fact that the validity of formula '() �

n

(') is decid-
able in PSPACE even if the formula is represented by a circuit [SC85].

The matching lower bound is obtained by reducing the validity prob-
lem for LTL(U;X) formulae (similar reduction of validity problem to prob-
lem whether a language is stutter closed appears in [PWW98]). For every
LTL(U;X) formula � we define a formula

�(�) = a ^ Xa ^ XXa ^ � � � ^

n

z }| {

XX : : :X(a ^ Xb ^ XX:�):

Formula �(�) is equivalent to an LTL(U;X

n

) formula if and only if for every
alphabet � a language L�(�(�)) is n-stutter closed. Further, every language
defined by formula �(�) has the form a

n+1

bL

0, where L0 is a language de-
fined by :�. Therefore, either L0 is empty or L is not n-stutter closed. To
sum up, �(�) is equivalent to an LTL(U;X

n

) formula if and only if :� is not
satisfiable, i.e. if and only if � is valid. �

Theorem 5.10 and the above corollary enable us to extend the statement
of Theorem 3.18 to n-stuttering.

Corollary 5.12 The problem whether an !-language defined by an LTL(U;X)

formula is n-stutter closed is PSPACE-complete (assuming unary encoding of n).

Proof: Let us consider a language L = L

�

('), where ' is an LTL(U;X)

formula. Further, let � be the set of letters occurring in '. There are two
cases. First, if � ( � then L is n-stutter closed if and only if ' is equivalent
to an LTL(U;X

n

) formula. Second, if � � � we set

'

0

= ' ^ G(

_

a2�

a):

Let us note that the size of '0 is linear in the size of '. As L = L

�

0

('

0

) for
every �

0

� �, the language L is n-stutter closed if and only if '0 is equiva-
lent to an LTL(U;X

n

) formula. In both cases the statement is a consequence
of Theorem 5.11. �

The corollary can be alternatively proved by generalization of the tech-
niques developed for (various equivalences including) stutter equivalence
in [PWW98].

Finally, let us note that the condition (b) of Theorem 5.10 cannot be
weakened to “L is an n-stutter closed !-regular language”, because there
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are !-regular languages which are n-stutter closed for all n 2 N
0

, yet not de-
finable in LTL. A concrete example of such a language is L = f(a

+

b

+

)

2i



!

j

i 2 Ng which is clearly n-stutter closed for every n 2 N

0

, but not (m;n)-
stutter closed for any m;n 2 N

0

(and hence not definable in LTL).

5.2.2 General stuttering

In Section 5.2.1 we have shown that LTL(U;Xn) languages are exactly n-
stutter closed LTL languages. A natural question is whether LTL(Um;Xn)
languages are fully characterized by the closure property induced by
(m;n)-stuttering. In this section we show that this is not the case. Never-
theless, regular (m;n)-stutter closed languages are inevitably noncounting
(see Definition 3.10), and hence expressible in LTL. This means that if L is
!-regular and (m;n)-stutter closed, thenL 2 LTL(U

m

0

;X

n

0

) for somem0

; n

0.
In this section we also show that there is no functional relationship between
(m

0

; n

0

) and (m;n).

Theorem 5.13 Let L � �

!. The following conditions are equivalent:

(a) L is definable in LTL.

(b) L is !-regular and noncounting.

(c) L is !-regular and (m;n)-stutter closed for some m;n 2 N
0

.

Proof: The equivalence of (a) and (b) is a consequence of several results –
see Theorem 3.11 and accompanying comments. The implication (a) =) (c)
is given by Theorem 5.9. The implication (c) =) (b) follows from a straight-
forward observation that a language violating noncounting property is not
(m;n)-stutter closed for any m;n 2 N

0

. �

A natural question is whether the condition (c) of Theorem 5.13 can be
weakened to “L is (m;n)-stutter closed for some m;n 2 N

0

”. The answer is
given in our next theorem.

Theorem 5.14 For all m � 2 and n � 1 there is an (m;n)-stutter closed lan-
guage L � fa; b; ; dg! which is not definable in LTL.

Proof: Due to Lemma 5.7 (i), we just need to consider the case whenm = 2

and n = 1. We say that a word w 2 �

� is square-free if it does not con-
tain a subword of the form uu, where juj � 1. It is known that there are
infinitely many square-free words3

w

0

; w

1

; : : : over the alphabet fa; b; g
[Thu06]. Now observe that for each of these w

i

there is no other word

3The sequence w
0

; w

1

; : : : is defined inductively by w
0

= a and w
i+1

= f(w

i

), where f
is a word homomorphism given by f(a) = abab, f(b) = aabb, f() = abab. The proof
in [Thu06] reveals that if w is square-free, then so is f(w).
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v 2 fa; b; g

� such that w
i

d

!

�

(2;1)

vd

! or vd! �
(2;1)

w

i

d

! . This means that
L = fw

i

d

!

j i 2 N

0

g is (2; 1)-stutter closed. Obviously, L is not !-regular
by using standard arguments (pumping lemma for !-regular languages).
Thus, L is not definable in LTL. �

Due to Theorem 5.13, we know that if L is !-regular and (m;n)-stutter
closed, then L is definable in LTL, i.e. there are m0

; n

0

2 N such that L is
definable in LTL(U

m

0

;X

n

0

). However, it is not clear what is the relationship
between m;n and m

0

; n

0. One might be tempted to think that m0

; n

0 can
be expressed (or at least bounded) by some simple functions in m;n, for
example m0

= m and n

0

= n. Our next theorem says that there is no such
relationship.

Theorem 5.15 Let m � 2 and n � 1. For all m0

; n

0

2 N

0

there is an
(m;n)-stutter closed LTL language L � fa; b; ; dg

! which is not definable in
LTL(U

m

0

;X

n

0

).

Proof: First, realize that for all m0

; n

0

2 N

0

there are only finitely many pair-
wise non-equivalent LTL(Um

0

;X

n

0

) formulae over the alphabet fa; b; ; dg.
Hence, it suffices to show that for all m � 2 and n � 1 there are infinitely
many (m;n)-stutter closed LTL languages over the alphabet fa; b; ; dg. Due
to Lemma 5.7 (i), we just need to consider the case when m = 2 and n = 1.
Let L be the language constructed in the proof of Theorem 5.14. Now re-
alize that each of the infinitely many finite subsets of L is a (2; 1)-stutter
closed LTL language. �

Finally, let us note that possible generalizations of Theorem 5.14 and
Theorem 5.15 cannot cross certain limits – they do not hold for allm;n 2 N

0

and every alphabet �. For example, every (1; 0)-stutter closed language
over the alphabet fa; bg is definable in LTL(U

2

;X

0

). To see this, realize that
the quotient of fa; bg! under (1; 0)-stutter equivalence has exactly eight
equivalence classes represented by words (ab)

! , (ba)! , a!, b! , ab!, ba! ,
aba

!, and bab

!. Hence, there are exactly 2

8

= 256 languages over fa; bg
which are (1; 0)-stutter closed. Since each equivalence class of the quotient
is a language definable in LTL(U

2

;X

0

), we can conclude that each of these
256 languages is definable in LTL(U

2

;X

0

).

5.3 Answers to Questions 1, 2, and 3

Now we are ready to provide answers to Questions 1, 2, and 3 which were
stated at the beginning of this chapter (though Question 3 will be left open
in fact). We start with a simple observation.

Lemma 5.16 For each n � 1 there is a formula ' 2 LTL(U

0

;X

n

) which cannot
be expressed in LTL(U;X

n�1

).
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Proof: Let � = fa; bg and n � 1. Consider the formula ' �

n

z }| {

XX : : :X a.
We show that L�(') is not closed under (n�1)-stutter equivalence (which
suffices due to Theorem 5.2). It is easy; realize that an+1b! 2 L�(') and the
first occurrence of a in this word is (n�1)-redundant. Since anb! 62 L�('),
we are done. �

A ‘dual’ fact is proven below (it is already non-trivial).

Lemma 5.17 For each m � 1 there is a formula ' 2 LTL(U

m

;X

0

) which cannot
be expressed in LTL(U

m�1

;X).

Proof: Let m � 1 and let � = fb; a

1

; : : : ; a

m

g. We define a formula ' 2

LTL(U

m

;X

0

) as

' = F(a

1

^ F(a

2

^ � � � ^ F(a

m�1

^ Fa

m

) : : : )):

Let us fix an arbitrary n 2 N
0

, and define a word � 2 �

! by

� = (b

n+1

a

m

a

m�1

: : : a

1

)

m

b

!

:

Clearly � j= ' and the subword �(0; n+1+m) is (m�1; n)-redundant. As
the word � obtained from � by removing �(0; n+1+m) does not model ',
the language L�(') is not (m�1; n)-stutter closed. As it holds for every
n 2 N

0

, the formula ' is not expressible in LTL(U

m�1

;X). �

The last technical lemma which is needed to formulate answers to
Questions 1 and 2 follows.

Lemma 5.18 For all m;n 2 N
0

there is a formula ' 2 LTL(U

m

;X

n

) which is
expressible neither in LTL(U

m�1

;X

n

) (assumingm � 1), nor in LTL(U

m

;X

n�1

)

(assuming n � 1).

Proof: If m = 0 or n = 0, we can apply Lemma 5.16 or Lemma 5.17,
respectively. Now let m;n � 1, and let � = fa

1

; : : : ; a

k

; bg where k =

maxfm;n+1g. We define formulae  and ' as follows:

 =

�

a

m

^ X

n

a

m�n

if m > n

a

m

^ X

n

a

m+1

if m � n

' =

�

F if m = 1

F(a

1

^ F(a

2

^ F(a

3

^ � � � ^ F(a

m�1

^ F ) : : : ))) if m > 1

where Xl abbreviates

l

z }| {

XX : : :X. The formula ' belongs to LTL(U

m

;X

n

). Let
us consider the !-word � defined as

� =

8

<

:

(a

m

a

m�1

: : : a

1

)

m

a

m

a

m�1

: : : a

m�n+1

q

! if m > n

(a

n+1

a

n

: : : a

1

)

m+1

q

! if m = n

(a

n+1

a

n

: : : a

1

)

m+1

a

n+1

a

n

: : : a

m+2

q

! if m < n
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It is easy to check that � 2 L

�

(') and that the subword �(0; k) (where
k = maxfm;n+1g) is (m;n�1)-redundant as well as (m�1; n)-redundant.
As the word � obtained from � by removing �(0; k) does not satisfy ',
the language L�(') is neither (m;n�1)-stutter closed, nor (m�1; n)-stutter
closed. �

The knowledge presented in the three lemmata above allows to con-
clude the following:

Corollary 5.19 (Answer to Question 1) The LTL(Um;Xn), LTL(Um;X), and
LTL(U;X

n

) hierarchies are strict.

Corollary 5.20 (Answer to Question 2) Let A and B be classes of
LTL(U

m

;X

n

), LTL(U

m

;X), or LTL(U;X

n

) hierarchy (not necessarily of
the same one) such that A is syntactically not included in B. Then there is a
formula ' 2 A which cannot be expressed in B.

Although we cannot provide a satisfactory answer to Question 3, we
can at least reject the aforementioned ‘natural’ hypotheses (see the begin-
ning of this chapter).

Lemma 5.21 (About Question 3) For all m;n 2 N
0

there is a language defin-
able in LTL(U

m+2

;X

n

) as well as in LTL(U

m+1

;X

n+1

) which is not definable in
LTL(U

m+1

;X

n

).

Proof: We start with the case when m = n = 0. Let � � fa; bg, and let
 

1

= F(b ^ (bU:b)) and  

2

= F(b ^ X:b). Note that  
1

2 LTL(U

2

;X

0

)

and  

2

2 LTL(U

1

;X

1

). Moreover,  
1

and  

2

are equivalent as they define
the same language L = �

�

b(� r fbg)�

! . This language is not definable in
LTL(U

1

;X

0

) as it is not (1; 0)-stutter closed; for example, the !-word � =

abab

!

2 L contains a (1; 0)-redundant subword �(0; 2) but �
2

= ab

!

62 L.
The above example can be generalized to arbitrary m;n (using the

designed formulae  

1

;  

2

). For given m;n we define formulae '

1

2

LTL(U

m+2

;X

n

) and '

2

2 LTL(U

m+1

;X

n+1

), both defining the same lan-
guage L over � = fb; a; a

1

; : : : ; a

m+1

g, and we give an example of an !-
word � 2 L with an (m + 1; n)-redundant subword such that � without
this subword is not from L. We distinguish three cases.

� m = n > 0. For i 2 f1; 2g we define

'

i

=

m-times
z }| {

XF(a ^ XF(a ^ XF(a ^ � � � ^ XF(a^ 

i

) : : : ))):

The !-word � = (ab)

m+2

b

!

2 L, �(0; 2) is (m + 1; n)-redundant, and
�

2

= (ab)

m+1

b

!

62 L.



5.4 APPLICATION IN MODEL CHECKING 97

� m > n. For i 2 f1; 2g we define

'

i

=

n-times
z }| {

XF(b ^ XF(b ^ � � � ^ XF(b^'

0

i

) : : : ));

where

'

0

i

=

(m�n)-times
z }| {

F(a

1

^ F(a

2

^ � � � ^ F(a

m�n

^ 

i

) : : : )):

The !-word � = (ba

m�n

a

m�n�1

: : : a

1

)

m+1

b

!

2 L, �(0;m � n + 1) is
(m+ 1; n)-redundant, and �

m�n+1

62 L.

� m < n. For i 2 f1; 2g we define

'

i

=

m-times
z }| {

F(a

1

^ F(a

2

^ � � � ^ F(a

m

^

n

z }| {

XX : : :X 

i

) : : : )):

The !-word � = (b

n�m

a

m+1

a

m

: : : a

1

)

m+2

b

!

2 L, �(0; n + 1) is (m +

1; n)-redundant, and �
n+1

62 L. �

In fact, the previous lemma says that if we take two classes
LTL(U

m

1

;X

n

1

) and LTL(U

m

2

;X

n

2

) which are syntactically incomparable
and where m

1

;m

2

� 1, then their semantic intersection (i.e. the intersec-
tion of the corresponding classes of languages) is strictly greater than the
class of languages definable in LTL(U

m

;X

n

) where m = minfm

1

;m

2

g and
n = minfn

1

; n

2

g. Another consequence of Lemma 5.21 is that there is gen-
erally no “best” way how to minimize the nesting depths ofX andUmodal-
ities in a given LTL formula.

5.4 Application in model checking

In this section we indicate that letter stuttering and general stuttering prin-
ciples can potentially improve partial order reduction methods (see Sub-
section 2.4.1).

5.4.1 Letter stuttering

Most of the partial order reduction methods designed so far are based on
stutter equivalence. Therefore, they can be used only for verification of
stutter closed properties. All such properties are definable in LTL(U). This
fact contributes to the current situation where many people working in
model checking believe that it is natural to write specification formulae
without X modality (this opinion had been originally formulated by Lam-
port [Lam83b] long time before the first partial order reduction algorithm
has been suggested). In spite of this, the use of X operator can bring some
benefits.
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� Some properties that are stutter closed can be defined by a LTL(U;X)
formula in a more readable way. Many patterns of LTL(U;X) formu-
lae defining stutter closed properties can be found in [PC03].

� There are some systems (e.g. synchronous hardware) where one tran-
sition step has a clear meaning and the study of relations between
successive states makes good sense. In context of such systems, it is
obvious that one wants to write and verify some specification formu-
lae employing X operator.4 If we know that the formula defines a
stutter closed property (this can be checked in PSPACE due to Theo-
rem 3.18), we can use a combination of automata-based model check-
ing algorithm and classic partial order reduction method. However,
these partial order reduction methods cannot be employed if the
property is not stutter closed. Here is a potential application of n-
stuttering.

Let ' 2 LTL(U;X) be a specification formula and n = X-depth('). We
know that ' cannot distinguish between !-words that are n-stutter equiv-
alent. This observation can be seen as the first step towards new partial
order reduction methods (see Subsection 2.4.1). Unfortunately, we do not
have any reduction algorithm based on the n-stuttering equivalences yet.

It is worth mentioning that increase of n = X-depth(') implies less effec-
tive reduction (measured by the size of reduced system). This accords with
the fact that for every n there exist words which cannot be distinguished
by any LTL(U;X

n+1

) formula but they can be distinguished by a formula
of LTL(U;Xn+1).

5.4.2 General stuttering

Motivation for development of partial order reduction methods based on
general stuttering is straightforward as these methods have a potential to
improve actual partial order reduction algorithms designed for LTL(U) for-
mulae. An evidence is provided by the following example. Moreover, gen-
eral stuttering is not limited to X-free formulae.

Example 5.22 Let us consider the Kripke structure defined in Example 2.25 and
depicted in Figure 2.3. Further, assume that we want to check whether the system
satisfies a specification formula ' 2 LTL(U

1

) with atomic propositions dependent
just on the value of variable x like, for example, ' = G(x < 8). In this case, it is
sufficient to check the reduced structure given by Figure 5.6 as every (word over
2

At(') corresponding to some) path in the original structure is (1; 0)-stutter equiv-
alent to a (word over 2At(') corresponding to some) path in the reduced structure

4We have to say that if one wants to verify systems like synchronous hardware, symbolic
model checking algorithms are usually the best choice.
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Figure 5.6: The Kripke structure reduced with use of general stuttering.

and vice versa. The original Kripke structure reduced by standard partial order
reduction (based on stutter equivalence) is depicted in Figure 2.4.

As in the case of letter stuttering, any reduction algorithm based on
general stuttering has not been suggested yet. The reduced structure in the
example above is made by hand.

As in the case of letter stuttering, the effectiveness of reduction based
on (m;n)-stutter equivalence decreases with increase of m and/or n.

5.5 Additional notes

Although the results presented in this chapter are formulated in terms of
infinite words, all of them carry over to finite words. Moreover, some of
the definitions and proofs working with finite words are simpler. For ex-
ample, a letter of a finite word is n-redundant if it is immediately followed
by n + 1 copies of the same letter (without other requirements). Further,
the (m;n)-stutter equivalence can be defined as the least equivalence over
�

� such that if a word u has an (m;n)-redundant subword then u is equiv-
alent to u without the subword. This simpler definition allows to prove the
general stuttering theorem for languages of finite words in a shorter and
more transparent way. For details on general stuttering over finite words
we refer to the paper [KS02] written in this setting.

We also note that the construction of a formula �
n

(') in the proof of
Theorem 5.10 is slightly different when we work with LTL defined over
atomic propositions instead of letters. This modified construction of �

n

(')
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can be found in [KS04] together with all results concerning n-stuttering
(including precise proof of Theorem 5.2).

The chapter encompasses two questions that were not answered. Ques-
tion 3 was already discussed at the beginning of this chapter. A much more
important question would be whether the new stuttering principles can
help to improve current state space reduction methods or model checking
algorithms in general. A prominent goal for our future research is to cre-
ate a reduction method or verification algorithm demonstrating that the
answer is positive.

Another topic for future work is to extend the presented stuttering prin-
ciples to LTL with past modalities.



Chapter 6

Characteristic patterns

The chapter is based on the results presented in [KS05a].

In this chapter we introduce a new concept of characteristic patterns1.
Roughly speaking, for each alphabet � and all m;n 2 N

0

we design a finite
set of (m;n)-patterns, where each (m;n)-pattern is a finite object represent-
ing an !-language over � so that the following conditions are satisfied:

� Each � 2 �

! is represented by exactly one (m;n)-pattern (conse-
quently, the sets of !-words represented by different patterns are dis-
joint).

� !-words which are represented by the same (m;n)-pattern cannot be
distinguished by any formula of LTL(Um;Xn).

� For each (m;n)-pattern p we can effectively construct a formula  2
LTL(U

m

;X

n

) so that for each � 2 �

! it holds that � j=  if and only
if � is represented by the pattern p.

Thus, the semantics of each formula ' 2 LTL(U

m

;X

n

) is fully character-
ized by a finite subset of (m;n)-patterns, and vice versa. Intuitively, the
(m;n)-patterns represent exactly the information about !-words which de-
termines the (in)validity of all LTL(Um;Xn) formulae. The patterns are de-
fined inductively on m, and the inductive step brings some insight into
what is actually gained (i.e. what new properties can be expressed) by in-
creasing the nesting depth of U by one. We refer to Section 6.1 for further
remarks which aim at providing better intuition behind (m;n)-patterns. In
the same section we also give proper definition, basic theorems about pat-
terns, and an evidence that characteristic patterns can be used as a tool for
proving further results about the logic LTL and its fragments. In particu-
lar, they can be used to construct a short proof of a (somewhat simplified)

1Let us note that these patterns have nothing to do with the forbidden patterns defined
in Subsection 3.2.2.
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form of stutter invariance of LTL(Um;Xn) presented in the previous chap-
ter. This, in turn, allows to construct simpler proofs of strictness of the
LTL(U

m

;X), LTL(U;Xn), and LTL(U

m

;X

n

) hierarchies.

In Section 6.2 we provide an algorithm for model checking of pat-
terns and identify three potential applications of characteristics patterns in
model checking area. For didactic reasons, we work with existential model
checking problem in the first two cases. However, all ideas can be modified
for universal model checking in a straightforward way.

1. Let ' 2 LTL(U

m

;X

n

) be a formula specifying the property to be ver-
ified. Characteristic patterns can be used to decompose the formula
into an equivalent disjunction  

1

_ : : :_ 

k

of mutually exclusive for-
mulae (i.e. we have  

i

)

V

j 6=i

: 

j

for each i). Roughly speaking,
each  

i

corresponds to one of the patterns which define the seman-
tics of '. Hence, the  

i

formulae are not necessarily smaller or sim-
pler than ' from the syntactic point of view. The simplification is on
semantic level, because each  

i

“cuts off” a dedicated subset of runs
that satisfy '. Another advantage of this method is its scalability – the
patterns can be constructed also for those n andm that are larger than
the nesting depths of X and U in '. Thus, the patterns can be repeat-
edly “refined”, which corresponds to decomposing the constructed
 

i

formulae. Another way how to refine the patterns is to enlarge
the alphabet �. This is indeed sensible, because in this way we can
further split the sets of runs of a given system into more manageable
subsets.

This decomposition technique enables the following model checking
strategy: First try to model-check '. If this does not work (because of,
for example, memory overflow), then decompose ' into  

1

_ : : : _ 

k

and try to model-check the  
1

; : : : ;  

k

formulae. This can be done
sequentially or even in parallel. If at least one subtask produces a
positive answer, we are done (there is a run satisfying '). Similarly, if
all subtasks produce a negative answer, we are also done (there is no
such run). Otherwise, we go on and decompose those  

i

for which
our model checker did not manage to answer.

Obviously, the introduced strategy can only lead to better results than
checking just ', and it is completely independent of the underlying
model checker. Moreover, some new and relevant information is ob-
tained even in those cases when this strategy does not lead to a def-
inite answer – we know that if there is a run satisfying ', it must
satisfy some of the subformulae we did not manage to model check.
The level of practical usability of the above discussed approach can
only be measured by outcomes of practical experiments which are
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beyond the scope of this work.2 For a more detailed explanation of
the decomposition technique and a discussion of its potential benefits
and drawbacks see Subsection 6.2.1.

Similar decomposition techniques for universal model checking have
been proposed in [McM99] and [Zha03]. In [McM99], a specification
formula of the form G' is decomposed into a set of formulae

fG(x=v

i

) ') j v

i

is in the range of the variable xg.

A system satisfies G' if and only if it satisfies all formulae of the set.
This decomposition technique has been implemented in the SMV sys-
tem together with methods aimed at reducing the range of x. This ap-
proach has then been used for verification of specific types of infinite-
state systems (see [McM99] for more details). In [Zha03], a given
specification formula ' is model-checked as follows: First, a finite
set of formulae  

1

; : : : ;  

n

of the form  

i

= G(x6=v

0

) x=v

i

) is con-
structed such that the verified system satisfies  

1

_ : : : _  

n

. The for-
mulae  

1

; : : : ;  

n

are either given directly by the user, or constructed
automatically using methods of static analysis. The system satisfies
' if and only if it satisfies a formula  

i

) ' for all i. Using this
approach, the peak memory in model checking has been reduced by
13–25% in the three case studies included in the paper.

2. Characteristic patterns could be potentially used also in a different
way: instead of checking whether a given system exhibits a run corre-
sponding to a given pattern (this is what we do above), we could first
extract all the patterns that can be exhibited by the system, and then
check whether there is one for which ' holds. This makes sense in
situations when we want to check a large number of formulae on the
same system. The patterns fully characterize the system’s behaviour
(with respect to properties expressible in a given LTL(U

m

;X

n

) frag-
ment), and this information could be re-used when checking the in-
dividual formulae. Unfortunately, the set of all patterns exhibited by
a given system seems to be computable only in restricted cases. In
Subsection 6.2.2 we present an algorithm for model checking a path
based on characteristic patterns.

3. Subsection 6.2.3 indicates potential improvement of partial order re-
duction methods with use of characteristic patterns.

Section 6.3 contains additional notes about patterns including one open
question.

2Practical implementation of the method is under preparation.
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6.1 Definitions and basic theorems

To get some intuition about characteristic patterns, let us first consider the
set of patterns constructed for the alphabet � = fa; b; g, m = 1, and n = 0

(as we shall see, the m and n correspond to the nesting depths of U and X,
respectively). Let � 2 �

! be an !-word. A letter �(i) is repeated if there is
j < i such that �(j) = �(i). The (1; 0)-pattern of �, denoted pat(1; 0; �), is
the finite word obtained from � by deletion of all repeated letters (for rea-
sons of consistent notation, this word is written in parenthesis). For exam-
ple, if � = aabbbaababababaab : : :, then pat (1; 0; �) = (ab). So, the set
of all (1; 0)-patterns over the alphabet fa; b; g, denoted Pats(1; 0; fa; b; g),
has exactly 15 elements which are the following:

(ab); (ab); (ba); (ba); (ab); (ba); (ab); (ba); (a); (a); (b); (b); (a); (b); ()

Thus, the set fa; b; g! is divided into 15 disjoint subsets, where each set
consists of all !-words that have a given pattern. It remains to explain why
these patterns are interesting. The point is that LTL(U1;X0) formulae can
actually express just the order of non-repeated letters. For example, the
formula aU b says that either the first non-repeated letter is b, or the first
non-repeated letter is a and the second one is b. So, this formula holds for
a given � 2 fa; b; g! if and only if pat(1; 0; �) equals to

(b); (ba); (b); (ba); (ba); (ab); or (ab):

We claim (and later also prove) that !-words of fa; b; g! which have the
same (1; 0)-pattern cannot be distinguished by any LTL(U

1

;X

0

) formula.
So, a language defined by a formula ' 2 LTL(U

1

;X

0

) over alphabet � =

fa; b; g is fully characterized by a subset of Pats(1; 0; fa; b; g). Moreover,
for each p 2 Pats(1; 0; fa; b; g) we can construct an LTL(U

1

;X

0

) formula '
p

such that for every � 2 fa; b; g! we have that � j= '

p

iff pat(1; 0; �) = p.
For example,

'

(ab)

= a ^ (aU b) ^ ((a _ b)U ):

To indicate how this can be generalized to largerm and n, we show how
to extract a (2; 0)-pattern from a given � 2 fa; b; g

! . We start by consid-
ering an infinite word over the alphabet Pats(1; 0; fa; b; g) constructed as
follows:

pat(1; 0; �

0

) pat(1; 0; �

1

) pat(1; 0; �

2

) pat(1; 0; �

3

) : : :

For example, for � = aabaa

! we get the sequence

(ab)(ab)(ba)(a)(a)(a)

! .

The pattern pat(2; 0; �) is obtained from the above sequence by dele-
tion of repeated letters (realize that now we consider the alphabet
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Pats(1; 0; fa; b; g)). Hence,

pat(2; 0; �) = ((ab)(ba)(a)(a)(a)).

Similarly as above, it holds that those !-words of fa; b; g! which have the
same (2; 0)-pattern cannot be distinguished by any LTL(U

2

;X

0

) formula.
Moreover, for each p 2 Pats(2; 0; fa; b; g) there is an LTL(U

2

;X

0

) formula
'

p

such that for every � 2 fa; b; g! we have that � j= '

p

iff pat(2; 0; �) = p.
Formally, we consider every finite sequence of (1; 0)-patterns, where no

(1; 0)-pattern is repeated, to be a (2; 0)-pattern. This makes the inductive
definition simpler, but in this way we also introduce patterns that are not
“satisfiable”. For example, there is obviously no � 2 fa; b; g

! such that
pat(2; 0; �) = ((a)(ab)).

The last problem we have yet not addressed is how to deal with the X
operator. First note that the X operator can be pushed towards letters using
the following equivalences (see, for example, [Eme90]):

X>, > X(:'), :X'

X('

1

U'

2

), X'

1

UX'

2

X('

1

^ '

2

), X'

1

^ X'

2

Note that the nesting depth of X remains unchanged by performing this
transformation. Hence, we can safely assume that the X operator occurs
in LTL formulae only within subformulae of the form XX : : :Xa. This is
the reason why we can handle the X operator in the following way: the
set Pats(m;n;�) is defined in the same way as Pats(m; 0;�). The only
difference is that we start with the alphabet �n+1 instead of �.

Now we present a full formal definition of characteristic patterns.

Definition 6.1 Let � be an alphabet. For all m;n 2 N

0

we define the set
Pats(m;n;�) inductively as follows:

� Pats(0; n;�) = fw 2 �

�

j jwj = n+1g

� Pats(m+1; n;�) = f(p

1

: : : p

k

) j k 2 N; p

1

; : : : ; p

k

2 Pats(m;n;�);

p

i

6= p

j

for i 6= jg

The size of Pats(m;n;�) and the size of its elements are estimated in our
next lemma.

Lemma 6.2 For every i 2 N
0

, let us define the function fa

i

: N

0

! N

0

induc-
tively as follows:

fa

i

(x) =

�

x if i = 0

(fa

i�i

(x) + 1)! otherwise

The number of elements of Pats(m;n;�) is bounded by fa

m

(j�j

n+1

), and the
size of each p 2 Pats(m;n;�) is bounded by (n+ 1) � �

m�1

i=0

fa

i

(j�j

n+1

).
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Proof: Directly from definitions. �

The bounds given in Lemma 6.2 are non-elementary in m. This indi-
cates that all of our algorithms are computationally unfeasible from the
asymptotic analysis point of view. However, LTL formulae that are used
in practice typically have a small nesting depth of U (usually not larger
than 3 or 4), and do not contain any X operators. In this light, the bounds
of Lemma 6.2 can be actually interpreted as “good news”, because even a
relatively small formula ' can be decomposed into a disjunction of many
formulae which refine the meaning of '.

To all m;n 2 N

0

and � 2 �

! we associate a unique pattern of
Pats(m;n;�). This definition is again inductive.

Definition 6.3 Let � 2 �

!. For all m;n 2 N

0

we define the characteristic
(m;n)-pattern of �, denoted pat(m;n; �), and (m;n)-pattern word of �, de-
noted patword (m;n; �), inductively as follows:

� pat(0; n; �) = �(0) : : : �(n),

� patword (m;n; �) 2 Pats(m;n;�)

! is defined by patword (m;n; �)(i) =

pat(m;n; �

i

),

� pat(m+1; n; �) is the finite word (written in parenthesis) obtained from
patword (m;n; �) by deletion of all repeated letters.

Words �; � 2 �

! are said to be (m;n)-pattern equivalent, written � �
m;n

�, if
pat(m;n; �) = pat(m;n; �).

Example 6.4 Let us consider an !-word � = abbbaba(ba)

! . Some examples of
characteristic patterns follow. Underlined sequences correspond to (0; n)-patterns,
where n > 0.

pat(0; 0; �) = a

patword (0; 0; �) = abbbaba(ba)

!

= �

pat(1; 0; �) = (ab)

patword (1; 0; �) = (ab)(ba)(ba)(ba)(ab)(ba)(ba)(ab)(ba)((ba)(ab))

!

pat(2; 0; �) = ((ab)(ba)(ab)(ba)(ba)(ab))

pat(0; 1; �) = ab

patword (0; 1; �) = ab bb bb ba a b ba a b(ba ab)

!

pat(1; 1; �) = (ab bb ba a b)

pat(0; 2; �) = abb

Theorem 6.5 Let � be an alphabet. For all m;n 2 N

0

and every p 2

Pats(m;n;�) there effectively exists a formula '
p

2 LTL(U

m

;X

n

) such that
for every � 2 �

! we have that � j= '

p

iff pat(m;n; �) = p.

Proof: We proceed by induction on m.
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� m = 0: If p 2 Pats(0; n;�), then p is of the form a

0

: : : a

n

, where each
a

i

2 �. Hence, we put

'

p

= a

0

^ X (a

1

^ X (a

2

^ : : : ^ X (a

n�1

^ Xa

n

) : : : )):

Obviously, '
p

2 LTL(U

0

;X

n

). Moreover, each � 2 �

! such that� j= '

starts with a

0

: : : a

n

, which means that pat(0; n; �) = a

0

: : : a

n

. The
other direction is also trivial.

� Induction step. Let p 2 Pats(m+1; n;�). This means that p is of the
form p = (p

1

: : : p

k

), where each p

i

2 Pats(m;n;�) and p

i

6= p

j

for
i 6= j. By induction hypothesis, for each 1 � i � k there effectively
exists a formula '

p

i

2 LTL(U

m

;X

n

) which satisfies the properties of
our lemma. We put

'

p

= G('

p

1

_ : : : _ '

p

k

) ^ '

p

1

^

^

1<j�k

('

p

1

_ : : : _ '

p

j�1

)U'

p

j

:

Obviously, '
p

2 LTL(U

m+1

;X

n

). Now let � 2 �

!. By induc-
tion hypothesis, for all i 2 N

0

and 1 � j � k we have that
�

i

j= '

p

j

iff pat(m;n; �
i

) = p

j

. First we prove that if � j= '

p

, then
pat(m+1; n; �) = p. So, let � j= '

p

, and let us consider the word
patword (m;n; �). With the help of induction hypothesis, we can con-
clude that '

p

actually says that

– all patterns of Pats(m;n;�) which appear in patword (m;n; �)

are among p

1

; : : : ; p

n

(this is expressed by the subformula
G('

p

1

_ : : : _ '

p

k

)),

– each p

i

appears in patword (m;n; �), and for all 1 � i < j �

k, the first occurrence of p
i

precedes the first occurrence of p
j

(this is expressed by the subformula '
p

1

^

V

1<j�k

('

p

1

_ : : : _

'

p

j�1

)U'

p

j

)

This means that pat(m+1; n; �) = p as required. The other implica-
tion (i.e. pat(m+1; n; �) = p implies � j= '

p

) follows similarly. �

Example 6.6 Let � = abbabaaabb(a)

! . Then the formula '

p

, where p =

pat(2; 0; �) = ((ab)(ba)(a)(a)), is constructed as follows:

'

(ab)

= G(a _ b _ ) ^ a ^ (aU b) ^ ((a _ b)U )

'

(ba)

= G(b _ a _ ) ^ b ^ (bU a) ^ ((b _ a)U )

'

(a)

= G(a _ ) ^ a ^ (aU )

'

(a)

= G( _ a) ^  ^ (U a)

'

p

= G('

(ab)

_ '

(ba)

_ '

(a)

_ '

(a)

) ^ '

(ab)

^ ('

(ab)

U'

(ba)

) ^

^ (('

(ab)

_ '

(ba)

)U'

(a)

) ^ (('

(ab)

_ '

(ba)

_ '

(a)

)U'

(a)

)
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Let us note that the size of '
p

for a given p 2 Pats(m;n;�) is exponen-
tial in the size of p. However, if '

p

is represented by a circuit (DAG), then
the size of the circuit is only linear in the size of p.

Theorem 6.7 Let � be an alphabet and let m;n 2 N
0

. For all �; � 2 �

! we have
that � and � cannot be distinguished by any LTL(U

m

;X

n

) formula if and only if
� �

m;n

�.

Proof: The “=)” direction follows directly from Theorem 6.5. We prove the
other direction. Let ' 2 LTL(U

m

;X

n

) be a formula. As mentioned above,
we can safely assume that the X operator occurs only in subformulae of the
form XX : : :Xa, where a is a letter. By induction on the structure of ' we
show that for every �; � such that � �

m;n

� we have that � j= ' () � j=

'.

� ' = a: It follows directly from Definition 6.3 that �(0) : : : �(n) =

�(0) : : : �(n). This means that � j= a () � j= a as required.

� Induction step. If ' = X , then ' = XX : : :Xa, where the nesting
depth of X in ' is at most n. Hence, we can argue in the same way
as in the basic step. The cases when ' = : or ' =  ^ % follow
directly from induction hypothesis. Now let ' =  U %. We show
that if � j= ', then also � j= '. So, let � j= '. This means there is
j 2 N

0

such that �
j

j= %, and for every i < j it holds that �
i

j=  .
As pat(m;n; �) = pat (m;n; �), the sequence of first occurrences of
letters in patword (m� 1; n; �) is the same as in patword (m� 1; n; �).
Let j0 be the index of the first occurrence of a letter pat(m� 1; n; �

j

)

in patword (m� 1; n; �), i.e. pat(m� 1; n; �

j

0

) = pat(m� 1; n; �

j

). As
% 2 LTL(U

m�1

;X

n

), by induction hypothesis we obtain that �
j

0

j= %.
In the same way we can show that �

i

0

j=  for every i0 < j

0, because
for each such i0 we have that pat(m� 1; n; �

i

0

) = pat(m� 1; n; �

i

) for
some i < j. This means � j=  U�. �

In other words, Theorem 6.7 says that the information about � which is
relevant with respect to (in)validity of all LTL(Um;Xn) formulae is exactly
represented by pat(m;n; �). Thus, characteristic patterns provide a new
characterization of LTL(Um;Xn) languages.

Corollary 6.8 An !-language L is definable in LTL(U

m

;X

n

) if and only if it is
closed under (m;n)-pattern equivalence.

This characterization can be used to prove further results about LTL.
In particular, a simplified form of general stuttering principle introduced
in Section 5.1 follows easily from the presented results on characteristic
patterns:
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Lemma 6.9 For all m;n 2 N
0

; v; w 2 �

�

; � 2 �

! it holds that if w is a prefix
of v! and jwj � jvj �m�m+ n+ 1 then vw� �

m;n

w�.

Proof: Let n; v; w; � satisfy the conditions of our lemma. We prove that
pat(m;n; vw�) = pat(m;n;w�). By induction on m.

� m = 0. It suffices to realize that (vw)(i) = w(i) for 0 � i � n. Hence,
pat(0; n; vw�) = pat(0; n; w�).

� Induction step (m > 0). First we prove that for every 0 � i < jvj it
holds that

pat(m� 1; n; v

i

w�) = pat(m� 1; n; w

i

�): (6.1)

The concatenation v

i

w can be seen as a concatenation v

0

w

i

, where
jv

0

j = jvj. Further, w
i

is a prefix of (v

0

)

! and jw

i

j � jw

jvj�1

j =

jwj � jvj+ 1. Hence,

jw

i

j � jwj � jvj+ 1

� jvj �m�m+ n+ 1� jvj+ 1

� jvj � (m� 1) + jvj �m+ n+ 1� jvj+ 1

� jvj � (m� 1)� (m� 1) + n+ 1

As jv0j = jvj, we obtain (6.1) by applying induction hypothesis.

We have proven that the first jvj letters of !-words
patword (m� 1; n; vw�) and patword (m� 1; n; w�) are the same.
Further, these letters are followed by jvj repeated letters in
patword (m� 1; n; vw�). As (vw�)

2jvj

= (w�)

jvj

, the suffixes
patword (m� 1; n; vw�)

2jvj

and patword (m� 1; n; w�)

jvj

are the same.
Hence, pat(m;n; vw�) = pat(m;n;w�). �

The conditions of Lemma 6.9 match the definition of (m;n)-redundancy
of the subword v in an !-word vw� given in Definition 5.6.

Theorem 6.10 Let m;n 2 N
0

, u; v 2 �

� and � 2 �

!. If v is (m;n)-redundant
in uv�, then uv� �

m;n

u�.

Proof: The theorem follows from Lemma 6.9 and the implication � �

m;n

 =) u� �

m;n

u that can be easily proven for all m;n 2 N
0

, �;  2 �

!,
and u 2 �

� by induction on m. �

Theorem 6.10 is weaker than Theorem 5.9 (general stuttering theorem)
which allows to add or remove infinitely many non-overlapping redun-
dant subwords. On the other hand, Theorem 6.10 has significantly shorter
proof and is still sufficient to prove all results presented in Section 5.3 in-
cluding the strictness of LTL(Um;X), LTL(U;Xn), and LTL(U

m

;X

n

) hierar-
chies and the fact that the class of !-languages which are definable both in
LTL(U

m+1

;X

n

) and LTL(U

m

;X

n+1

) is strictly larger than the class of lan-
guages definable in LTL(U

m

;X

n

).
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6.2 Applications in model checking

In this section, the applicability of results about characteristic patterns to
LTL model checking is discussed in greater detail. First of all, we introduce
an algorithm deciding whether a pattern satisfies an LTL formula or not.

Definition 6.11 Let p 2 Pats(m;n;�) be a pattern and ' 2 LTL(U

m

;X

n

) be a
formula. We say that p satisfies ', written p j= ', if for every !-word � 2 �

! we
have that if pat(m;n; �) = p, then � j= '.

Note that Theorem 6.7 implies the following: if p 6j= ', then for every !-
word � such that pat (m;n; �) = p we have � 6j= '.

Theorem 6.12 Given an (m;n)-pattern p and an LTL(U

m

;X

n

) formula ', the
problem whether p j= ' can be decided in time O(j'j � jpj).

1 proc hek('; p; n)

2 if U-depth(') < mtype(p) then return(hek('; p(0); n))

3 elsif ' = > then return(true)

4 elsif ' 2 � then return(' == p(n))

5 elsif ' = :'

1

then return(:hek('
1

; p; n))

6 elsif ' = '

1

^ '

2

then return(hek('
1

; p; n) ^ hek('

2

; p; n))

7 elsif ' = X'

1

then return(hek('
1

; p; n+ 1))

8 elsif ' = '

1

U'

2

9 then do

10 i := 0

11 while (i < jpj) ^ :hek('

2

; p(i); n) do
12 if hek('

1

; p(i); n) then i := i+ 1

13 else i := jpj

14 fi

15 od

16 return(i < jpj)

17 od

18 fi

Figure 6.1: An algorithm deciding whether p j= ' or not.

Proof: Consider the algorithm of Figure 6.1. The procedure call
hek('; p; 0) decides whether p j= ' or not. The function mtype(p) returns
the m such that p 2 Pats(m;n;�). The algorithm is designed for all ' and
p satisfying U-depth(') � mtype(p).

The algorithm cannot assume that the X operators in ' have been
pushed inside because this transformation can lead to a formula of the size



6.2 APPLICATIONS IN MODEL CHECKING 111

O(j'j

2

). Thus, the algorithm pushes the X operators towards letters ‘virtu-
ally’: the actual nesting depth of X operators is kept in the third argument
of the hek procedure and it affects the evaluation of the subformulae of
the form a (see the line 4). The correctness of the algorithm follows directly
from the semantics of LTL and the idea of characteristic patterns.

The complexity of our algorithm is O(j'j � jpj) as the procedure hek is
invoked at most once for every subformula and every subpattern. Let us
note that values ofU-depth('0) and mtype(p

0

) for all subformulae '0 of ' and
all subpatterns p0 of p can be pre-calculated with the complexityO(j'j+jpj).

�

In the rest of this section we discuss the three potential applications of
characteristic patterns listed at the beginning of this chapter.

6.2.1 Decomposition technique

In this subsection we consider the variant of LTL based on atomic propo-
sitions (At) rather than letters. Hence, a formula ' is usually interpreted
over infinite words over alphabet � = 2

At('). Please note that we work
with existential version of model checking problem.

Let ' 2 LTL(U

m

;X

n

) be a formula. If our model checker fails to ver-
ify whether the system has a run satisfying ' or not (one typical reason is
memory overflow), we can proceed by decomposing the formula ' in the
following way:

1. First we compute the set P = fp 2 Pats(m;n; 2

At(')

) j p j= 'g.

2. Then, each p 2 P is translated into an equivalent LTL formula (using,
for example, the algorithm of Theorem 6.5).

A simple way how to implement the first step is to compute the set
Pats(m;n; 2

At(')

), and then for each element p decide whether p j= ' using
the algorithm of Theorem 6.12. In practice, this could be optimized by us-
ing a more sophisticated algorithm which takes into account the structure
of ' and possibly also eliminates unsatisfiable patterns. In the second step,
the patterns could be alternatively translated directly into the formalism
adopted in the chosen model checker (e.g. Büchi automata or alternating
automata).

Example 6.13 We illustrate the decomposition technique on a formula ' = FG:q

which is the negation of a typical liveness property GFq. The alphabet is � =

2

fqg

= ffqg; ;g. To simplify our notation, we use A and B to abbreviate fqg and
;, respectively. The elements of Pats(2; 0; fA;Bg) are listed below (unsatisfiable
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patterns have been eliminated). All patterns which satisfy ' are listed in the right
column.

((A)) ((B))

((BA)(A)) ((AB)(B))

((AB)(BA)) ((BA)(AB)(B))

((BA)(AB)) ((AB)(BA)(B))

((AB)(BA)(A))

((BA)(AB)(A))

The formulae corresponding to the patterns of the right column are listed below.3

((B))  

1

= G:q

((AB)(B))  

2

= q ^ qUG:q

((BA)(AB)(B))  

3

= :q ^ F(q ^ F:q) ^ FG:q

((AB)(BA)(B))  

4

= q ^ F(:q ^ Fq) ^ FG:q

So, the formula ' is decomposed into an equivalent disjunction  
1

_ 

2

_ 

3

_ 

4

.

Thus, the original question whether the system has a run satisfying ' is
decomposed into k questions of the same type. These can be solved using
standard model checkers.

We illustrate potential benefits of this method in the context of
automata-based approach to model checking (see Section 2.4). Here the for-
mula ' is translated into a Büchi automaton A

'

accepting the !-language
L('). Then, the model checking algorithm computes another Büchi au-
tomaton called product automaton, which accepts exactly those runs of the
verified system which are accepted by A

'

as well. The model checking
problem is thus reduced to the problem whether the language accepted by
the product automaton is empty or not. The bottleneck of this approach is
the size of the product automaton.

Example 6.14 Let us suppose that a given model checking algorithm does not
manage to check the formula ' of Example 6.13. The subtasks given by the  

i

formulae constructed in Example 6.13 can be more tractable. Some of the reasons
are illustrated below.

� The size of the Büchi automaton for  
i

can be smaller than the size of A
'

.
In Example 6.13, this is illustrated by formula  

1

(see Figure 6.2). The
corresponding product automaton is then smaller as well.

� The size of the product automaton constructed for  
i

can be smaller than the
one for ' even if the size ofA

 

i

is larger than the size ofA
'

. In Example 6.13,
this is illustrated by the formula  

2

; the automata for ' and  
2

are almost
the same (see Figure 6.2), but the product automaton for  

2

can be much
smaller as indicated in Figure 6.3.

3For notation convenience, we simplified the formulae obtained by running the algo-
rithm of Theorem 6.5 into a more readable (but equivalent) form.
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' :

//

/.-,()*+

A;B

��

B

//

/.-,()*+��������

B

��

 

1

:

//

/.-,()*+��������

B

��

 

2

:

//

/.-,()*+

A

��

B

//

/.-,()*+��������

B

��

Figure 6.2: Büchi automata corresponding to formulae ',  
1

, and  

2

of
Example 6.13.
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Figure 6.3: An example of a system to be verified (a) and product automata
(b) and () corresponding to ' and  

2

of Example 6.13, respectively.

It is of course possible that some of the  
i

formulae in the constructed
decomposition remain intractable. Let  

i

be such an intractable formula.
Then  

i

can be further decomposed by a technique called refinement (since
 

i

corresponds to a unique pattern p
i

2 Pats(m;n; 2

At(')

), we can equiva-
lently consider pattern refinement). There are two basic ways how to refine
the pattern p

i

. The idea of the first method is to compute the set of (m0

; n

0

)-
patterns, where m0

� m and n

0

� n, and identify all patterns that satisfy
the formula  

i

.

Example 6.15 The formula  

3

of Example 6.13 corresponding to the (2; 0)-
pattern ((BA)(AB)(B)) can be refined into two LTL(U3;X0) formulae given by
the (3; 0)-patterns

(((BA)(AB)(B))((AB)(B))((B)));

(((BA)(AB)(B))((AB)(BA)(B))((AB)(B))((B))):

The other refinement method is based on enlarging the alphabet before
computing the patterns. We simply expand the set At(') with a new atomic
proposition. The choice of the new atomic proposition is of course impor-
tant. By a “suitable” choice we mean a choice which leads to a convenient
split of system’s runs into more manageable units. An interesting problem
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(which is a potential topic for future work) is whether suitable new propo-
sitions can be identified effectively.

Example 6.16 Let us consider the formula  
2

of Example 6.13 corresponding to
the (2; 0)-pattern ((AB)(B)). The original set of atomic propositions At(') =

fqg generates the alphabet � = fA;Bg, where A = fqg; B = ;. If we enrich
the set of atomic propositions with r, we get a new alphabet �0 = fC;D;E; Fg,
where C = fq; rg;D = fqg; E = frg; F = ;. Hence, the original letters A;B
correspond to the pairs of letters C;D and E;F , respectively. Thus, the formula
 

2

is refined into LTL(U2;X0) formulae given by the (2; 0)-patterns

((CE)(E))

((CDE)(DE)(E))

((CDE)(DCE)(CE)(E))

((CDE)(DCE)(DE)(E))

((CEF )(EF )(FE))

((CEF )(EF )(FE)(E))

((CEF )(EF )(FE)(F ))

((CDEF )(DEF )(EF )(FE))

((CDEF )(DEF )(EF )(FE)(E))

((CDEF )(DEF )(EF )(FE)(F ))

((CDEF )(DCEF )(CEF )(EF )(FE))

((CDEF )(DCEF )(CEF )(EF )(FE)(E))

((CDEF )(DCEF )(CEF )(EF )(FE)(F ))

((CDEF )(DCEF )(DEF )(EF )(FE))

((CDEF )(DCEF )(DEF )(EF )(FE)(E))

((CDEF )(DCEF )(DEF )(EF )(FE)(F ))

and all those patterns which can be obtained from the above given ones by either
exchanging the letters C;D, or exchanging the letters E;F , or by both exchanges.
Hence, the formula  

2

is refined into a disjunction of 16 � 4 = 64 formulae.

Some of the subtasks obtained by refining intractable subtasks can be
tractable. Others can be refined again and again. Observe that even if we
solve only some of the subtasks, we still obtain a new piece of relevant
knowledge about the system – we know that if the system has a run sat-
isfying ', then the run satisfies one of the formulae corresponding to the
subtasks we did not manage to solve. Hence, we can (at least) classify and
repeatedly refine the set of “suspicious” runs.

We finish this subsection by listing the benefits and drawbacks of the
presented method.

+ The subtasks are formulated as standard model checking problems.
Therefore, the method can be combined with all existing algorithms
and heuristics.
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+ With the help of the method, we can potentially verify some systems
which are beyond the reach of existing model checkers.

+ Even if it is not possible complete the verification task, we get par-
tial information about the structure of potential (undiscovered) runs
satisfying '. We also know which runs of the system have been suc-
cessfully verified.

+ The subtasks can be solved simultaneously in a distributed environ-
ment with a very low communication overhead.

+ When we verify more formulae on the same system, the subtasks oc-
curring in decompositions of both formulae are solved just once.

– Calculating the decomposition of a given formula can be expensive.
On the other hand, this is not critical for formulae with small number
of atomic propositions and small nesting depths of U and X.

– Runtime costs of the proposed algorithm are high. It can happen that
all subtasks remain intractable even after several refinement rounds
and we get no new information at all.

6.2.2 Model checking a path using patterns

Model checking a path (see Subsection 2.4.2) has been identified as another
application of characteristic patterns. The problem is to decide whether a
given loop uv

! satisfies a given formula ' or not. It the following we deal
with the case when' is a formula of LTL(U;X). This version of the problem
can be solved in time O(juvj � j'j). More information about complexity
of model checking a path Section 4.2. Here we present a new algorithm
based on characteristic patterns and argue that our algorithm can be more
efficient in some cases.

Let ' 2 LTL(U

m

;X

n

) be a formula and uv

! be a loop, where u; v 2 �

�

and v 6= ". The algorithm first computes a pattern pat(m;n; uv

!

) and then
it decides whether the pattern satisfies '. First we focus on the pattern
extraction.

1

//

2

//

: : :

//

k

//

k+1

//

k+2

//

: : :

//

k+l

{{

Figure 6.4: A finite-state system with one infinite path.

Let k = juj and l = jvj. The loop can be represented by the finite struc-
ture given in Figure 6.4 and a function L labelling each state of the structure
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with the corresponding letter of the loop, i.e.

L(i) =

�

u(i� 1) if 1 � i � k,
v(i� k � 1) if k + 1 � i � k + l.

By s(i) we denote a successor of a state i defined by arrow leading from i.

1 for i := 1 to k + l do

2 L

0

(i) := L(i)L(s(i))L(s

2

(i)) : : : L(s

n

(i))

3 od
4 for i := 1 to m do

5 L

0

(k+l) := the parenthesized word obtained from
L

0

(k+l)L

0

(k+1)L

0

(k+2) : : : L

0

(k+l�1)

by deletion of all repeated letters
6 for j := k + l � 1 downto 1 do

7 L

0

(j) := the word L0(j+1) with the letter L0(j)
added to the beginning and without
any repetition of this letter

8 od

9 od

Figure 6.5: An algorithm for (m;n)-pattern extraction.

The pattern extraction algorithm given in Figure 6.5 computes a new la-
belling function L0. The desired pattern pat(m;n; uv

!

) is stored in L0(1) af-
ter the algorithm terminates. The algorithm is based directly on the defini-
tion of characteristic patterns. After the i-th iteration of the second for-loop,
the labels stored in L0(1) : : : L0(k+l) describe the !-word patword (i; n; uv

!

).
More precisely, patword (i; n; uv!) = L

0

(1) : : : L

0

(k) (L

0

(k+1) : : : L

0

(k+l) )

! .
The time complexity of this algorithm isO(juvj �(n+m �S(m;n;�))), where
S(m;n;�) is the maximal size of a pattern in Pats(m;n;�) (as given in
Lemma 6.2).

Due to Theorem 6.12, the problem whether pat(m;n; uv!) j= ' can be
solved in O(S(m;n;�) � j'j) time. Hence, the algorithm needs O(juvj(n +

m � S(m;n;�)) + S(m;n;�) � j'j) time in total. In the light of this esti-
mation, our algorithm seems to be only worse than the bilinear CTL-like
algorithm. However, if we bound the parameters m, n, and j�j by con-
stants (this is justifiable as these are usually “small”) then our algorithm
needs only O(juvj + j'j) time, while the CTL-like algorithm still requires
O(juvj � j'j) time. In other words, our algorithm is better in situations when
m;n and j�j are small, and juvj is large. Then it pays to extract the charac-
teristic pattern from the loop and check the formulae directly on the pattern
rather than on the loop itself.
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6.2.3 Partial order reduction using patterns

Characteristic patterns can also be applied in a more conventional way:
to reduce Kripke structures. Intuitively, if we want to decide whether an
LTL(U

m

;X

n

) formula is valid for a Kripke stricture, we do not need to ex-
amine all runs of the structure. In fact, it is sufficient to consider only the
subset of all runs such that for every run of the structure there is a run in
the subset with the same (m;n)-pattern.

In Section 5.4 we have shown that general stuttering theorem allows to
produce smaller reduced Kripke structures than those produced by stan-
dard partial order reduction methods. While general stuttering principle
formulates just a sufficient condition for two words to be indistinguishable
in LTL(U

m

;X

n

), Theorem 6.7 says that two words are indistinguishable by
any LTL(U

m

;X

n

) formula if and only if the words have the same (m;n)-
pattern. Hence, reduction based on characteristic patterns can produce
smaller Kripke structures than the reduction based on general stuttering
(and thus also smaller than the standard partial order reduction based on
stuttering).
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Figure 6.6: The Kripke structure reduced with use of characteristic patterns.

Example 6.17 Similarly to Example 5.22, we consider the problem to check
whether the Kripke structure defined in Example 2.25 and depicted in Figure 2.3
satisfies a specification formula ' 2 LTL(U

1

) with atomic propositions dependent
just on the value of variable x. Thanks to Theorem 6.7, it is sufficient to check the
reduced structure given by Figure 6.6. The reduced structure is notably smaller
than the structures depicted in Figures 5.6 and 2.4.
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As in the case of reduction based on letter stuttering or general stut-
tering, we have to emphasize that the reduced Kripke structure has been
made by hand and no practical algorithm for partial order reduction using
patterns has been proposed so far. It is another topic for our future work.

6.3 Additional notes

The results presented in this section do not hold for finite words. The argu-
ment is that an LTL(U;X

n

) formula can express a condition on last n letters
of a finite word. For example, a finite word satisfies a formula F(a ^ :X>)
if and only if the last letter of the word is a. A modification of characteristic
patterns for finite words is a topic for future work.

Another interesting question (which is left open) is whether one could
use characteristic patterns to prove the decidability of fragments of the
form LTL(U

m

;X) over !-words.



Chapter 7

Deeper connections to
alternating automata

The chapter is based on the results presented in [PS04].

An automata-theoretic approach to the study of temporal logics proved
to be very fruitful. The best example is the well-known fact that each LTL
formula can be translated into nondeterministic Büchi automaton that ac-
cepts exactly the infinite words satisfying the formula [WVS83, VW94]. The
translation was published in 1983 and soon became one of the cornerstones
of the automata-based model checking of LTL properties [VW86]. Approx-
imately at the same time it was also shown that there are Büchi automata
accepting languages that are not definable by any LTL formula [Wol83].

Later on, alternating 1-weak Büchi automata (or A1W automata for
short, also known as alternating linear automata or very weak alternat-
ing automata) have been identified as the type of automata with the same
expressive power as LTL. In Section 7.1 we recall two results showing the
equivalence of LTL and A1W. The first one is a translation of LTL(U;X) for-
mulae into equivalent A1W automata introduced by Muller, Saoudi, and
Schupp [MSS88]. This translation produces A1W automata with number
of states linear in the length of input formula contrary to the mentioned
translation into Büchi automata where the number of states is exponential.
The translation of LTL(U;X) into A1W automata has been recently used to
built new and more efficient algorithms for translation of LTL(U;X) into
nondeterministic Büchi automata [GO01, Tau03]1. The second result is a
translation of A1W automata into equivalent LTL formulae presented in-
dependently by Rohde [Roh97] and Löding and Thomas [LT00].

In the light of research on LTL fragments, it is natural to ask for classes
of A1W automata with the same expressive power as the studied LTL frag-

1In fact, the paper [GO01] employs alternating 1-weak co-Büchi automata. However,
Büchi and co-Büchi acceptance conditions are expressively equivalent for alternating 1-
weak automata.
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ments. It turns out that the translation of A1W automata into LTL men-
tioned above is not appropriate for study of such automata classes as it
wastes temporal operators. For example, the automaton corresponding
to the formula aU (b ^ (bU )) is translated into formula aU (b ^ X(bU )).
In Section 7.2 we present an improved translation of A1W automata into
equivalent LTL formulae. Our translation reduces the nesting depth of X
operators and prefers the use of less expressive temporal operators F or G
instead of U operator. We prove that for an A1W automaton produced by
the standard translation of a given LTL(U

m

;X

n

) formula our translation
provides a formula from the same fragment.

In Section 7.3 we identify classes of A1W automata defining the same
language classes as some recognized fragments of LTL, namely the frag-
ments of the until-release hierarchy [ČP03] and fragments of the form
LTL(U

m

;X

n

F

k

) where m;n; k 2 N
0

[ f1g.
Section 7.4 indicates several topics for future work.

For definition of alternating 1-weak Büchi automata we refer to Subsec-
tion 2.3.3. In that subsection there are also definitions of some terms and
notation used in this chapter, namely the definition of a state with a loop

and notation A(p), Su(p), Su0(p), and p
a

! S.

7.1 Equivalence of LTL and A1W automata

In this section we recall the standard translation of LTL(U;X) formulae
to A1W automata [MSS88] (marked as LTL!A1W) and a translation of
A1W automata to LTL(U;X) presented recently in [LT00] (and marked as
A1W!LTL here). The latter translation has been independently introduced
by Rohde in [Roh97].

7.1.1 LTL!A1W translation

Let ' be an LTL(U;X) formula and � be an alphabet. The formula can be
translated into an automaton A such that L(A) = L

�

('). The automaton A
is defined as A = (�; Q; q

'

; Æ; F ), where

� the states Q = fq

 

; q

: 

j  is a subformula of 'g correspond to the
subformulae of ' and their negations,

� the transition function Æ is defined inductively in the following way:

Æ(q

>

; a) = >

Æ(q

a

; b) = > if a = b, Æ(q
a

; b) = ? otherwise

Æ(q

: 

; a) = Æ(q

 

; a)

Æ(q

 ^�

; a) = Æ(q

 

; a) ^ Æ(q

�

; a)

Æ(q

X 

; a) = q

 

Æ(q

 U�

; a) = Æ(q

�

; a) _ (Æ(q

 

; a) ^ q

 U�

)
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where � denotes the positive boolean formula dual to � defined by
induction on the structure of � as follows:

> = ? q

: 

= q

 

� ^ � = � ^ �

? = > q

 

= q

: 

� _ � = � _ �

� the set of accepting states F = fq

:( U�)

j  U � is a subformula of 'g.

We use the notation A

�

(') for the automaton given by the translation
of an LTL formula ' with respect to an alphabet �. The number of states of
the automaton A�

(') is clearly linear in the length of '.

For example, the translation applied on the formula ' = (aU b) ^ FG

and the alphabet � = fa; b; g produces the automaton depicted on Fig-
ure 2.2, where p; q

1

; q

2

; q

3

stand for q
'

; q

aUb

; q

FG

; q

G

, respectively.

7.1.2 A1W!LTL translation

Let A = (�; Q; q

0

; Æ; F ) be an A1W automaton. For each p 2 Q we
define an LTL formula '

p

such that L�('
p

) = L(A(p)). (in particular
L

�

('

q

0

) = L(A)). The definition proceeds by induction respecting the or-
dering of states; the formula '

p

employs formulae of the form '

q

where
q 2 Su

0

(p). This is the point where the 1-weakness of the automaton is
used. To illustrate the inductive step of the translation, let us consider the
situation depicted on Figure 7.1. The formula corresponding to state p is
'

p

= (a ^ X'

q

)U (b ^ X'

r

).

p

q

r

a

b

. . . . . .

Figure 7.1: Part of an automaton translated into the formula '

p

= (a ^

X'

q

)U (b ^ X'

r

).

Before we give a formal definition of '
p

, we introduce some auxiliary
formulae. Let a 2 � be a letter and S � Q be a set of states. The formula

�(a; S) = a ^

^

q2S

X'

q
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intuitively corresponds to a situation when automaton makes transition
under a into the set of states S. Formulae �

p

and �
p

defined as

�

p

=

_

p

a

! S

p 2 S

�(a; S r fpg) �

p

=

_

p

a

! S

p 62 S

�(a; S)

intuitively correspond to all transitions leading from state p; �
p

covers the
transitions with a loop (i.e. the transitions leading to the set of states con-
taining p) while �

p

cover the others. The definition of '
p

then depends on
whether p is an accepting state or not.

'

p

=

(

�

p

U �

p

if p 62 F

(�

p

U �

p

) _ G�

p

if p 2 F

The proof of the correctness of this translation can be found in [LT00].
Given an A1W automaton A with an initial state q

0

, by '(A) we denote
the formula '(A) = '

q

0

.

7.2 Improving A1W!LTL translation

The A1W!LTL translation presented in the previous section is not optimal:
it wastes temporal operators. The main problem of the translation is that
for each successor q 2 Su

0

(p) of a state p the formula '
p

contains a subfor-
mula X'

q

even if the X operator is not needed. This can be illustrated by an
automaton A on Figure 7.2. The automaton is created by translation of the

p

q

a

b

b



Figure 7.2: The automaton for the formula aU (b ^ bU ).

formula aU (b ^ bU ). The A1W!LTL translation provides an equivalent
formula '(A) = aU (b ^ X(bU )) in spite of it.
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S
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S
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1

S
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S
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Figure 7.3: The conditions for X-freeness.

Let p
a

! S be a transition and X � S. We now formulate conditions
that are sufficient to omit the X operator in front of '

q

(for every q 2 X) in a

subformula of '
p

corresponding to the transition p
a

! S. A setX satisfying
these conditions is called X-free.

Definition 7.1 Let p
a

! S be a transition of an automaton A. A set X � Srfpg

is said to be X-free for p
a

! S if following conditions hold.

1. For each q 2 X there is S0
q

� S such that q
a

! S

0

q

.

2. Let Y � X and for each q 2 Y let S0
q

� Q be a set satisfying q
a

! S

0

q

and

q 62 S

0

q

. Then there exists a set S00 � (SrY )[

S

q2Y

S

0

q

satisfying p
a

! S

00.

The conditions for X-freeness are illustrated by Figure 7.3. Please note that
it can be the case that p 2 S. Further, in the first condition it can be the case
that q 2 S0

q

.

It is easy to see that empty set is X-free for every transition. Further,
every subset of a X-free set for a transition is a X-free set for the transition
as well. On the other hand, Figure 7.4 demonstrates that the union of two
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p

q

1

q

2

q

3

q

4

a

a

a

a

a

. . . . . .

Figure 7.4: The sets fq
1

g; fq

2

g are X-free for p
a

! fq

1

; q

2

g while the set
fq

1

; q

2

g is not.

X-free sets need not be X-free; in the automaton indicated on the figure, the

sets fq
1

g; fq

2

g are X-free for p
a

! fq

1

; q

2

g while the set fq
1

; q

2

g is not.
Let Xfree be an arbitrary but fixed function assigning to each transition

p

a

! S a set that is X-free for p
a

! S. We now introduce an improved
A1W!LTL translation. Roughly speaking, the translation omits the X op-
erators in front of subformulae which correspond to the states in X-free
sets given by the function Xfree. Thereafter we prove that this translation
remains correct.

The improved A1W!LTL translation exhibits similar structure as the
original one. Instead of formulae of the form �(a; S) representing a transi-
tion under a leading from an arbitrary state p to S, we define a specialized

formula �0
p

(a; S) for each transition p
a

! S.

�

0

p

(a; S) = a ^

^

q 2 S r Xfree(p

a

! S)

q 6= p

X'

0

q

^

^

q2Xfree(p

a

!S)

'

0

q

�

0

p

=

_

p

a

! S

p 2 S

�

0

p

(a; S) �

0

p

=

_

p

a

! S

p 62 S

�

0

p

(a; S)

We also identify some cases whenU can be replaced by “weaker” operators
F or G in a formula '0

p

. To this end we define two special types of states.

A state p is of the F-type if there is a transition p

a

! fpg for every a 2 �.

A state p is of the G-type if every transition of the form p

a

! S satisfies
p 2 S.
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'

0

p

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

�

0

p

if p 62 Su(p)

? if p 2 Su(p); p 62 F; p is of G-type

F�

0

p

if p 2 Su(p); p 62 F; p is of F-type and not of G-type

�

0

p

U �

0

p

if p 2 Su(p); p 62 F; p is not of F-type or G-type

> if p 2 Su(p); p 2 F; p is of F-type

G�

0

p

if p 2 Su(p); p 2 F; p is of G-type and not of F-type

(�

0

p

U �

0

p

) _ G�

0

p

if p 2 Su(p); p 2 F; p is not of F-type or G-type

The new cases in the definition of '0
p

make only a cosmetic change compar-
ing to the original A1W!LTL translation. First, we add a case for states
without any loop. This change does not influence the correctness of the
translation as the condition p 62 Su(p) says that �0

p

= ? and therefore
'

0

p

= �

p

is equivalent to �

0

p

U �

0

p

as well as to (�

0

p

U �

0

p

) _ G�

0

p

. Further, it
is easy to check that if a state p is of F-type then �

0

p

() > and if p is of
G-type then �0

p

= ?. Hence, all cases for p 2 Su(p) and p 62 F are equiv-
alent to �0

p

U �

0

p

and all cases for p 2 Su(p) and p 2 F are equivalent to
(�

0

p

U �

0

p

) _ G�

0

p

.

Before we show that the improved translation is equivalent to the orig-
inal one (and thus also correct), we prove two auxiliary lemmata.

Lemma 7.2 For each transition p
a

! S of an A1W automaton A the implication
�(a; Srfpg) =) �

0

p

(a; S) holds assuming that '
q

() '

0

q

for each q 2 Su

0

(p).

Proof: Due to the definitions of �(a; S r fpg) and �0
p

(a; S) and the assump-
tion of the lemma, it is sufficient to show for each !-word � 2 �

! that

if q 2 Xfree(p

a

! S) and � j= �(a; S r fpg) then � j= '

q

.

The first condition for X-freeness gives us that there is S0
q

� S such that

q

a

! S

0

q

. From the 1-weakness of the automaton we have that p 62 S

0

q

.
Thus, S0

q

� S r fpg and � j= �(a; S r fpg) implies � j= �(a; S

0

q

r fqg). As

� j= �(a; S

0

q

r fqg) and q
a

! S

0

q

we have that either q 2 S0
q

and then � j= �

q

,
or q 62 S

0

q

and then � j= �

q

. Anyway, � j= �

q

_ �

q

holds. At the same time
� j= �(a; Srfpg) implies � j= X'

q

. We are done as � j= �

q

_�

q

and � j= X'

q

imply � j= '

q

. �

Lemma 7.3 Let p
a

! S be a transition of an A1W automaton A. Then
�

0

p

(a; S) =) �

p

_ �

p

assuming that '
q

() '

0

q

for each q 2 Su

0

(p). More-
over, if p 62 S then �0

p

(a; S) =) �

p

on the same assumption.
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Proof: Let us suppose that � 2 �

! is an !-word such that � j= �

0

p

(a; S).
Due to the assumption of the lemma the formula �0

p

(a; S) is equivalent to

a ^

^

q 2 S r Xfree(p

a

! S)

q 6= p

X'

q

^

^

q2Xfree(p

a

!S)

'

q

:

Obviously '
q

=) �

q

_ X'

q

. Let Y be the set

Y = fq 2 Xfree(p

a

! S) j � j= �

q

g:

For each q 2 Y , the definition of the formula �
q

and the assumption � j= a

(due to � j= �

0

p

(a; S)) imply that there exists a set S0
q

such that q
a

! S

0

q

,
q 62 S

0

q

, and � j= �(a; S

0

q

). The second condition for X-freeness gives us that

there exists a set S00 � (S r Y ) [

S

q2Y

S

0

q

satisfying p
a

! S

00. As � j= X'

q

for every q 2 S r Y and � j= �(a; S

0

q

) for each q 2 Y , we get that � j=

�(a; S

00

r fpg) as well. To sum up, we have a set S00 such that p
a

! S

00 and
� j= �(a; S

00

r fpg). If p 2 S

00 then � j= �

p

. Moreover, 1-weakness of the
automaton implies that p 62 S

0

q

and therefore p 2 S. Finally, if p 62 S

00 then
� j= �

p

. �

We are now ready to prove the correctness of the improved translation.

Theorem 7.4 Let A = (�; Q; q

0

; Æ; F ) be an A1W automaton. For every state
p 2 Q the equation L(A(p)) = L

�

('

0

p

) holds.

Proof: We show that '
p

() '

0

p

holds for every p 2 Q. The proof proceeds
by induction with respect to the ordering on Q. If Su0(p) = ; then empty
set is the only X-free set for any transition leading from p. Hence '

p

and '0
p

are equivalent.

Let us now assume that the equivalence holds for every q 2 Su

0

(p).
The Lemma 7.2 implies '

p

=) '

0

p

. Lemma 7.3 gives us that �0
p

implies �
p

,
and �0

p

implies �
p

_ �

p

. As an immediate consequence we get '0
p

=) '

p

.
�

Let A be an A1W automaton and q

0

its initial state. By '

Xfree

(A) we
denote the formula '0

q

0

given by the improved translation which is deter-
mined by the function Xfree.

After it has been proven that the improved translation remains cor-
rect, it is only natural to examine the “quality” of formulae it produces.
The improved translation has been motivated by the observation that the
standard one wastes X operators. Therefore, we show that the improved
translation allows to translate an automatonA�

(') derived from a formula
' 2 LTL(U

m

;X

n

) back into a formula from LTL(U

m

;X

n

). In order to do so,
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we define two metrics for A1W automata, namely loop-height and X-height,
and show that an automaton A with loop-height m and X-height n can be
translated into a formula form LTL(U

m

;X

n

). Then we prove that an au-
tomaton A�

(') given by the standard LTL!A1W translation of a formula
' 2 LTL(U

m

;X

n

) has loop-height and X-height at most m and n, respec-
tively. These relations also enable us to define some of the studied LTL
fragments via A1W automata.

Definition 7.5 Let A = (�; Q; q

0

; Æ; F ) be an A1W automaton. For each state
p 2 Q we inductively define its loop-height and X-height (denoted by lh(p) and
Xh(p) respectively) as

lh(p) =

(

maxflh(q) j q 2 Su

0

(p)g+ 1 if p 2 Su(p);

maxflh(q) j q 2 Su

0

(p)g otherwise;

Xh(p) = max

p

a

!S

f min

X is X-free for p
a

!S

fneedX(p

a

! S;X)g g;

where maximum over empty set is 0 and

needX(p

a

! S;X) = max(fXh(q) j q 2 Xg [ fXh(q)+1 j q 2 SrX; q 6= pg):

We also define loop-height and X-height of the automaton A as the loop-height
and X-height of its initial state, i.e. lh(A) = lh(q

0

) and Xh(A) = Xh(q

0

).

Intuitively, loop-height of an automaton A holds the maximal height of
states of A with a loop. The X-height counts the minimal nesting depth of
X operators achievable by the improved translation; the definition consider
the minimum over all choices of X-free sets.

Theorem 7.6 Let A be an A1W automaton. There exists a function Xfree such
that 'Xfree(A) 2 LTL(U

lh(A)

;X

Xh(A)

).

Proof: Please note that U-depth('Xfree(A)) does not depend on the choice
of the function Xfree. Contrary to the U-depth, the X-depth of the result-
ing formula depends on the function Xfree. The function Xfree satisfying
X-depth('Xfree(A)) = Xh(A) can be derived directly from the definition of

X-height; for every transition p
a

! S we set Xfree(p
a

! S) = X , where X is

a X-free set for p
a

! S such that the value of needX(p
a

! S;X) is minimal.
It is a straightforward observation that this function satisfies 'Xfree(A) 2

LTL(U

lh(A)

;X

Xh(A)

). �

We should note that the bound on U-depth('Xfree(A)) given by lh(A)

is not tight. The structure of a formula '0
p

shows that there can be states
with a loop that are translated into > or ? and thus they do not bring any



128 DEEPER CONNECTIONS TO ALTERNATING AUTOMATA

new temporal operators. However, if we remove these states and all tran-

sitions of the form p

a

! S such that S contains a state translated into ?,
we get an automaton A0 that is language equivalent to the original one and
U-depth('Xfree(A0)) = lh(A

0

).

Theorem 7.7 Let ' 2 LTL(U

m

;X

n

) be a formula. Then lh(A

�

(')) � m and
Xh(A

�

(')) � n for each alphabet �.

Proof: Before we prove the inequalities, we examine the automatonA�

(').
Let q

'

0 be a state of A�

('). States in Su(q

'

0

) are of the form

1. q
 U�

or q
:( U�)

, where  U� is such a subformula of '0 that is not in
scope of any X operator, or

2. q
 

or q
: 

, where X is such a subformula of '0 that is not in scope of
any other X operator.

Let us note that some of the states can match both cases, e.g. a state
q

 U�

2 Su(q

( U�)_X( U�)

). Moreover, the definition of a transition func-
tion Æ implies that only the states of the form q

 U�

or q
:( U�)

can have a
loop.

From the above observations and the definition of loop-height it directly
follows that lh(A�

(')) � U-depth(') � m.

Let q
'

0 be a state of the automaton and Y � Su

0

(q

'

0

) be a set of its suc-
cessors of the first form (excluding these of both forms). In order to prove
the second inequality of the theorem, we show that for every transition

q

'

0

a

! S the set X
S

= S \ Y is X-free. The construction of an automaton
A

�

(') implies that if a positive boolean formula Æ(q
'

0

; a) contains a state
q

 U�

2 Y then the state always occurs in the formula

Æ(q

 U�

; a) = Æ(q

�

; a) _ (Æ(q

 

; a) ^ q

 U�

):

Similarly, if Æ(q
'

0

; a) contains a state q
:( U�)

2 Y then the state always oc-
curs in the formula

Æ(q

 U�

; a) = Æ(q

�

; a) ^ (Æ(q

 

; a) _ q

:( U�)

):

We show that each set X
S

satisfies the conditions for X-freeness for every

transition q
'

0

a

! S.

1. Let q
 U�

2 X

S

. The property of Æ(q
'

0

; a) mentioned above gives us
that there is a set S0 � S such that S0 j= Æ(q

�

; a) or S0 j= Æ(q

 

; a)^q

 U�

.

Anyway, q
 U�

a

! S

0. The argumentation for the case q
:( U�)

2 X

S

is
similar.
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2. Let Y � X

S

be such a set that for every q 2 Y there is a transition

q

a

! S

0

q

such that q 62 S

0

q

. Thus if q is of the form q

 U�

, then S

0

q

j=

Æ(q

�

; a). Otherwise, q is of the form q

:( U�)

and S0
q

j= Æ(q

�

; a)^Æ(q

 

; a).
Again, the property of Æ(q

'

0

; a) mentioned above (together with the
fact that Æ(q

'

0

; a) is in positive normal form) implies that there is a set
S

00

� (S r Y ) [

S

q2Y

S

0

q

satisfying S00 j= Æ(q

'

0

; a).

Proving the X-freeness of the considered sets we have demonstrated
that the improved translation allows to omit the X operators in front of the
subformulae corresponding to the successors of q

'

0 of the first form (and
not of both forms). Let us recall that these successors correspond to the
subformulae of the form  U � of the original formula '0 that are never in
scope of any X operator in '

0. Hence, the improved translation with use
of the Xfree function assigning the X-free sets defined above produces the
formula'Xfree(A�

(')) with at most the sameX-depth as the original formula
'. We are done as Xh(A�

(')) keeps the lowest X-depth achievable by the
improved translation and thus Xh(A�

(')) � X-depth(') � n. �

Combining Theorem 7.6 and Theorem 7.7 we get the following two
corollaries.

Corollary 7.8 For each formula ' 2 LTL(U

m

;X

n

) and each alphabet � there
exists a function Xfree such that 'Xfree(A�

(')) 2 LTL(U

m

;X

n

).

Corollary 7.9 For each A1W automaton A = (�; Q; q

0

; Æ; F ) there exists a func-
tion Xfree such that

lh(A) � lh(A

�

('

Xfree

(A))) and Xh(A) � Xh(A

�

('

Xfree

(A))):

7.3 Defining LTL fragments via A1W automata

In this section we define classes of A1W automata matching fragments of
the form LTL(U

m

;X

n

;F

k

), where m;n; k 2 N
0

[ f1g, and LTL fragments
from the until-release hierarchy [ČP03]. All these fragments are given by syn-
tactic constraints on LTL formulae. Basically, the classes of A1W automata
can be defined by constraints on transition function and by constraints on
the set of accepting states.

In order to improve the presentation of the following results, we over-
load the notation of LTL fragments; we identify an LTL fragment F with
a set

fL

�

(') j ' 2 F and � is an alphabetg;

i.e. with a set of languages defined by formulae from the fragment. The
interpretation of F is always clearly determined by the context.
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7.3.1 Fragments LTL(Um;X

n

; F

k

)

In order to identify classes of A1W automata matching all LTL fragments
of the form LTL(U

m

;X

n

;F

k

) where m;n; k 2 N
0

[ f1g, we need to replace
the bound on U-depth('Xfree(A)) given by the loop-height of A by bounds
on U-depth and F-depth of the formula. Therefore we define another metrics
called U-height. The definition of U-height reflects the structure of '0

p

.

Definition 7.10 Let A = (�; Q; q

0

; Æ; F ) be an A1W automaton. For each state
p 2 Q we inductively define its U-height, written Uh(p), as

Uh(p) =

8

>

<

>

:

maxfUh(q) j q 2 Su

0

(p)g+ 1 if p 2 Su(p) and
p is not of F-type or G-type;

maxfUh(q) j q 2 Su

0

(p)g otherwise;

where maximum over empty set is 0. The U-height of the automaton A is then
defined as the U-height of its initial state, i.e. Uh(A) = Uh(q

0

).

We are now ready to define the classes of A1W automata matching the
considered LTL fragments. To shorten our notation, a class is formally de-
fined as a set of languages accepted by A1W automata rather than a set of
A1W automata.

Definition 7.11 Let m;n; k 2 N
0

[ f1g. We define A1W(m;n; k) to be the set
fL(A) j A is an A1W automaton and Uh(A) � m; Xh(A) � n; lh(A)�m+kg.

Theorem 7.12 For all m;n; k 2 N

0

[ f1g it holds that LTL(Um;Xn;Fk) =

A1W(m;n; k).

Proof: Let ' 2 LTL(U

m

;X

n

;F

k

) and � be an alphabet. In the LTL!A1W
translation every subformula F is handled as >U . Theorem 7.7 implies
that Xh(A�

(')) � n and lh(A

�

(')) � m + k. Further, every state of the
automaton A�

(') corresponding to a subformula F has the form q

>U 

or
q

:(>U )

. One can readily check that each state q
>U 

is of F-type and each
state q

:(>U )

is of G-type. Hence, these states do not increase the U-height

of the automaton. We get Uh(A�

(')) � m and thus L�(') 2 A1W(m;n; k).

Let A be an A1W automaton such that Uh(A) � m, Xh(A) � n,
and lh(A) � m + k. Theorem 7.6 says that the automaton can be trans-
lated into formula from LTL(U

m+k

;X

n

). As the definition of U-height
follows the improved translation it is easy to check that 'Xfree(A) 2

LTL(U

Uh(A)

;X

n

;F

lh(A)

). Moreover, explicit treatment of F operator has no
influence on the fact that arbitrary occurrence of F operator can be replaced
by U operator. Hence, the automaton can be translated into a formula from
LTL(U

m

;X

n

;F

lh(A)�m

). Hence, L(A) 2 LTL(U

m

;X

n

;F

k

). �
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Let us emphasize that Lemma 7.12 covers some distinguished LTL frag-
ments. For example, languages defined by an LTL(U

k

;X;F) fragment (frag-
ments of this form constitute the until hierarchy [EW00, TW01]) can be de-
fined by A1W automata with U-height at most k and vice versa. In particu-
lar, a language can be expressed by a formula from the LTL(X;F) fragment
(also called restricted temporal logic [PP04]) if and only if it is recognized by
an A1W automaton such that every state with a loop is of F-type or G-type.

7.3.2 Until-release hierarchy

The hierarchy consists of fragments UR
i

;RU

i

for all i. The definition of the
fragments does not care about X operators as well as the different expres-
siveness of F and U operators. Therefore we employ the standard transla-
tions given in Section 7.1.

Intuitively, we show that alternation of U and R operators in a formula
corresponds to the alternation of nonaccepting and accepting states in the
structure of an A1W automaton.

Definition 7.13 LetA = (�; Q; q

0

; Æ; F ) be an A1W automaton. For each i 2 N
0

we inductively define sets of states U
i

and R
i

as follows.

� U

0

= R

0

= fp j lh(p) = 0g.

� U

i+1

is the smallest set of states satisfying

– U

i

[R

i

� U

i+1

and

– if p 62 F and Su(p) � U

i+1

then p 2 U
i+1

.

� R

i+1

is the smallest set of states satisfying

– U

i

[R

i

� R

i+1

and

– if p 2 F and Su(p) � R

i+1

then p 2 R
i+1

.

We also define functions U
A

; R

A

: Q �! N

0

as

U

A

(p) = minfi j p 2 U

i

g and R

A

(p) = minfi j p 2 R

i

g:

Definition 7.14 For each i 2 N
0

we define sets U
i

and R
i

as

U

i

= fL(A) j A = (�; Q; q

0

; Æ; F ) is an A1W automaton and U
A

(q

0

) � ig;

R

i

= fL(A) j A = (�; Q; q

0

; Æ; F ) is an A1W automaton and R
A

(q

0

) � ig:

The classes U
i

and R
i

match the classes UR
i

and RU

i

, respectively. Before
we give an explicit proof, we present some auxiliary results.

Definition 7.15 LetA = (�; Q; q

0

; Æ; F ) be an A1W automaton. For each i 2 N
0

we inductively define sets of states U 0
i

and R0
i

as follows.
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� U

0

0

= R

0

0

= fp j lh(p) = 0g.

� U

0

i+1

is the smallest set of states satisfying

– U

0

i

[R

0

i

� U

0

i+1

and

– if p has no loop or p 62 F , and Su

0

(p) � U

0

i+1

then p 2 U 0
i+1

.

� R

0

i+1

is the smallest set of states satisfying

– U

0

i

[R

0

i

� R

0

i+1

and

– if p has no loop or p 2 F , and Su

0

(p) � R

0

i+1

then p 2 R0
i+1

.

We also define functions U 0
A

; R

0

A

: Q �! N

0

as

U

0

A

(p) = minfi j p 2 U

0

i

g and R

0

A

(p) = minfi j p 2 R

0

i

g:

Lemma 7.16 For every A1W automaton A with an initial state q
0

there exists
an A1W automaton B with an initial state q0

0

such that U 0
A

(q

0

) = U

B

(q

0

0

) and
L(A) = L(B).

Proof: On intuitive level, U
i

counts the maximal alternation of nonaccept-
ing and accepting states of the automaton, while U 0

i

counts just the alter-
nation of nonaccepting and accepting states with a loop. Hence, we need
to modify an automaton A is such a way that the states without any loop
do not increase the number of alternations of nonaccepting and accepting
states. To do this, we make an accepting and a nonaccepting copy of each
state without any loop and we modify transition function such that ev-
ery state without any loop in every transition is replaced by one of its two
copies. As acceptance or nonacceptance of states without any loop has no
influence on language given by the automaton, the modified automaton
accepts the same language as the original one.

Let A = (�; Q; q

0

; Æ; F ) be an A1W automaton. Let W denote the set of
its states without any loop. We set B = (�; Q

0

; q

0

0

; Æ

0

; F

0

), where

� Q

0

= (QrW ) [ fq

a

; q

n

j q 2Wg,

� q

0

0

= q

0

if q
0

has a loop, q0
0

= q

n

0

otherwise,

� F

0

= (F rW ) [ fq

a

j q 2Wg.

For every p 2 Q

0, by o(p) we denote a state of the original system corre-
sponding to the state p:

o(p) =

(

q if p = q

a or p = q

n

p otherwise

For every p 2 Q

0 and a 2 �, the positive boolean formula Æ0(p; a) arises
from Æ(o(p); a) by replacement of every state q 2W with
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� q

a if p 2 F 0, or

� q

n otherwise.

It remains to show that U 0
A

(q

0

) = U

B

(q

0

0

). From the construction of the
automaton B it follows that U 0

B

(p) = U

0

A

(o(p)) for every p 2 Q0. As o(q0
0

) =

q

0

, it is sufficient to show that U 0
B

(q

0

0

) = U

B

(q

0

0

). If lh(q0
0

) = 0, then we are
done as U 0

B

(q

0

0

) = 0 = U

B

(q

0

0

). In the rest of the proof we show that the
equation holds for lh(q0

0

) > 0 as well.

For each state p 2 Q

0 we define Su

�

(p) to be a transitive closure of
Su

0 relation, i.e. Su�(p) is the smallest set satisfying

� Su

0

(p) � Su

�

(p) and

� if q 2 Su

�

(p) then Su

0

(q) � Su

�

(p).

Further, by LSu�(p) we denote the set of all states with a loop that are in
Su

�

(p).

From the construction of the automaton B it follows that for every state
p 2 Q

0 such that lh(p) > 0 the following equations hold. Again, maximum
over empty set is 0.

U

B

(p) =

(

maxfR

B

(q) j q 2 LSu

�

(p) \ F

0

g+ 1 if p 62 F 0

R

B

(p) + 1 if p 2 F 0

�

B

(p) =

(

U

B

(p) + 1 if p 62 F 0

maxfU

B

(q) j q 2 LSu

�

(p)r F

0

g+ 1 if p 2 F 0

If we replace in the above equations the function U
B

with U 0
B

and the func-
tion R

B

with R0
B

, the resulting equations hold for each state p with a loop.
Hence, for every state p 2 Q

0 with a loop it holds that U 0
B

(p) = U

B

(p) and
R

0

B

(p) = R

B

(p). In particular, if q0
0

has a loop then U 0
B

(q

0

0

) = U

B

(q

0

0

).

Let us note that if q0
0

has no loop then it is a nonaccepting state. Further,
one can prove that if lh(q0

0

) > 0, q0
0

has no loop, and LSu

�

(q

0

0

) \ F

0

= ;

then U 0
B

(q

0

0

) = 1 = U

B

(q

0

0

).

Finally, let us assume that lh(q0
0

) > 0, q0
0

has no loop, and LSu

�

(q

0

0

) \

F

0

6= ;. As q0
0

62 F

0, then

U

0

B

(q

0

0

) = maxfU

0

B

(q) j q 2 LSu

�

(q

0

0

)g (7.1)

= maxfU

B

(q) j q 2 LSu

�

(q

0

0

)g (7.2)

� maxfU

B

(q) j q 2 LSu

�

(q

0

0

) \ F

0

g (7.3)

= maxfR

B

(q) + 1 j q 2 LSu

�

(q

0

0

) \ F

0

g (7.4)

= maxfR

B

(q) j q 2 LSu

�

(q

0

0

) \ F

0

g+ 1 (7.5)

= U

B

(q

0

0

); (7.6)
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where (7.1) follows from the definition of U 0
B

, (7.2) is due to the fact that
for states with a loop the functions U 0

B

and U

B

coincide, and the equation
U

B

(q) = R

B

(q) + 1 valid for all q 2 F 0 gives us (7.4). To sum up, U 0
B

(q

0

0

) �

U

B

(q

0

0

). We are done as it is easy to see that U 0
B

(p) � U

B

(p) holds for each
state p of an arbitrary A1W automaton B. �

By analogy, for an A1W automaton A with initial state q
0

one can con-
struct a language equivalent A1W automatonB with an initial state q0

0

such
that R0

A

(q

0

) = R

B

(q

0

0

).

Theorem 7.17 For each i 2 N
0

it holds that UR
i

= U

i

and RU
i

= R

i

.

Proof: We focus on the former equation as the proof of the latter one is
analogous. In order to prove the inclusion UR

i

� U

i

, we show that for
every alphabet � and a formula ' 2 UR

i

the automaton A = A

�

(') given
by standard LTL!A1W translation satisfies U 0

A

(q

'

) � i, where q
'

is an
initial state of the automaton. This is sufficient due to Lemma 7.16.

Please note that operatorsU and R are not in scope of any negation in '.
Hence, the states of the automaton A

�

(') can be divided into three kinds
according to the corresponding subformula of '.

1. A subformula of the form X( U �) or  U � is translated into a state
q

 U�

satisfying q
 U�

62 F .

2. As  R � is seen as an abbreviation for :(: U:�), a subformula of
the form X( R �) or  R � is translated into a state q

:(: U:�)

2 F .

3. A subformula of the formX that is not covered by the previous cases
is translated into a state q

 

such that q
 

62 F and q
 

has no loop.

To sum up, states corresponding to U operator are not accepting while the
states corresponding to R operator are accepting. Moreover, states corre-
sponding to U or R are the only states that can have a loop. From this
observation and from the structure of the transition function Æ it follows
that each subformula  of ' satisfies

 2 UR

j

=) U

0

A

(q

 

) � j and  2 RU

j

=) R

0

A

(q

 

) � j:

In particular, U 0
A

(q

'

) � i.

To prove the inclusion UR

i

� U

i

we assume that A is an A1W automa-
ton with an initial state q

0

satisfying U
A

(q

0

) � i. We show that the formula
'(A) given by the standard A1W!LTL translation can be equivalently ex-
pressed by a formula from UR

U

A

(q

0

)

.

Here we employ the fact that the formulae (� U �)^G� and ((X�)R �)_�

are equivalent for all subformulae �; �. Therefore, for each state p of the
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automaton A the formula '
p

can be equivalently given as follows:

'

p

=

(

�

p

U �

p

if p 62 F

((X�

p

)R�

p

) _ �

p

if p 2 F

Using this modified construction, we get a formula that is equivalent to
'(A). Moreover, U operators correspond to nonaccepting states while R op-
erators correspond to the accepting ones. Hence, the alternation of nonac-
cepting and accepting states in the automaton correspond to the alternation
of U and R operators in the resulting formula. In other words, the formula
is in UR

U

A

(q

0

)

. �

Theorem 7.17 and Corollary 3.51 give us the following corollary.

Corollary 7.18 An !-language L is definable by LTL if and only if L 2 U
3

\R

3

.

7.4 Additional notes

Our research on deeper connections between A1W automata and LTL frag-
ments brought several topics for future work. The most interesting topics
follow.

One such a topic is a situation on finite words. We think that the im-
proved translation works for alternating automata over finite words as
well. However, we suppose that the connection between until-release hier-
archy and alternation of nonaccepting and accepting states does not extend
to finite words.

In Definition 7.1 we formulate two conditions which allow to decrease
the X-depth of a formula corresponding to a given A1W automaton. As the
conditions are quite complicated, it is only natural to ask whether there are
some simpler (or more general) conditions with the same effect. For ex-
ample, we have no counterexample showing that the improved translation

produces incorrect results when we define Xfree(p
a

! S) to be a set of all
states q 2 S r fpg satisfying

1. there is S0 � S such that q
a

! S

0, and

2. if q
a

! S

0 and q 62 S

0 then there exists S00 � (S r fqg) [ S

0 such that
p

a

! S

00.

Unfortunately, we have no proof of correctness of the translation for this
Xfree function.

Another question is a succinctness of A1W automata. Let us consider
a formula ' with a more than one copy of a subformula  , e.g. ' = (a _

X )U (b^XX ). All copies of the subformula correspond to one state q
 

of
the automaton produced by LTL!A1W translation. Therefore we suppose
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(but we have no proof yet) that an A1W automaton can be exponentially
more succinct than arbitrary corresponding LTL formula in some cases.

The last topic we mention here is connected to automata rather than the
logic. In this chapter we work with the alternating Büchi automata that are
1-weak. The 1-weakness can be generalized to k-weakness in the following
way. An alternating Büchi automaton is called weak if the set of states Q
can be partitioned into disjoint sets Q

1

; Q

2

; : : : ; Q

n

such that

� if q 2 Su(p), q 2 Q
i

, and p 2 Q
j

then i � j, and

� Q

i

\ F = ; or Q
i

� F for every 0 < i � n,

where F is a set of accepting states. Moreover, the automaton is called k-
weak if jQ

i

j � k for every 0 < i � n. It is known that general alternating
weak automata recognize all !-regular languages, whereas alternating 1-
weak automata recognize all !-languages definable by LTL. The definition
of alternating k-weak automata (or AkW automata for short) brings several
interesting questions:

� What is the expressive power of AkW automata?

� Is the hierarchy of classes of AkW automata expressively strict?

� For each k, is there any natural extension LTL
k

of LTL such that AkW
automata define the same languages as LTL

k

?



Chapter 8

Conclusions

This thesis provides a wide overview of LTL fragment properties that are
relevant to model checking. With use of this overview one can easily see
the relations between expressiveness of LTL fragments and theoretical com-
plexities of the model checking problem for these fragments. This thesis
also covers several fragment properties that lead or can potentially lead to
improvements of the model checking process (e.g. closure under stuttering
leads to applicability of partial order reduction methods).

Further, this thesis contains original results divided into three areas:
extended stuttering principles, characteristic patterns, and deeper connec-
tions between LTL and alternating 1-weak Büchi automata. Some applica-
tions of these results in model checking are suggested as well.

8.1 Future work

The sections called Additional notes and located at the end of each chapter
include a number of interesting topics for future work. Some of these topics
are open questions borrowed from the cited papers. In the near future the
author plans to concentrate on the development of new model checking
algorithms and methods employing some of the results presented in this
thesis, namely the letter stuttering principle, the general stuttering princi-
ple, and the concept of characteristic patterns.
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