
M A S A R Y K UNIVERSITY

FACULTY OF INFORMATICS

%, \J/ &

Monitoring of Systems
Behaviour

DIPLOMA THESIS

in Simsa

Brno,2006

Declaration

I hereby declare that the thesis entitled Monitoring of Systems Behaviour is
my own, unaided work and has never before been submitted for any de­
gree. Where other sources of information have been used, they have been
acknowledged.

Thesis advisor: doc. RNDr. Luboš Brim, CSc.

11

Acknowledgement

I would like to express my deep sense of gratitude to all those who made a
contribution to this thesis.

First, my sincere thanks go to my supervisor Luboš Brim as well as other
members of the Laboratory of Parallel and Distributed Systems—ParaDiSe
in particular to Jiří Barnat, Ivana Černá, Jakub Chaloupka, Pavel Moravec,
Radek Pelánek, and Jan Strejček.

Next, I would like to thank to Gerd Behrman, Kim Larsen, and Jiří Srba
for englightning discussions and scientific guidance and Alexander David
for technical support during my stay at the Aalborg University in Denmark.

I am also very grateful to my family for their continuos encouragment
that was given to me. The acknowledgement episode would not be com­
plete without mentioning my girlfriend Barbora whose patience was tested
probably the most. Nevertheless, she has kindly provided her loving sup­
port and understanding.

m

Abstract

Usage of monitoring for the purpose of verification has grown in impor­
tance in recent years. In this thesis, we survey monitoring of a system for
the purpose of a formal verification of its behaviour. To this aim, we use
temporal logics and observation sequences as formalisms for describing system
specification and its actual behaviour.

In particular, we present an unifying view on monitoring of Linear Tem­
poral Logic and Metric Interval Temporal Logic specifications. Furthermore,
we present an extension of this view to handle monitoring of systems with
unobservable parts and inaccurate measurement of time.

IV

Keywords

Verification, Testing, Model Checking, Monitoring, Linear Temporal Logic,
Metric Interval Temporal Logic, Formula Rewriting, Partial Observability,
Measurement Inaccuracies

v

Contents

1 Introduction 2
2 Theoretical foundations 5

2.1 Modeling observed behaviour 5
2.2 Modeling desired behaviour 8

3 Monitoring of LTL 12
3.1 Online vs. offline monitoring 12
3.2 Methods 13
3.3 Partial observability 20

4 Monitoring of MITL< 24
4.1 Online vs. offline monitoring 24
4.2 Methods 25
4.3 Partial observability and measurement inaccuracies 38

5 Conclusions 41
A Description of the appended CD 46

1

Chapter 1

Introduction

"To err is human, but to really foul up requires a computer."
- Dan Rather

It is then no wonder that verification in its widest sense has been a major
research topic since the beginings of computer science. Its general purpose
is to resolve whether a verified system conforms to its specification, that is
to detect errors in its realization.

Verification can take on many different forms—ranging from very sim­
ple to very complex methods. An example of a method that has become
very popular is testing [7], of software in particular, as it is very efficient
in detecting likely errors. However, it is not an universal verification tech­
nique as it scarcely detects rare errors. Yet these errors, despite the rarity of
their occurence, may have serious consequences.

To cope with such errors, other methods such as model checking [12] or
theorem proving [14] have been developed. Benefit of these methods is their
ability to prove the correctness of a system, or at least of its model. Never­
theless, the applicability of these methods is often limited by their computa­
tional complexity and the level of knowledge necessary for their utilization.
However, with the ongoing advance of both technologies and techniques,
complex verification methods are becoming more and more accessible.

Somewhere in within the field of verification stands monitoring. In gen­
eral, it is a process of observing a system for any changes which may occur
over time. In the context of verification, monitoring is typically used for
observing a system for errors. From one point of view, monitoring can be
regarded as a continuos test of a system. Alternatively, it can be viewed as a
light-weight version of model checking useful in situations where a model
of a system is either unavailable or too complex.

These views are reflected in the following approaches. Online monitoring
is a process of observing an activity of a system as it progresses. For ex­
ample, the Unix command t o p follows the online monitoring paradigm;

2

1. INTRODUCTION

observing an activity in the random-access memory On the contrary, of­
fline monitoring is a process of observing an activity of a system after it has
occured. A typical example of offline monitoring is accessing log files of a
system.

Example Let us consider some mechanical device which can read and
write data to and from a data medium. For example a CD-RW mechanic
and a CD-RW disc are examples of such a device and data medium. Nat­
urally, we assume the mechanic to perform read or write operations only
when a medium is inside. To verify the assumption we can extend the
mechanic with coloured diodes or some other monitoring device, which
indicate read and write operations. Then we simply monitor the assump­
tion while we operate the device.

In this thesis we focus on—both online and offline—monitoring of a
system for the purpose of formal verification of its behaviour. To this aim,
we use temporal logics and observation sequences as formalisms for describing
system specification and modeling its actual behaviour.

In particular, we consider two logics, Linear Temporal Logic (LTL) and a
fragment of Metric Interval Temporal Logic (MITL<). The former has been
extensively studied for its utilization in the model checking and is widely
used as a specification tool. The latter can be viewed as a real-time exten­
sion of the former and is consequently more complicated to handle.

We show that monitoring of formulas from both logics is feasible using
the formula rewriting approach. In this approach the original formula is it-
eravely transformed according to the behaviour being observed. Thus all
information necessary for resolution of the specification validity is stored in
the resulting formula and there is no need to store the observed behaviour.

Our contribution

First of all, we present an unifying view on monitoring of both logics and,
to this end, we use an approach based on formula rewriting.

Furthermore, we investigate the problem of monitoring of a system with
unobservable parts—an issue reffered to as partial observability. For that
purpose, we extend our algorithms for monitoring of formulas from both
logics. The extension enables resolution of formulas for all potential be­
haviours of unobservable parts at the same time. Yet it does not increase
asymptotical complexity.

Last but not least, we examine real-time monitoring of timing constraints
in connection with a limited precision of time measurements—an issue ref-

3

1. INTRODUCTION

fered to as measurement inaccuracies. We show how to deal with this issue
using an abstraction.

Related work

From one point of view, monitoring of a formal specification can be re­
garded as model checking of a path. This problem has been studied by
Markey and Schnoebelen [25]. They investigated complexity of deciding
different logics over a single path as a special case of traditional model
checking.

Geilen [16] studied possibilities of monitoring of LTL properties using
an automata over both infinite and finite words. Later, he has extended his
work to real-time logics. His thesis [17] is a comprehensive overview of
the model checking of formulas from both LTL and MITL< based on the
automata-theoretic approach.

The idea of formula rewriting, used throughout this thesis, has been
previously employed by Thati and Grosu [28]. They proposed monitoring
techniques for Metric Temporal Logic (MTL) and provided a detailed analysis
of practical complexity of these techniques.

Thesis structure

In Chapter 2, we lay theoretical foundations for modeling of both desired
and observed behaviour of a system. For that purpose, we define observa­
tion sequences, their timed extension and consequently syntax and seman­
tics of both LTL and MITL<.

Next, we investigate monitoring of LTL in Chapter 3. We review existing
algorithms and then thoroughly describe an algorithm based on formula
rewriting. Last section of the chapter is devoted to monitoring of LTL with
respect to partial observability.

Chapter 4 explores monitoring of MITL<. Similarly to LTL, we first re­
view existing algorithms and then thoroughly describe an algorithm based
on formula rewriting. In the last section of this chapter we discuss monitor­
ing of MITL< with respect to both partial observability and measurement
inaccuracies.

The thesis is concluded in Chapter 5 where we make conclusions and
point out directions for future work.

4

Chapter 2

Theoretical foundations

"All models are wrong. Some are useful."
- George Box

In this chapter we lay theoretical foundations for describing observed
as well as desired behaviour of a system. As the quotation above indi­
cates, we cannot expect to have a perfect model. However, we choose an
approach which can—under a certain assumption—provide an arbitrarily
precise model of a system behaviour.

2.1 Model ing observed behaviour

When observing a system, we can identify its state, which can change as
time passes, and its actions, which may occur in time. These observable
features can be used for describing a single behaviour of the system or the
system as a whole and give raise to state-based and action-based modeling
methods. Naturally, actions can be viewed as changes of a state and states
as conseqeunces of actions. Therefore choosing between state-based and
action-based methods is just a matter of taste.

For the purpose of this thesis, we choose a state-based method, which
identifies a state with a finite set of boolean propositions. Assuming that we
are factually able to resolve validity of any potential proposition, this ap­
proach provides an arbitrary precision of modeling. Benefits of this ap­
proach are its universality—ability to model various systems—and its flex­
ibility in implementing various levels of abstraction.

Definition 2.1 Let V be a set of boolean propositions. Then any subset ofV is a
state.

Intuitively, a single behaviour of a system could be represented as a se­
quence of states. By doing so one would abstract away from a very impor­
tant aspect of the system behaviour. This aspect is time. Clearly, we may

5

2. THEORETICAL FOUNDATIONS

want the system to behave according to certain timing constraints and rep­
resenting its behaviour simply as a sequence of states makes the verification
of such constraints virtually impossible.

Example Now we show how a state of a CD-RW mechanic can be de­
scribed using boolean propositions. Let o denotes a fact that the mechanic
is opened, r denotes a fact that the mechanic performs a read operation,
w denotes a fact that the mechanic performs a write operation and lastly
m denotes a fact that there is a medium inside the mechanic. Then {r, m}
denotes a state in which there is a medium inside the mechanic and the
mechanic is closed, performs a read operation and does not perform a
write operation. Analogously, {o, w} denotes a state in which there is
no medium inside the mechanic and the mechanic is opened, performs a
write operation and does not perform a read operation.

However, incorporation of time into the modeling domain has its disad­
vantages. Some verification problems may become more complex or even
undecidable. Moreover, when observing a system we cannot measure the
timing of changes of its state precisely and yet we would like our method to
be arbitrarily precise. In the following, we consider both possibilities, that
is a model with as well as without time.

Observation sequences

To describe behaviours being monitored, we define an observation sequence
as a sequence of states and a timed observation sequence as an observation
sequence augmented with intervals of time. These intervals partition the
time axis.

Definition 2.2 An interval is a convex subset of reals. Given an interval I its
left endpoint -finite or inifinite - is denoted 1(1) and its right endpoint -finite or
infinite - is denoted r (I). An interval I is adjacent to an interval ľ if and only if
r (I) = 1(1') and either r (I) is included in I or 1(1') is included in ľ.

Definition 2.3 An interval sequence X = (IQ, I\, h, • • •) is a sequence of inter­
vals such that:

• h = [0, a) for some a e RQ U {OO}.

• For every index i, 1(1 i) is included in U.

• For every index i, U is adjacent to Ii+\.

• For every t e R Q, there exists k such that t e Ik-

6

2. THEORETICAL FOUNDATIONS

An interval sequence defined above serves as a partitioning of the time
axis. Note that we are considering only intervals which are left-closed and
right-opened. Although we could consider all types of intervals, it would
have no additional benefit. It is not possible to measure the time with in­
finite precision in practice. Therefore use of all types of intervals would
only imply technical complications. The choice we has made reflects our
intuition a about change of system state. It takes place at a certain time and
until that time the system remains in its original state.

Definition 2.4 Let V is a set of propositions. An observation sequence is a
sequence w = (ao, a\, 0,2, • • •) of states. A timed observation sequence is a pair
p = (w,l) where w is an observation sequence and 1 is an interval sequence and
\w\ = \T\.

Clearly, this is only one of many possible approaches we could have
used for incorporation of time. For an overview of alternative approaches
we refer to a survey by Alur and Henzinger [2].

Example Imagine that you operate a CD-RW mechanic as follows. Ini­
tially the mechanic is empty and idle. You open it and insert a medium.
Then you close the mechanic and store some data on the medium. Finally
you open the mechanic, remove the medium and close the mechanic.
This behaviour of the mechanic could be modeled as a finite observa­
tion seqeunce (0, {0}, {0, m}, {m}, {m, w}, {m}, {0, m}, {0}, 0).
Now you repeat the scenario and also measure time. You open the me­
chanic at time 1 and insert a medium at time 3. Then you close the me­
chanic at time 7 and start a write operation at time 15. However, the
mechanic get stuck and you are unable to complete the write operation.
This behaviour could be modeled as a finite timed observation sequence
((0, {0}, {0, m}, {m}, {m, w}), ((0, !],(!, 3], (3, 7], (7,15], (15, 00])).

We conclude this section by definition of a suffix of a (timed) observa­
tion sequence. This notion provides for a more compact reasoning in the
remainder of the thesis.

Definition 2.5 Let 1 = (IQ, I\,...) is an interval sequence, w = (ao, a\,...) is
an observation sequence and p = (w,l) is a timed observation sequence.

• For every n = 0 , . . . , \w\, an observation sequence wn = (an, an+\,...) is a
suffix ofw starting at an.

• For every t G R Q, an interval sequence J* = ([0, r(In) — t), In+\ — t,...)
is a suffix of an interval sequence 1 at time t where n G No is such that
tela-

7

2. THEORETICAL FOUNDATIONS

• For every t e RQ, a timed observation sequence p* = (wn,Tt) is a suffix of
a timed observation sequence p at time t where n G No is such that t e In.

2.2 Model ing desired behaviour

Having defined a method for modeling behaviours that a system can ex­
hibit, we now move on to define a method for describing the behaviour
that we would like the system to exhibit, that is its specification.

As opposed to a single behaviour resulting from an observation of a
system, it is quite natural to specify the desired behaviour through an infi­
nite set of behaviours all conforming to certain requirements we put on the
system. To this aim, we make use of a commonly and widely used formal­
ism—temporal logics.

Temporal logics

The field of temporal logics have a long tradition. It was pioneered by
Manna and Pnueli and since then contributions have been made by many
others. Temporal logics are particularly useful for specifying behaviour of
reactive systems, that is systems that maintain an ongoing interaction with
their environment and usually are not designed to terminate. Very nice de­
scription of temporal logics can be found in Manna and Pnueli's book [24].

Originally, temporal logics could not specify any timing constraints. In
the early 1990s, Alur and Henzinger among others made a substantial con­
tribution to the theory of specification and verification of real-time systems.
They explored several ways of how to incorporate timing constraints into
temporal logic, namely bounded temporal operators. An overview of real­
time temporal logics can be found in their paper [3].

We present two temporal logics, one for expressing properties without
timing constraints such as safety, liveness or reactivity properties and an­
other that extends the first one, allows for timing constraints, and is able to
express properties such as bounded response properties.

The first logic considered is Linear Temporal Logic (LTL) that has been
widely used for specification [15] and is supported by many existing tools [4,
19]. We use this logic for expressing a (possibly infinite) set of observation
sequences and thus specify the desired behaviour of a system.

Definition 2.6 The syntax of LTL is defined as follows

ip ::= true \ false \ p \ -itfi \ ip\ V if 2 | X ip\ \ ip\ U if 2

where p is a proposition.

8

2. THEORETICAL FOUNDATIONS

Formulas true and false represent a tautology and a contradiction re­
spectively. They do not increase the expressive power of the logic and are
included only for technical convenience in proofs. In order to reduce paren­
theses, unary operators are assigned a higher priority than binary opera­
tors. For example ~^p\ U (Xipi V f 2) is the same as (->fi) U ((X^i) V P2).
Finally, we define operators p\ R p2, F p and G p as a shorthand for
-1 (-if 1 U -if 2), true U p and false R p respectively.

Next, we estabilish a connection between formulas of LTL and sets of
observation sequences. To this aim, we define the semantics of the logic. The
semantics describes if an observation sequence w satifies a formula p, a fact
denoted as w \= p. A formula p is then identified with a set {w \ w \= p}.
Note that despite being necessary we explicitly state semantics of operators
A and R. The reason for this is that we use (the semantics of) these operators
in proofs.

Definition 2.7 Let w = (ao,a\,...) is an infinite observation sequence. Then the
semantics of LTL is

\= true always
\= false never

\=P < $ • p G (IQ

1= -"£1 0 wy=p\
|= <fi A p2 0 w \= p\ and w = f 2

|= Pi V f 2 0 w \= p\ or w \= P2

1= X p i 0 w1 \= p\
|= px U p>2 0] (i i e f f 0) K = p2 and V(m < n)(wm

1= <Pi))
|= px R f 2 0 V(i ie f f 0)K = p\ or 3(m < n)(wm \= --^2))

Note that the definition of semantics assumes an observation sequence
to be infinite. Otherwise, the definition of |= for all temporal operators
would be incorrect. For a finite observation the definition of |= is incorrect
for all temporal operators and we alter it as follows.

Definition 2.8 Let w = (ao,a\,..., an) is afinite observation sequence. Then
the semantics of temporal operators is

, J false \w\ = 1
\ wl \= pi otherwise

w |= p\ U f 2 ^ 3(0 <n< \w\)(wn |= p\ anďi(m < n)(wm |= P2))
w |= p\ R(/?2 ^ V(0 <n< \w\)(wn |= p\ or3(m < n)(wm |= P2))

9

2. THEORETICAL FOUNDATIONS

Example Here we give examples of some LTL expressible specification
requirements for a CD-RW mechanic. First, the mechanic should read
or write only when it is closed. This requirement can be expressed as
G((r V w) => -io). Further the mechanic should never write when there
is no medium inside, -iF(w A -im). Finally, a medium should never be
removed when it is read from, G((m A r) => (m U ->r)).

The second logic considered is a fragment of Metric Interval Temporal
Logic (MITL) [1]. It is denoted MITL< and to the best of our knowledge it
was identified in [17]. Neither MITL nor MITL< has been used as widely as
LTL. This is likely implied by a higher practical complexity of verification
algorithms for MITL and MITL<. However, thanks to the technological
advance, tools for the verification of real-time systems are becoming more
and more popular [6].

We have chosen MITL< out of a variety of real-time temporal logics as
it allows to express basic timing constraints and yet it has the same asymp­
totical complexity of the model checking as LTL. Similarly to LTL, we use
MITL< to express a (possibly infinite) set of timed observation sequences
and thus specify the desired behaviour of a system.

Definition 2.9 The syntax ofMITL< is defined as follows

ip ::= true \ false \ p \ -itpi \ <pi V if 2 I <fi U<d if 2

where d e R Q U {00}, and p is a proposition.

Again, formulas true and false represent a tautology and a contradiction
respectively and unary operators are assigned a higher priority then binary
operators. Further we adopt rules similar to those for LTL. In particular, we
define operators <pi R<d if 2, F<d if and G<d if as a shorthand for formulas
-i(-i(/?i U<d -if2), true U<d if and false R<d if respectively. Finally, in the
case of an unbounded temporal operator such as <pi U<oo if 2 we leave out
the subscript and write <pi U if 2 instead.

We conclude this section by estabilishing a connection between formu­
las of MITL< and sets of timed observation sequences. This is done in a
similar fashion to LTL—through the semantics of MITL<. The semantics de­
scribes if a timed observation sequence p satifies a formula if, a fact denoted
as p \= ip. A formula if is then identified with a set {p \ p \= if}. Note that
despite being necessary we explicitly state the semantics of operators A and
R<(2. The reason for this is that we use (the semantics of) these operators in
proofs.

10

2. THEORETICAL FOUNDATIONS

Definition 2.10 Let p = ((ao, a\,...), (IQ, h, • • •)) *s a timed observation se­
quence. Then the semantics of the MITL< logic is

always
never
p G ao
P^Vi
p |= (f i and p |= if 2
p |= Lpi Or p |= (f 2
3(0 < í < d)(p* |= <pi and V(0 < ť < í)(pť |= <p2))
V(0 < í < d)(p* |= <p! or 3(0 < ť < *) (/ |= Lp2))

Note that the Definition 2.10, unlike the Definition 2.7, does not require
p to be infinite. This is thanks to the underlying interval sequence, which
despite being potentially finite represents an infinite time axis.

P = true
p = false
p = 'P o
p = -"£i o
p = ipi Aip2 o
p = ip1\J ip2 o
p = Ifl U < d (fi2 o
p = Lpi K<d (f 2 o

Example Here we give examples of some MITL< expressible specifica­
tion requirements for a CD-RW mechanic. First, the mechanic should
never continuosly read for 5 time units. This requirement can be ex­
pressed as -iF(G<5 T). Further a medium should not be removed dur­
ing a write operation and the writing should not last for more than 10
time units, G((m A w) => (m U<io w)). Finally, the mechanic never stays
opened for more than 20 time units G(o => F<2o(_,o)).

11

Chapter 3

Monitoring of LTL

"You see, Watson, but you do not observe."
- Sherlock Holmes

We start this chapter with a discussion of monitoring paradigms in the
context of LTL. Next, we present a method for monitoring of an LTL speci­
fication. Lastly, we extend this method to enable monitoring of a system in
the presence of partial observability, that is a system with some parts—and
thus some propositions from its specification—being unobservable.

3.1 Online vs. offline monitoring

Let us recall that, in the field of monitoring there are two main approaches.
Online monitoring is a process of watching an activity of a system as it pro­
gresses whereas offline monitoring is a process of watching an activity of a
system after it has occured. In this chapter, we focus on monitoring of a
system for the purpose of the formal verification of its LTL specification.

First, let us consider the offline monitoring. Assuming that the behaviour
of a system is represented as a finite observation sequence, we can ver­
ify the behaviour against an LTL specification in several straightforward
ways. One possibility is to exploit an algorithm based on the dynamic pro­
gramming algorithm for Computational Tree Logic (CTL) developed in [11],
as CTL and LTL has equal expressivity over paths. This algorithm evalu­
ate all subformulas of the formula syntax tree in a bottom-up manner, that
is from leaves to the root, for every state of the observation sequence. An­
other possibility is to transform the observation sequence into an equivalent
Kripke structure [20] and apply any of the variety of LTL model-checking
algorithms [5, 8,9, 29].

Even though these approaches are applicable for offline monitoring,
they do not carry over to online monitoring. The above mentioned ap­
proaches require an observation sequence to be finite, yet one of basic fea-

12

3. MONITORING OF LTL

tures of online monitoring is that it works with possibly infinite observation
sequences. Two natural questions arise. How to deal with infinite observa­
tion sequences in finite time and for what purpose?

From our point of view, the benefit of online monitoring should be in de­
tecting violations of LTL specification as soon as they take place. However,
not all LTL formulas can be verified using only a finite prefix of an infi­
nite observation sequence. For instance, let us consider a very simple for­
mula if = G F ready expressing that the state ready is encountered infinitely
many times. Clearly, any finite observation sequence can be extended to an
infinite observation sequence which either satisfies or violates ip.

Therefore, it is reasonable to use online monitoring only for LTL formu­
las that can be either satisfied or violated using a finite prefix of an infinite
observation sequence. Such formulas fall into a class of properties known
as safety. This class has been identified by Lamport in [23] and its verifica­
tion was studied for example by Kupferman and Vardi in [21].

To handle a possibly infinite observation sequence we design an algo­
rithm that works on-the-fly It processes observation sequence in one pass
and thus does need to not store it. The first on-the-fly algorithm for LTL was
described in [18] and since then many improvements have been proposed.
The original algorithm creates an automata that accepts precisely those ob­
servation sequences that do not satisfy the specification. Even though our
algorithm is based on the same idea, there are numerous distictions—in
use, in complexity, and in presentation.

3.2 Methods

Essence of the algorithm could be phrased as formula rewriting. Given a
state of an observation sequence and a specification expressed as an LTL
formula, the algorithm determines which propositions should hold now
and computes an LTL formula that should hold in the next state in order
for the original LTL formula to hold in the current state.

Definition 3.1 An LTL formula <p is in the positive normal form (PNF) if
negations in <p occur only over propositons. Furthermore, <p is in the disjunc­
tive positive normal form (DPNF) if ip = ct\ V • • • V an where each clause CKJ
is of the form <p\ A • • • A ipl

m. and each literal ip^ is in PNF and of the form
true, false,p, -*p, X.ip,ipi U ip2, or %p\ Hip2-

A formula ip in DPNF can be alternatively represented as a set of clauses
{ai, ...,an} or as a set of sets of literals {{<p\,... ,Lpl

mi},..., {<p™,.. .,<p'^n}}.

13

3. MONITORING OF LTL

This notation is justified in the proof of the Lemma 3.8 and is used in the
rest of this chapter where we often identify formulas in DPNF with a set of
clauses.

Proposition 3.2 Any LTL formula can be transformed into an equivalent formula
in PNF using the following identities:

• -'hv) = <P

• -ifalse = true

• -itrue = false

• -.(^i A <p2) = ^<fl V ~^ip2

• -.(^i V <p2) = ^<fl A ~^ip2

• -iX(/? = X.-iip

• -.(^i U if 2) = -"£1 R -"£2

• -^{LPI R tf2) = -"£1 U -^ip2

Proposition 3.3 Any LTL formula ip in PNF can be transformed into an equiva­
lent DPNF formula norm(ip) as follows:

• norm(ipi A if 2) = {ipi A ^2 | ipi e norm(<p{), ip2 e norm(ip2)}

• norm(ipi V if 2) = norm(ipi) V norm(ip2)

• otherwise norm(ip) = <p

Example For instance, the formula -iF(w A -<m) expressing that it can
never happen that mechanic writes and there is no medium inside is after
a transformation to PNF equal to formula G(-iioVra) expressing the same
in other words. Slightly more complex formula such as G(-iw V m) A
(G(r => -10) V F 0) is after a transformation to DPNF equal to the formula
(G(-.w V m) A G(r => -.0)) V (G(-w V m) A F 0).

In the remainder of this chapter we assume that all formulas are in
DPNF, unless stated otherwise.

Definition 3.4 For an observation sequence w = (ao,a\,...) and a formula <p> we
define function succ(ip, w) inductively on the structure of<p> as follows:

• succ(true,w) = true

14

3. MONITORING OF LTL

•

succ(false, w) = false

, N í true p G ao
succ(p, W) = <

{ false p f. ao

, . í true p 4. ao
succ(^p,w) = < .. , 1 /a/se p e ao

SUCc(ipi A(f2,w) = {lpi Alp2 I Vi S SUCc(ipi,w),1p2 G SUCC((/?2,W)}

succ(ipi V (£>2, w) = succ((fi, w) V succ((f2, w)

succ(X.<p, w) = <p

SUCc(ipi U (£>2, w) = SUCc((f2, W) V {V A ((£>i U ^2) I V S succ((fi, w)}

succ((pi R t/?2, w) = {Vi A V2 I Vi S (succ((pi,w) U {^1 R ^ 2 }) ,
V2 e SUCC((/?2,W)}

• succ

Example Now we demonstrate the applicability of the function succ
on the formula G((m Ar) => (m U -ir)) and the observation sequence
10 = ({0, m}, {m}, {m, r}, {m},...). To keep the intermediate formulas as
simple as possible we use reduction rules from the Lemma 3.8.
1. s w c c (G ((m A r) =>• (TO U T)) , W) = G ((T O A r) =>• (TO U ->r)

2. S M C C (G ((T O A r) =>• (TO U - T)) , w) = G ((T O A r) =>• (TO U ->r)

3 . S M C C (G ((T O A r) =>• (TO U T)) , W 2) = G ((T O A r) =>• (TO U - T)) A (TO U ->r)

4. S M C C (G ((T O A r) =>• (TO U T)) A (TO U - i r) , w 3) = G ((T O A r) =>• (TO U ->r)

Lemma 3.5 The function succ(<p, w) can be computed using polynomial space
with respect to the number of distinct subformulas in <p.

Proof Directly from the definition of succ(tp, w).
U

Lemma 3.6 Let <p is LTL formula and w = (ao, a\,...) is an infinite observation
sequence. Then w |= <p 4^ 3(ip G succ((p,w))(wl \= ip).

Proof By induction to the structure of formula ip.

• tp = true

"=>": As succ(true,w) = true and w |= true for any observation se­
quence w, 3(V G succ(true,w))(w1 \= true).

"<=": By contraposition. Because w ^= true is not satisfied for any
observation sequence w,w ^= true => V(V G succ(true,w))(w1 ^= ip).

15

3. MONITORING OF L T L

• Lp = false
"=>": Because w |= false is not satisfied for any observation sequence
w, w |= false => 3(ip G succ(false,w))(w1 \= ip).
"<=": By contraposition. As w ^= false holds for any observation se­
quence w, \/(ip G succ(false, w))(w1 ty=ip).

• V = P
"=>": Because w |= p => p G ÜQ => succ(p, w) = true and w |= rrwe
holds for any observation sequence w, 3(ip G succ(p, w))(w1 |= true).
"<=": By contraposition. As w ^= false holds for any observation se­
quence w, \/(ip G succ(p, w))(w1 y= false).

• ip = -ip

Proof of this case is an analogy to the previous one.

• Lp = (fii A (fi2
"=>": Clearly, w |= <pi A if 2 => w |= <pi and 10 |= if 2- By induction hy­
pothesis, 3(ipi G succ((/?i,tř;))(tř;1 |= %p\) and 3(-02 S succ(tp2, w))(w1 |=
•02)- Thus exists %p\ A 02 from succ{Lp\ A y>2> w) such that w1 \= %p\ A ip2-
In other words, 3(0 G succ{Lp\ A if 2, w))(w1 |= 0).

"<=": By contraposition, w ^ 1 A ̂ 2 implies w ^ ipi or w ^ <̂ 2-
Without loss of generality let w \/= Lp\. By induction hypothesis V(0i G
SUCC(LPI,W))(W1 y= ipi). Further let 02 G succ(tp2,w). Clearly, 0iA02 G
succ(<pi A <f2,w) and w1 ^ 0 i A02 for any 0i G succ(<pi, w). Therefore
V(0 G SUCc(tpi A Lp2,w))(w1 y= 0) .

• Lp = Lp\\l LP2
"=>": Clearly, w |= <pi V if 2 implies w |= (£>i or w |= (£>i. Without
loss of generality let w |= Lp\. Thus, by induction hypothesis, 3(0i G
succ(ípi,w)(w1 |= 0i) . Further 0 i G succ{Lp\ V (f2,w) and therefore
3(0 G succ(tpi V (£>2, w))(w1 |= V0-

"^=": By contraposition, w ^= <pi V ^2 implies 10 ^ (£>i and w ^= if 2- If
•0 G succ(tpi V <fi2,w), then either -0 G succ(<pi,w) or -0 G succ(tp2, w)
and by induction hypothesis to1 ^ •0. Therefore \/(ip G succ{Lp\ V
(^2,W))(W1 ^VO-

• ip = X-ipi

Directly from the semantics of LTL.

16

3. MONITORING OF LIL

ß = ßi U ß2

"=>": w |= î i U ß>2 implies that 3(n G No)(iora |= (£>2andV(m <
n){wm |= tßi)). If w |= <ß2 then, by induction hypothesis, 3(-02 G
succ(ß2, w))(w1 |= 1P2) and as succ(<ß2,w) C succ{ß\ U <ß2,w), 3(ip G
SUCc{ß\ U (/?2, «OXio1 |= '0)-

Otherwise 10 ^ ^2 and as 10 |= (£>i U ^ w |= (£>i and 101 |= ß\ U ^2
from the semantics of LTL. Further, by induction hypothesis, 3(-0i G
succ(ßi,w))(w1 |= ipi). Finally, as ipi A ß\ U ^2 S succ{ß\ U <ß2,w),
3(ip G succ(ßi U (/?2, w))(w1 |= VO-

"<í=": In this case, 3(0 G succ{ß\ U (/?2,w))(tí;1 |= 0) implies that
3(0 G succ(ß2,w))(w1 |= 0) or 3(0 G succ(ßi,w)(w1 |= 0) and«;1 |=
<ßi U <ß2.

First, let 3(0 G succ(ß2, w))(w1 |= •0). Then w |= (£>2 using induction
hypothesis and thus w |= ß\ U ^2-

Next, let 3(-0 G succ(ßi, w)(w1 \= ip) and to1 |= ß\ U ^2- Then 10 |= ß\
using induction hypothesis and w \= ß\ U ß2 using the semantics of
LTL.

<ß = tßi Kß2

"=>": w |= (/?i R (/?2 implies V(n G No)(iora |= ßi or 3(m < n)(wm |=
< 2̂))- Therefore 10 |= ^2- Further 3(-02 G succ(ß2, w))(w1 |= 1P2) using
induction hypothesis.

First, let w \= ßi- Then 3(-0i G succ(ß\, w))(w1 |= -0i) using induction
hypotehsis and consequently 3(ip G succ{ß\ R y>2, w))(w1 |= •0).

Otherwise, w ^ f)i and in this case w |= ß\ R (£>2 implies to1 |=
</?i R (/?2- Clearly, (ß\ R (̂ 2) A -02 G succ{ß\ R ß2,w) and thus 3(-0 G
succ(ßi Hß2,w))(w1 |= VO-

"<í=": Assumption 3(-0 G succ{ß\ H ß2,w))(w1 \= ip) implies that
3(-02 G succ(ß2, w))(w1 |= 1P2) and 3(-0i G succ(ß\,w))(w1 \= ip\) or
w1 |= ßi TLß2-

First, let 3(-01 G succ(ß\,w))(w1 \= ipi). Then, by induction hypothe­
sis, w |= ß\, w |= ß2 and consequently p \= ß\ R ^2-

Otherwise, V ^ i G succ(ßi,w)(w1 ^= %p\) and w1 \= ß\ R ^2- By
induction hypothesis 10 ^ (£>i and w |= (̂ 2- Clearly, w |= i ^ i R ^ using
the semantics of LTL.

17

3. MONITORING OF L T L

Thus given an LTL formula p we can process a possibly infinite observa­
tion sequence w, a state by state, and resolve whether w |= p by iteratively
computing values of the function suae. An advantage of this approach is
that it does not need the whole observation sequence w at the same time.
Nevertheless, the approach would be of little use if the formula would con-
tinuosly grow. Fortunately, we show that it is not the case. To this aim, we
measure the size of a formula using characteristics of its DPNF.

Definition 3.7 Let p be an LTL formula. Then the size of<p, denoted as \<p\, is the
sum of the number of all literals in each clause. Further we say that a subformula
of LTL formula p is basic if it is of the form p,->p, ~K.pi, p \ U p2 or p\ R p2-

Lemma 3.8 Let p be an LTL formula and w be an infinite observation sequence.
Then \sucr every í G No-

Proof We derive the upper bound on the size of \sucr(p,w)\ from the
properties of DPNF. A formula in DPNF can be reduced using the follow­
ing rules. Note that, the last rule justifies alternative representations of a
formula in DPNF.

1. false A plj = false and false V plj = plj

2. true A p^ = p^ and true V p^ = true

3. if exist distinct i, j such that cti ^ OLJ then p = p\ {ctj}

4. duplicate clauses and duplicate literals in a clause can be removed

Let B be the set of all basic subformulas of p and n be the cardinality of
B. First, we prove that the size of a formula p is at most exponential in n.
This is indeed truth as each clause, except for special clauses true and false,
is a subset of B and the number of literals in each clause is at most equal to
n. Therefore \p\ G 0(2n).

Next, from definition of function suae it follows that the set of all basic
subformulas of succ(p,w) is a subset B. Therefore \p\ G ö{2n) implies
\succ(p,w)\ G ö{2n). Applying the previous argument iteratively yeilds,
\sucr(p, w)\ G ö{2n) for every i G N. Clearly, n < \p\ which concludes the
proof. The bound can be further refined using the last but one reduction
rule. The maximum number of clauses in DPNF is in fact the maximum
number of pairwise incomparable sets of basic subformulas. In particular,
the maximum number of clauses is (|n/2|) (s e e P'7])-

18

http://~K.pi
file:///sucr

3. MONITORING OF LTL

The function succ can be utilized for an on-the-fly creation of a non-
deterministic automata similar to that from [18]. We describe the connec­
tion using a generalization of Büchi automata [10] as defined in [30].

Definition 3.9 Generalized Büchi automata A = (L, E, 5, L0, F) consists of

• a set L of locations,

• an alphabet E,

• a transition function 6 : L x E —> 2L,

• aset L0 C L of initial states,

• and an accepting condition F C 2L.

Further A accepts an infinite observation sequence w = (ao,a\,...) if there
exists an infinite sequence I = (lo, l\,...) of locations such that lo G L0, k+i G
S (k, dt) for each i G No, and inf(l) n f i for each f i G F, where inf(l) denotes a
set of all locations occuring in I infinitely many times.

Definition 3.10 For an LTL formula ip we define a generalized Bilchi automata

Av = (L, E, 5, L0, F) where

• Lis a set of all subsets of basic subformulas of<p>,

• T,is a set of all subsets of atomic propositions in <p>,

• 5 is such that 5(tp, a) = succ(ip, a) for each tp G L, a G E,

• Lo = (fi,

• and F is a set that contains for each subformula ipiU ip2 of ip a set of all
clauses containing <p>\ U <p>2-

Proposition 3.11 Let <p> is an LTL formula and w is an observation sequence.
Then w |= ip 4^ Av accepts w.

Last but not least, we argue that our algorithm based on the formula
rewriting approach is suitable for offline monitoring as well. Its advantage
is the ability to terminate after processing only a part of an observation
sequence. To cope with finite observation sequences, the function succ has
to be adjusted according to the respective semantics of LTL. Despite this
technicality, the algorithm carries over smoothly.

19

3. MONITORING OF LIL

3.3 Partial observability

Now we focus on monitoring of a system whose states are not fully observ­
able. For example consider a system with black box modules. We are not
allowed to see inside these blacks boxes and thus some propositions about
the system might not be resolved.

Example Imagine that we remove diodes from the CD-RW mechanic
we have mentioned earlier. Thus we are not able to tell if a read or write
operation is taking place and yet we would like to somehow verify for­
mula -iF(w A -im). Intuitively, this formula can be violated any time there
is no medium inside the mechanic, as a write operation can possibly take
place. On the other hand, it does not have to be violated if a write opera­
tion does not actually take place.

We show that partial observability can be handled using the function
succ. We pay a particular attention to resolving whether an observation
sequence can satisfy or violate its specification. We present a method for
resolving the satisfiability and sketch how it can be modified to resolve the
validity and other problems.

The idea is quite straightforward. First, we assume that a change of state
can take place though no change can be actually observed. Second, when
a change of state takes place, we consider all possible valuations of unre­
solved propositions. After computing all possible results of the function
succ we combine them using boolean connectives. The way we combine
them is determined by the question we want to answer. For the satisfi­
ability and the validity it is natural to use disjunctions and conjunctions
respectively.

In the remainder of this section, let ip is an LTL formula, w = (ao, a\,...)
is an infinite observation sequence resulting from monitoring of a partially
observable system—thus possibly missing some propositions—and U a set
of unobservable propositions.

Definition 3.12 We define function enum(ip, w, U) as

enum(ip,w, U) = \J succ(ip, (ao L)u,a\,a2, • •.)).
ueu

Next, we generalize the function succ to allow for changes of a state
that take place though no change is actually observed. We assume that the
number of such intermediate changes is arbitrary large but finite.

20

3. MONITORING OF LIL

Definition 3.13 We define f unction šučc(ip, w, U) as

šucc(íp,w,U) = y change1 (íp,w, U)
íGNo

where formula change1^, w, U) is inductively defined as

• change°((p, w, U) = enum(ip, w, U) and
• changet+1(ip, w, U) = change1 (enum(ip, w, U), w, U) for every i G No-

Informally, the function šucc guesses the number of intermediate changes,
that is the number of recursions of the function change, and for each change
guesses the valuation of unresolved propositions using the function enum.

Next, we extend semantics of LTL to allow for partial observability and
we prove properties of function šucc that provide for its practical use.

Definition 3.14 w \=u <p if there exists io,i\,... G No such that there exists
subsets U,Q, UI,...,U®,UQ,U\,..., uj ,... of U such that

((a0 U UQ), ..., (a0 U -u°0), (a i U u J) , . . . , (a\ U u}j,...) |= ip

Lemma 3.15 w \=u p <^ 3{ip G šucc(ip, w, U))(w1 \=u ip)-

Proof
"=>": If w \=u <p then by the definition of \=u exists ÍQ, i\,... G No such

that there exists subsets u^, u\,..., u°io, u^, u\,..., uj ,... of U such that

((ao U u°0),..., (oo U u°io), (ai U u j) , . . . , (ai U ujj,...) |= <p. (3.1)

Let wu = ((ao U UQ), . . . , (ao U u°io), (a\ U u\),... ,(ai U ujj,...) and k =
ÍQ + 1. An iterative application of the Lemma 3.6 on 3.1 yields 3.2 and con­
sequently 3.3 using the semantics \=u- Further 3.4 using the definition of
enum and finally 3.5 using the definition of šucc.

3(ipi G succ(<p,wu))(...3(ipk G succ(^fc-i ,w^_ 1))(^ \=ipk) •••) (3.2)
3(^i G succ(ip, wu))(... 3(ipk G succ(ipk-i, Wv~l)){wl \=u ipk).. .) (3.3)

3(^i G enum(íp,w,U))(...3(ípk G enum(ipk_i,w,U))(wl \=u ipk) • • •) (3-4)

3(ip G šucc(ip,w,U))(w1 \=u ip) (3.5)

"<=": If 3{ip G šucc((p, w, U)){wl \=u ip) then by the definition of šucc

3{i G No)(3(^ G change\p,w,U))(wl \=v ip)) (3.6)

3(i G No)(3('0i G enum(ip,w, U))(... 3{ipi G enum(ipi-i,w, U)) (3.7)
such that (w1 \=u ipi) • • •))

21

3. MONITORING OF LTL

Then the definition of enum yields 3.8 and 3.9 follows from 3.8 using the
semantics \=u where wx and wy are defined as wx = ((ao U UQ), . . . , (ao U
uf), ai, a2, • • •) andwy = ((aiLiul),..., (aiUujJ, (a2U«g), . . . , (a2U«f2),...).

Finally, let wu = ((aoUUg),..., (aoU-u°), (aiU-Ug), . . . , (aiLiuj),...). An
iterative application of the Lemma 3.6 on 3.9 yeilds 3.10 which is the same
as w \=u iP-

3(ieNo)(3(u°0,u
0

1,...,u°tCU) (3.8)

such that (3(ipi G succ(<p,wx,U))(.. .3(ipi G succ(i>i-i,wl~l ,U))

such that (to1 \=u ipi) • • •)))

3(i,ii,i2,--- GN 0) (3 (u{] , . . . ,u° ,^ , . . . ,u t
1

1 , ^ , . . . , u f 2 , . . . C U) (3.9)

such that (3(ipi G succ(<p,wx,U))(.. .3(ipi G succ(i>í-i,wl~l ,U))

such that (wy |= ipi)...)))

3(i,ii,i2,--- GN 0) (3 (u{] , . . . ,u° ,^ , . . . ,u t
1

1 , ^ , . . . , u f 2 , . . . C U) (3.10)

such that (wu \= ip)...)))

U
If the function suae can be computed, then the Lemma 3.15 provides a

method for verification of the satisfiability of LTL formulas in the presence
of partial observability. We show that the function succ can be computed
with the same asymptotical complexity as the function succ.

Lemma 3.16 Function šucc(íp,w,U) can be computed using polynomial space
with respect to the size ofip.

Proof First, we show that the function enum(ip,w, U) can be computed
using polynomial space with respect to the size of if. As enum(ip, w, U) =
Vueu succ(SPi (ao U u, ai, a,2, • • •)) the computation enumerates all possibili­
ties one by one and to keep the size polynomial it transforms intermediate
results into DPNF.

Next, we show that it is sufficient to consider only first 2'ip' formu­
las change1 (ip,w,U). This follows from the fact that the number of dis­
tinct subformulas in change1 (ip, w, U) does not grow with i. Thus there is
at most 2^1 syntactically distinct formulas Vi=o changel(tp, w, U) in DPNF.
In other words, there exists j < 2^1 such that \/l=0change%(tp,w,U) =
Vj=o change1 (ip, w, U) for all k > j .

Finally, we show that the function šucc(ip,w, U) can be computed us­
ing polynomial space with respect to the size of <p. The computation itera-
tively computes formula changel((p, w, U) for larger and larger i as long as

22

3. MONITORING OF LIL

Vfc=o changek(íp, w, U) / Vfc=o changek(íp, w, U). To this aim, it is sufficient
to store only constant number of formulas which—after a transformation
into DPNF—are of a polynomial size.

•
The way in which the function šucc works, provides answers to other

questions as well. For instance, we state without a proof that if disjunc­
tions in definitions of functions enum and šucc are replaced with conjuc-
tions then function šucc would verify the validity of LTL formulas in the
presence of partial observability. Further techniques based on other com­
binations of boolean connectives are possible. However, an exploration of
these techniques is out of the scope of this thesis.

23

Chapter 4

Monitoring of MITL<

"Thus the whirligig of time brings in his revenges."
- William Shakespear

We start this chapter with a discussion of monitoring paradigms in the
context of MITL<. Next, we present methods for monitoring of an MITL<
specification. Lastly, we describe how to deal with inaccurate measurement
of time and partial observability, that is a situation where some parts of a sys­
tem—and thus some propositions from its specification—are unobservable.

4.1 Online vs. offline monitoring

Let us recall that, in the field of monitoring there are two main approaches.
Online monitoring is a process of watching an activity of a system as it pro­
gresses whereas offline monitoring is a process of watching an activity of a
system after it has occured. In this chapter, we focus on monitoring of a
system for the purpose of the formal verification of its MITL< specification.

First, we consider offline monitoring. Assuming that we have a finite
timed observation sequence representing the behaviour of a system, we
can resolve the validity of an MITL< specification using already known
algorithms. In particular, we consider algorithms for resolving validity of
a formula that use some kind of timed automata. The automata serves as a
finite representation of a countable set of timed observation seqeunces.

One possibility is to use the algorithm for deciding MITL described by
Alur, Feder, and Henzinger [1]. Although this algorithm is in EXPSPACE
and deciding MITL< was shown to be PSPACE-complete, it is worth men­
tioning it as it provides good understanding of MITL and therefore MITL<.

An asympotically optimal algorithm for deciding MITL< has been pro­
vided in Geilen's thesis [17]. Given an MITL< formula the algorithm builds
an automata accepting precisely those timed observation sequences which
violate the formula. This automata is intersected with an automata de-

24

4. MONITORING OF M I T L <

scribing the behaviour being verified and the intersection is checked for
the emptiness.

Yet another algorithm for deciding MITL< can be based on the formula
rewriting approach and it is described in the following section. A similar
algorithm has been already designed for Metric Temporal Logic (MTL) by
Thati and Rosu [28]. The latter logic was defined by Alur and Henziger [2]
and has, similarly to MITL, bounded temporal operators. However, it is
interpreted over discrete time.

Next, we consider online monitoring of MITL<. Similarly to LTL we see
the benefit of online monitoring in detecting violations of an MITL< speci­
fication as soon as they take place. From this point of view, it is reasonable
to monitor only those MITL< formulas which can be either satisfied or vi­
olated in a finite time. This allows for, among others, safety properites and
formulas of the form p = G(p => F<d q) known as bounded response prop­
erties.

To handle possibly infinite timed observation sequences we need an al­
gorithm that processes states and intervals of a timed observation sequence
in one pass. To this aim, we can use an on-the-fly version of the algorithm
for offline monitoring from [17] or alternatively we can employ, under a
certain assumption, an algorithm based on the formula rewriting approach
from the following section. We show that both approaches have its pros
and cons.

4.2 Methods

First of all, we define the positive normal form (PNF) and the disjunctive
positive normal form (DPNF) of MITL< formulas analogously to normal
forms of LTL formulas. Next, we define fragments of MITL< as follows. For
a set $ of temporal operators, MITL<($) denotes a fragment of formulas
which after transformation into PNF contain only temporal operators from
$.

Definition 4.1 An MITL< formula p is in the positive normal form (PNF)
if negations in p occur only over propositons. Further, p is in the disjunctive
positive normal form (DPNF) if p = cti V • • • V an where each clause CKJ is of the
form p\ A • • • Apl

m. and each literal p^ is in PNF and of the form true, false,p, ->p,
ipiV<dip2,oripiK<dip2.

A formula p in DPNF can be alternatively represented as a set of clauses
{ai, ...,an} or as a set of sets of literals {{p\,... ,pl

mi},..., {p\,.. .,p^J}.

25

4. MONITORING OF M I T L <

This notation is justified in the proof of the Lemma 4.9 and is used in the
rest of this chapter where we often identify formulas in DPNF with a set of
clauses.

Proposition 4.2 Any MITL< formula can be transformed into an equivalent for­
mula in PNF using the following identities:

• -'hv) = <P

• -ifalse = true

• -itrue = false

• -.(^i A <p2) = ^<fl V ~^ip2

• -.(^i V <p2) = ^<fl A ~^ip2

• -.(^i U<d <p2) = ^fi R-<d ^<f2

• -.((/?! R<d lfi2) = -.(/?! U<d -.^2

Proposition 4.3 Any MITL< formula ip in PNF can be transformed into an equiv­
alent DPNF formula norm(ip) as follows:

• norm(ipi A <p2) = {ipi A ip2 \ ipi G norm(<p{), ip2 G norm(<p2)}

• norm(ipi V ^2) = norm(ipi) V norm(<p2)

• otherwise norm(ip) = <p

Example For instance, the formula -iF(G<5 r) expressing that it can
never happen that a mechanic continuosly continuosly reads for 5 time
units is after a transformation to PNF equal to the formula G(F<5->r)
expressing the same in other words. Slightly more complex formula such
as G(->w V m) A (G<s(r => ->ó) V F 0) is after transformation to DPNF
equal to the formula (G(^w V m) A G<5(r => -io)) V (G(-w V m) A F 0).

In the remainder of this chapter we assume that all formulas are in
DPNF, unless stated otherwise.

Definition 4.4 For a timed observation sequence p = ((ao, a\,...), (Io, I\,...))
and an MITL< formula <p>, we define a set of formulas succ(ip, p) inductively on
the structure of p) asfolows:

• succ(true,p) = true

26

4. M O N I T O R I N G O F M I T L <

• succ(false, p) = false

, N í true p e a o
• succ(p, p) = <

[false p 4. a0

, . í true p 4. do
• succ(^p,p) = < , , v ' \ false p G a0

• SUCc(ipi A t£>2, P) = {01 A 0 2 | 01 S SUCc(ipi,p),1p2 S SUCc(<P2, P)}

• SUCc(ipi V (£>2, p) = succ((fi,p) V succ((f2, p)

• SUCC((̂ 1 U< d^2,p) =

succ((fi2,p) if\Ia\ > d
succ((f2, p) U {0 A (<f i U<d_|/0| <ŕ>2) I V' s succ((fi, p)} otherwise

• succ((^i R< d^2,p) =

succ((fi2,p) if\Ia\ > d
{0i A 0 2 | 0 i G (succ(ifi,p) U {<pi R<d-|/0| <p2}),

•02 s succ((/?2,p)} otherwise

Example Now we demonstrate the applicability of the function succ
on the observation sequence p = (({r, m}, {m}, {o, m}, {o}, . . .) , ((0,1],
(1,3], (3, 7], (7,15], ...)) and the formula G(o => F<2 0(-o)). To keep the
intermediate formulas as simple as possible we use reduction rules from
the Lemma 4.9.
1. succ(G(o => F<2 0(-o)),p) = G(o => F<2 0(-o))
2. SMCC(G(O => F^aoí -o))^ 1) = G(o => F<2 0(-o))
3. succ(G(o => F<2 0(-o)),p3) = G(o => F<2 0(-o)) A F<1 6(-o)
4. SMCC(G(O => F<2 0(-o)) A F<1 6(-o) , p7) = G(o => F<2 0(-o)) A F<8(^o)

Lemma 4.5 TTze function succ(ip, p) can be computed using polynomial space
with respect to the number of distinct subformulas in ip.

Proof Directly from the definition of succ(tp, p).
•

The function succ defined here is a real-time counterpart of the function
succ from the Definition 3.4. To state the key lemma, we need an auxiliary
notion that is defined below. It provides for a discretization of time, which
turns out to be essential for a practical use of the function succ.

27

4. MONITORING OF M I T L <

Definition 4.6 Let <p is an MITL< formula and p = ((ao, a\,...), (Jo, h, • • •)) is
a timed observation sequence. Then p is <p-fme if and only if for any subformula tp
ofip and any t G R Q p* |= ip implies pť |= ipfor all ť G I k, where k G No is such
that t e Ik-

Lemma 4.7 Let <p is an MITL< formula and p = ((ao, a\,...), (Jo, h, • • •)) is a

ip-fine timed observation sequence. Then p\= <p 4^ 3(tp G succ(<p, p))(p'/o' |= ip).

Proof By induction on the structure of formula ip.

• ip = true

"=>": As succ(true, p) = true and p1 |= true for any timed observation
sequence p', 3(tp G succ(true, p))(p'/o' |= true).
"<=": By contraposition. As p' ^= true is not satisfied for any timed
observation sequence p', p \/= true => V(,0 G succ(true, p))(p'/o' \/= ip).

• ip = false

"=>": As p' |= false is not satisfied for any timed observation sequence
p', p |= false => 3(ip G succ(false, p))(p'/o' |= ip).
"<=": By contraposition. As succ{false, p) = /atee and p' |̂ = /atee for
any timed observation sequence p', M(ip G succ(false, p))(p'/o' ^ V0-

• V = P
"=>": Because p |= p => p G so => succ(p, p) = řrue and p' |= řrue for
any timed observation sequence p', 3(ip G succ(p, p))(p'/o' |= true).
"<=": By contraposition. A s p | ^ p = > p ^ s o = > succ(p, p) = false and
p' y= false for any p', M(ip G succ(p, p))(p'/o' ^ false).

• tp = -ip

Proof of this case is an analogy to the previous one.

• (p = If i A tp2

"=>": Clearly, p |= tpi A ̂ 2 implies p |= <pi and p |= ^2- Then 3(-0i G
succ(ip>i, p))(p'/o' |= 0i) a n d 3(02 G succ(ip>2, p))(p'/o' |= 02) using
induction hypothesis. Thus exists 0i A 02 from succ(ipi Aip2,p) such
that plJ°l |=0iA02. In other words, 3(0 G succ(<p>\ At/?2,p))(p'/o' 1=0)-

"<=": By contraposition, p ^= <p>i f\ <p>2 implies /) ^ ^1 or p ^ <̂ 2-
Without loss of generality let p ^ <p>\. By induction hypothesis V(0i G
succ(ip>i, p))(p'/o' ^ 0i) . Further let 02 G succ(<p>2, p)- Clearly, ip\Aip2 G

28

4. MONITORING OF M I T L <

succ(<ßi Af 2, p) andpl7°l ^ ipi A ip2 for any ipi G succ(<pi,p). Therefore
V(ip G succ((^i A <p2, p))(p |/o1 ^ V0-

"=>": Clearly, p |= Lp\ V ̂ 2 implies p |= (£>i or p |= tp2- Without loss
of generality let p |= ipi. Then 3(tpi G succ(ipi, p))(p'/o' |= VM using
induction hypothesis. Further ip\ G succ(ip\ V <£>2,p) and therefore
3(-0 G succ(ipi V t/?2, p))(p'/o' 1= V0-

"^=": By contraposition, p ^= ip\ V ^2 implies p ty= <pi and p ^ ^2- If
ip G succ(ipi \J(f2, p), then either -0 G succ(<pi, p) or -0 G succ(ip2, p) and
by induction hypothesis p' /o ' ^ ip. Therefore V(,0 G succ(ipi V y>2, p))
(p|/o1 ^ ip).

• Lp = Lpi U < d (̂ 2

"=>": p |= ^ U<d <p2 implies 3(r < d)(p* |= <p2 and V(0 < ť < t)
(p* |= (̂ 1)). First, let t G Jo- As p is (£>-fine, p |= <p2- By induction
hypothesis, 3(^2 S succ(<ß2, p))(p'/o' 1= V)̂- Finally, as succ(<ß2, p) Q
succ(ipi U<d ^2, p), 3(^ G succ(ipi U<d ^2, p))(p |/o1 1= VO-

Next, let t ^ IQ. Then for all í' G h, pť \= ipi and p*' |^ <ŕ>2- In
this case |io| < d and p |= <pi U<d ^2 implies pl7°l |= <pi U<d_| /o| <p2-
Further, as p |= ipi, 3(tpi G succ(ipi, p))(p'/o' |= VM using induction
hypothesis. Clearly, tpi A (^1 U<d_|/0| ^2) e succ(ipi U<d <£>2,p) and
therefore 3(-0 G succ(ipi U<d ^2, p))(p'/o' 1= V0-

"<*=": 3(ip G succ(ipi U<d </?2, p))(p'/o' |= VO implies 3(-0 G succ(ip2, p))
(pl/ol |= VO or 3(V G succ(^i,p))(pl/ol |= ý), pl/ol |= ^1 U<d_| /o| ^2
and |/o| < d. First, let 3(-0 G succ(ip2, p))(p'/o' |= V0- By induction
hypothesis p |= ^2 and therefore p |= (£>i U<d if 2-

Next, let VO e succ(t/?2,p))(p|/o1 V= V0> 3 (^ e succ((^i,p))(p |/o1 |= ip),
pl7°l |= t^ U<d_|/0| f 2 and |/o| < d. By induction hypothesis p |= ipi,
p y= <f2- Further, as p is ip-iine, p* |= <pi and p* ^= ^2 for all í G Jo- In
this case pl/ol |= <pi U<d_| /o| <p2 implies p |= <pi U<d ^2-

• Iß = Ifl R < d <£2

"=>": p |= ^ R<d (̂ 2 implies V(i < d)(p* |= ßi or 3(0 < ť < t)
(p* |= (̂ 2))- Therefore p |= ^2 and as p is t£>-fine p* |= if 2 for all í G Jo-
By induction hypothesis 3(^2 £ succ(ß2, p))(p'/o' |= V;2)-

First, let | Jo| > d. Then succ{ip\ R<d (̂ 2; p) = succ(ip2, p) and therefore
3(V> G succ((^i R<d <p2, P)) (P | / Q | |= V;)-

29

4. MONITORING OF M I T L <

Next, let I Jo I < d and 3 (i G IQ) (p* |= <pi). Then p \= <pi because
p is t£>-fine. Further 3(-0i G succ(<pi, p))(p'/o' |= V'I) using induction
hypothesis . Clearly, tpi Atp2 S succ(<pi R<d y>2, p) and pl7°l |= ipi A •02-
Therefore 3(ip G succ((p\ R<d (£>2, p))(p'/o' 1= V0-

Finally, let |IQ \ < d and V(í G io)(p* ^ ¥>i)- I n this case p |= <pi R<d ^2
implies p | /o1 |= <pi R<d-|/0| <fi2- Clearly, pl/ol |= 0i A ((̂ 1 R<d-|/0| V2)
and 0i A (ipi R<d-|/0| f2) e succ((/?i R<d ip2,p)- Therefore 3(0 G
succ(ipi R<d (̂ 2, p)) (p |/o1 |= 0)-

"<=": First, let \I0\ > d. Then 3(02 G succ(ip2, p))(p |/o1 1= 02)- Further
p |= (£>2 using induction hypothesis and, as p is ip-ime, p* |= ^2 for all
í G Jo- Namely p* |= <p2 for all í < d. Therefore p |= <p\ R<d ^2-

Next, let |/o| < d. Then again 3(02 G s-ucc((/?2,p))(p'/o' |= 02) and
3(0i G succ(ipi,p))(p|/o1 |= Vi) o r P|/o1 1= Vi R<d-|/o| V2- First, let
3(-0i G succ(<pi, p))(p'/o' |= ipi)- Then p |= t£>i and p |= ^2 using induc­
tion hypothesis. Thus p |= <pi R<d ^2- Finally, let \/(ipi G succ(<pi, p))
(p'/o' ^ -0i) andp' / o ' |= <£iR<(ž_|io|¥>2- By induction hypothesis p ^ (£>i
and p |= (/?2- As p is ip-ime, p* ^ (£>i and p* |= ^2 for all t G Jo- In this
case p | /o1 |= <£i R<d-|/0| f 2 implies p |= ipi R<d ^2-

•
Thus given an MITL< formula ip and a t£>-fine timed observation se­

quence p we can resolve the validity of p |= if by iteratively computing
values of the function succ. This suggest an algorithm for offline monitor­
ing of MITL< as any timed observation sequence can be easily transformed
to a formula-fine timed observation sequence (see [17], page 161).

To enable a practical use, we need to show that the formulas resulting
from an iterative computation of the function succ may not continuosly
grow. To this aim, we measure the size of a formula using characteristics of
its DPNF.

Definition 4.8 Let <p be an MITL< formula. Then the size of<p, denoted as \<p\,
is the sum of the number of all literals in each clause. Further we say that a sub-
formula of MITL< formula <p is basic if it is of the form p, ->p, <p\ U<d <p2 or
ipi R<d (p2.

Lemma 4.9 Let <p be an MITL< formula and p be a timed observation sequence.
Then \succl(Lp,p)\ G 0(2^) for every i G N0.

Proof We derive the upper bound on the size of \succl(ip,p)\ from the
properties of DPNF. A formula in DPNF can be reduced using the follow-

30

4. MONITORING OF M I T L <

ing rules. Note that, the last rule justifies alternative representations of a
formula in DPNR

1. false A (f'j = false and false V tp'j = tp'j

2. true A plj = přj and rrwe V plj = rrwe

3. if exist distinct í, j such that

• p e ai => p e aj,
• -i£> G a» => -ip s aj,

• 01 U^d! 02 e CKí => 3(d2 < d l)Ol U<d2 -02 S (X,-),

• and ípi R<dl ip2 £ &i => 3(d2 > di)(0i R<dl 02 e aj)

then tp = tp\ {aj}

4. if exists j such that 0 i U<d1 -02 £ aj, 0i U<d2 -02 £ aj and di < cfo then
aj = aj \ {0i u <d 2 02}

5. if exists j such that -0i R-<di 02 S ay, 0 I R-<<ž2 02 S <x/ and d\ < d2 then

«J = aj \ {^1 R <di ^2}

6. duplicate clauses and duplicate literals in a clause can be removed

Let B be the set of all basic subformulas of <p and n be the cardinality
of B. First, we prove that the size of formula p is at most exponential in n.
This is indeed truth as each clause, except for special clauses true and false,
is a subset of B and the number of literals in each clause is at most equal to
n. Therefore \p\ e ö(2n).

Next, from the definition of the function succ it follows that new ba­
sic subformulas can be introduced through its application. For instance,
when succ is applied on a subformula ip\ U<d1 ip2, new basic subformula
•01 U<(22 02 may be introduced. However, application of the function succ
can change the bound of the topmost temporal operator only. Therefore,
though the set of potential basic subformulas is arbitrarily large, any clause
can be reduced to n elements using reduction rules 4 and 5.

Furthermore thanks to the reduction the rule 3, it is possible to keep
the number of clauses below 2n. This can be proved as follows. Let there
is more than 2n pairwise distinct clauses such that none can be eliminated
by the rule 3. Then there exist distinct clauses CKJ, aj, reals d\, cfe, ei, ^2 and
MITL< formulas p\, <p2,ipi, and ip2 such that one of the following is true:

31

4. MONITORING OF M I T L <

• ipi U<d l iß2 e ai, ipi U< e i ip2 e ai, tpi U<d2 iß2 e <x,-, ipi U<62 ^2 e <x,-,
di < CČ2, ei > Č2, <fi U<d1 </?2 and <pi U<d2 ^2 are results of different
number of applications of function succ on some formula <pi U<d if 2,
and similarly %p\ U< e i ^2 and V>i U<e2 ̂ 2 are results of different number
of applications of function succ on some formula ipi U<e ip2-

• Lpi U<d l (̂ 2 e «i, ipi R< e i ^2 e «i, tfi U<d2 (̂ 2 e <x,-, ipi R<62 ^2 e <x,-,
d\ < d,2, c\ < ß2, tfi U<d1 <f2 and <pi U<d2 ^2 are results of different
number of applications of function succ on some formula <pi U<d if 2,
and similarly ip\ R< e i ^2 and ip\ R<e2 ^2 are results of different number
of applications of function succ on some formula ip\ R< e ip2-

• Lpi U<d l (̂ 2 e «i, ipi R< e i ^2 e «i, tfi U<d2 (̂ 2 e <x,-, ipi R<62 ^2 e <x,-,
d\ > d,2, c\ > ß2, tfi U<d1 <f2 and <pi U<d2 ^2 are results of different
number of applications of function succ on some formula <pi U<d if 2,
and similarly ip\ R< e i ^2 and ip\ R<e2 ^2 are results of different number
of applications of function succ on some formula ip\ R< e ip2-

• Lpi R<d l (f2 e «i, ipi R< e i ^2 e «i, tfi R<d2 (̂ 2 e <x,-, ipi R<62 ^2 e <x,-,
d\ < d,2, c\ > ß2, tfi R-Kd! ^2 and <pi R<d2 if 2 are results of different
number of applications of function succ on some formula <pi R<d if 2,
and similarly ip\ R< e i ^2 and ip\ R<e2 ^2 are results of different number
of applications of function succ on some formula ip\ R< e ip2-

In the first case, existence of such CKJ, <X/, . . . implies existence of clause
CKfc and ai such that CKfc = OLi\J{(pi\J<d2f2\ and ai = ajU{(pi\J<eiip2}- How­
ever, this contradicts our assumption as both c^ and <x, can be eliminated
by the rule 3 because of ctk and a\ respectively. Other cases are handled
analogously. Consequently, \succl((p,w)\ e ö{2n) for every i e N and as
n < \<p\ the proof is complete.

•
We have shown how to use the function succ for offline monitoring.

As opposed to algorithms based on the automata-theoretic approach, the
algorithm based on the function succ targets the task of deciding MITL<
directly, without employing the (timed) automata framework. Although
theoretical complexity of both approaches is the same, the latter is more
efficient in practice.

Unfortunately, timed observation sequences resulting from online mon­
itoring are not always formula-fine. This issue can be dealt with in several
ways. An approach suitable for discrete-time systems is to compute the
value of the function succ each unit of time. However, this approach is of

32

4. MONITORING OF M I T L <

practical use only when a computation of the function succ can be done
within the unit of time. Moreover, real-time systems are out of reach of this
approach.

The following lemma indicates another possibility of how to cope with
timed observation sequences that are not formula-fine. In parcticular, the
lemma identifies fragments of MITL< for which the function succ is of
some use even when the timed observation sequence being verified is not
formula-fine.

Lemma 4.10 Let pi = ((a0, a\,...), (Io,h,...)) and p2 = ((a 0 , a 0 , a i , . . .) ,
(I'Q, IQ, I\,...)) are timed observation sequences such that Io = I'0 U IQ, and <p be
an MITL< formula. Then for any timed observation sequence IT,

1. If tp G MiTL<(U<(2, G), then 3(% G succ(íp, pi))(ir |= %) implies 3(tp G
succ(tp,p2))(3(x e succ(ip,p2°))(vr |= %)).

2. If<p G MITL< (R< d ,F) , then 3(tp G succ(<p, p2))(3(x e succ(tp, p2
ľ°1))

(vr |= x)) implies 3% G succ(<p, pi)(vr |= %).

Proof By induction on the structure of formula ip. For the base step of
\ľ I both lemmas we prove that succ(ip, pi) = \J^esucc^iP2) succ(ip, p2 °').

• ip = true

Clearly, succ(true, pi) as well as succ(true, p2) equals true. Therefore
U^esucc(true,p2) SUCc(tp, p ^ 0 ') = U ^ e i ™ e SUCc(tp, p ^ 0 ') = true.

• ip = false

Clearly, succ(false, pi) as well as succ(false, p2) equals false. Therefore

U^esucc(falSe,p2) SUCc(tp, p ^ 0 ') = [j^efalse SUCc(tp, p ^ 0 ') = false.

• <P=P
First, let p G so- Clearly, succ(p, pi) as well as succ(p, p2) equals true.
Therefore {j^suc<PtP2) succ(tp, pl

2°l) = U^et™ succ(tp, pl
2°l) = true.

Next, let p £ SQ. Clearly, succ(p, pi) as well as succ(p, p2) equals false.

Therefore \J^esucc{PtP2) succ(tp, pl
2°

l) = \J^efalse succ(tp, pl
2°

l) = false.

• ip = -ip

Proof of this case is an analogy to the previous one.

33

4. MONITORING OF M I T L <

Inductive step for the first lemma:

• (fi = (fii A (fi2

Clearly, 3(x G succ(ipi A ip2,Pi))(^ 1= x) implies 3(xi G succ(ipi, pi))

(K 1= Xi) and 3(x2 e succ(ip2,Pi))(^ 1= X2)- Consequently, 3(^i G

succ((^i,p2))(3(xi e succ(ipi,p2
ol))(7T |=xi)) and 3(^2 e succ(tp2, P2))

(3(x2 S succ(íp2, p2°))(TT |= X2)) using inductionhypotesis.

Therefore exists -01 S succ(<pi, P2) and -02 S succ(ip2, P2) such that
1//1

3(x G succ(ipi A -02, P2))(7r 1= X))- Finally, 3(^ G succ(ipi A < 2̂, P2))
(3 (X G S U C C (^ , P 2

/ ° I)) (7 T | = X))

Clearly, 3(x G succ(ipi V ip2,Pi))(^ 1= x) implies 3(xi G succ(ipi, pi))

(K 1= Xi) o r 3(X2 e succ(<p2, Pi))(n 1= X2)- Consequently, 3(^i G

succ((^i,p2))(3(xi e succ(ipi,p2ol))(7T |= xi)) or 3(^2 e succ(tp2, P2))

(3(x2 S succ(íp2, p2°))(TT |= X2)) using induction hypothesis.

Therefore exists -0i from succ(<pi, P2) or -02 from succ(ip2, P2) such that
1//1

3(x G succ(ipi V -02, P2))(*" 1= X))- Finally, 3(^ G succ(t/?i V y>2, P2))

(3 (X G S U C C (^ , P 2
/ ° I)) (7 T | = X)) -

First, let |/o| > d. Then 3(x G succ(ipi U<d (£>2,pi))(7r |= X) implies
3(x2 e succ(<p2,Pi))(n 1= X2)- Consequently, 3(^2 e succ(<p2, P2))

1//1
(3(x2 £ succ(ip2, p2°))(TT |= X2)) using induction hypothesis. Finally,
3ft/> G succ((^i U<d <p2, P2))(3(x e succft/;, p / 0))(vr |= x))-

Next, let |2o| < d- Then 3(x G succ(ipi U<d (£>2,pi))(7r |= x) implies
3(x2 G succ(<£2, Pi))(vr |= X2) or 3(xi G succ(<pi,pi))(7r |= Xi) and

7T |= (̂ 1 U < d _ | / o | y>2).

If 3(x2 G succ((f2, Pi))(vr |= X2) we use the same argument as before.

Otherwise, 3(xi G succ(<pi, PI))(TT |= Xi) and7r |= (pi\J<d_\Io\(p2. Then
3(-0i G succ((/?i,p2))(3(xi G succ(ípi, p2°))("7T |= xi)) using induction
hypothesis. Further, as <pi G MITL<(U<d, G), 3(xi G succ(ipi, pi))

C71" 1= Xi) implies 3(xi G succ(tpi,p2°))(TT |= XI) using a simple

argument. Finally, 3(xi G succ(tpi,p2°))(TT |= XI) together with

vr |= Lpi U<d_| /o | <p2 implies 3(x G succ(pi U<d_|j/ | <p2, P^ 0 '))^ 1= x)-

34

4. MONITORING OF M I T L <

In summary, 3(xi G succ(tpi, PI))(TT |= Xi) and TT \= tpi U<d_| /o | ip2

implies 3(ipi G succ(tp\, p2))(3(xi e succ(ipi,p2))(n |= X I)) and
i//1

3(x G succ((^i U<d_|j/ | <p2, P2°))(TT |= x)- These two together imply
i//1

3(^Gsucc(^iU< d ^2,P2)) (3x£succ(ip,p2°))(7ľ |=x))-

• (f = Gipi

Clearly, 3(x G s-ucc(G(£>i,pi))(7r |= x) implies 3(xi G s-ucc((/?i,pi))
(7T |= Xi) and-n" |= Gtfi. By induction hypothesis, 3(ipi G succ(ipi, p2))
(3(xi G succ{^ p2

Q)){n |= Xi))- Further, as ^ G MITL<(U<d, G),
3(xi G succ((^i,pi))(7r |= xi) implies 3(xi G succ(^i,p^o|))(7r |= xi)
using a simple argument. Finally, TT \= Gipi, 3(ipi G succ(ipi, p2))

(3(xi G succ(iph p2°)) (vr |= Xi)), and 3(xi G succ(^i,P2°))(vr |= Xi)

implies 3(-0 G s-ucc(Gt/?i,p2)) (3(x G succ(ip,p2°))(TT |= %)).

Inductive step for the second lemma:

• (p = (pi A(p2 and <p = <p\\/ <p2

Proof for each of these cases is an inversion of arguments used for
proving the same case in the first lemma.

• Lp = Lpi R<d <p2

First,let |Jo| > d. Then3(-0 G succ(ipiR,<ďp2, p2))(3(x e succ(ip,p2°))
í71" 1= x)) clearly implies 3(^2 e s-ucc(t/?2,P2))(3(x2 e succ(ip2, p2

ol))
(TT |= X2))- Further 3(x2 S succ(<p2, PI))(K |= X2) using induction
hypothesis. Consequently, 3(x G succ{<p\ R<d (/?2, Pi))(vr |= %).

Next,let |2o| < d- Then 3 (^ G succ{tpiR,<ďp>2i p2))(^{x e succ{ip,p2°))
(vr |=x)) implies 3(^2 G succ((^2,P2))(3(x2 e succ(ip2, p2°))(vr |= X2))

1//1
and either 3(-01 G succ(tp\, p2))(3(xi e succ(ipi, p2°))(TT |= xi)) or
3(x G succ(ipi R<d_|j / | i^2,P2))(vr |= x)- Clearly, 3(x2 e succ(<p2, pi))
í71" 1= X2) using induction hypothesis.

First, let 3(-01 G succ(tp\, p2))(3(xi e succ(ipi, p2°))(TT |= xi))- Then
3(xi G succ(ip 1, pi)("7T |= xi)> again using induction hypothesis. Con­
sequently, 3(x G SUCC(LPI R<d <p2, PI))(TT 1= X)-

Next, let 3(x G succ(tp\ R<d_|//| (/?2,P2°))('7r 1= x)- Consequently,

3(x2 e succ((^2, P2°))(vr |= X2) and 3(xi G succ(tpi, p2°)) (vr |= Xi) or
7T |= ipi R < d _ | / 0 | <P2-

35

4. MONITORING OF M I T L <

First, let 3(%i G succ(tp\, p2°))(TT |= XI)- Then using a simple argu­
ment 3(%i G succ((/?i,pi))(7T |= xi) as tfi G MITL<(R<d,F). Conse­
quently, 3(x G succ((^i R<d <p2, Pi))(vr |= x)-

Finally, let TT \= ipi R<d-|/0| <f2- Then again 3(x G succ(ipi R<d < 2̂, Pi))
(*" |= X).

• t£> = F ip i

\j> i
Clearly, 3(ip G s-ucc(F t£>i,p2))(3(x G succ(ip,p2°))(TT |= %)) implies

i//1
either 3ft/> G succ(tpi, p2))(3(x e succ(ip,p2°))(vr |= x)) or 3(x G

succ(F(^i,p^ol))(7r |=x)-
\j> i

First, let 3(-0 G s-ucc((/?i,p2))(3(x G succ(ip,p2°))(TT |= %)). Then
3(x G succ((fi, Pi))(vr |= x) using induction hypothesis. Consequently,
3(x G succ(F (^i, pi))(vr |= x)-

i//1
Next, let 3(x G s-ucc(F ipi,p2°))(ir |= %). Then 3(x G s-ucc(F <^i,pi))
(ir |= x) using a simple argument as <pi G MITL<(R<d, F).

Example
We show that opposite implications to those of Lemma 4.10 do not hold:
1. First, let us consider an MITL< formula ip = (F<w p) U<5 (F<i0 q),
a timed observation sequence pi = ((0,. . .) , ([0,6),...)), and its refine­
ment pa = ((0,0,. . .) , ([0,3), [3, 6), . . .)) . Thensucc(^,pi) = { F<4 q},
succ(ip,p2) = {((F<iop) U<2 (F<wq))A (F<7p), F<7q}, succ(F<7q, p\) =
{F<4g}andsucc((F<7p)A((F<iop)U<2(F<iog)),pi) = {(F<4p)A(F<7q)}.
Clearly, { F<4 q, (F<4 p) A (F<7 q)} does not imply F<4 q.
2. Next, let us consider an MITL< formula if = (G<io p) R<5 (G<io q),
a timed observation sequence pi = (({p, q}, • •.), ([0,6),...)), and its re­
finement p2 = (({p,q},{p,q},...),([0,3),[3,6),...)). Then succ(<p>, pi) =
{ G<4 q}, succ(ip, p2) = {((G<7 q) A ((G<i0 p) R<2 (G<i0 q)), G<7 p) A
(G<7 q)}, succ((G<7 p) A (G<7 q),p%) = {(G<4 p) A (G<4 q)}, and
succ((G<7 q) A ((G<io p) R<2 (G<io <?)), p2) = { G<7 q} after a simplifi­
cation. Clearly, G<4 q does not imply {(G<4 p) A (G<4 q), G<7 q}.

The Lemma 4.10 estabilishes a connection between the validity of a for­
mula from a certain fragment of MITL< on a timed observation sequence
p and its possible refinement. A timed observation sequence can be refined
by dividing an arbitrary interval in two and duplicating respective state in
the underlying observation sequence. For instance in the Lemma 4.10 the

36

4. MONITORING OF M I T L <

timed observation sequence p2 is a refinement of the timed observation se­
quence p\. If p satisfies a formula from MITL<(U<d, G), so does any of
its refinements and if it does not satisfy a formula from MITL<(R<d, F),
neither does any of its refinements.

When evaluating a formula over a timed observation sequence, the func­
tion succ intuitively takes into account the validity of formulas on borders
of the respective intervals only However, as the timed observation se­
quence being examined might not be formula-fine, this may result into an
incorrect answer.

Consequently, we present an alternative definition of the function succ.
On the one hand, it removes the requirement of formula-fineness, but on
the other hand, it introduces obstacles to its practical utilization.

Definition 4.11 Given an MITL< formula ip and a timed observation sequence
p = ((ao, a i , . . .) , (Jo, h, • • •)) we define the function succ*(ip, p) inductively on
the structure ofip as follows.

• succ* (true, p) = true

• succ*(false, p) = false

* / x í true p e so
• succ*(p,p) = <

[false p f. so
* / N í true p <£ so

• succ* (-ip, p) = < , ,
v ' \ false p e so

• SUCC*((fii f\(fi2,p) = {lpl A ^2 | 1pl S SUCC*((fii,p),1p2 G SUCC*(ifi2, p)}

• SUCC*((f i V (f2, P) = SUCC*((f i, p) U SUCC*((f2, p)

• SUCC*(lfl U<dip2,p) =

Uo<í!<d {succ*(f 2, Pl1) AAo<t 2 < t l^cc*(^i ,P Í 2)) if\h\ > d

Uo<tl<|/o| (succ*(<p2, P*1) A Ao< Í2< í l succ*(f i, p*2)) U

((AO<Í I< | J 0 | succ*(ipi, p*1)) A yi U<d_| /o | (p2J otherwise
• succ(ipi R<dip2,p) =

(Ao< t l<d s w c c*(^2,P í l))u

Uo<ti<d (sucď&ufŕ1) /\/\0<t2<tlsucc*(ifi2,Pt2)) if\h\ > d

Uo<*1<|Zo| (succ*(Vi, p*i) A Ao<t2<tl SUCC*(V2, P*2)) U

((AO<Í I< | J 0 | succ*(ifi2, P*1)) A ipi R<d-\i0\ <P2) otherwise

37

4. MONITORING OF M I T L <

Note that for a formula-fine timed observation sequence this definition
collapses into the previous one.

Lemma 4.12 Let <p> is an MITL< formula and p = ((ao, a\,...), (IQ, h, • • •)) a
timed observation sequence. Then p \= <p> 4^3tp e succ*(<p>, p)(p^ |= ip).

Proof The proof follows the same structure as before. Arguments based
on the fact that p is ip-iine are replaced by induction hypothesis using the
definition of succ*(ipi U<d <p2, p) and succ*{<p\ R<d <f2,p)- Despite some
technicalities, the proof is quite simple and we leave it as an exercise for an
interested reader.

•
Although function suae* removes the requirement of formula-fineness,

its practical use is hampered by the potential presence of infinite conjunc­
tions and disjunctions in the resulting formula. A formula with such op­
erators is, at least syntactically, no longer a member of MITL<. However,
for certain fragments of MITL< the presence of such operators can be elim­
inated using the semantics of MITL<. We actually conjecture that any for­
mula resulting from computation of function suae* has an equivalent for­
mula in MITL<. However, a resolution of our conjecture is left as an open
problem.

Alternatively, the problem of online monitoring of an MITL< formula
over a timed observation sequence can be solved using Geilen's algorithm
for deciding MITL< (see [17], Chapter 8). Given a formula <p, the algorithm
builds a timed automata that accepts precisely those timed observation se­
quences which violate ip. Online monitoring is then realized as a computa­
tion of this automata.

In summary, the approach based on formula rewriting can be percieved
as a framework for solving some instances of the monitoring problem. Its
advantage is that it avoids a potentially costly creation of timed automata.
Nevertheless, some instances of the monitoring problem are out of reach of
this approach. To handle these instances algorithms based on the automata-
theoretic approach are the most efficient method known so far.

4.3 Partial observability and measurement inaccuracies

In this section we address two issues. One is related to monitoring of sys­
tems in general and one is exclusively related to monitoring of real-time
systems. In the remainder we assume that Av is a tableau automata (see [17],
page 169) accepting precisely those observation sequences which satisfy (p.

38

4. MONITORING OF M I T L <

Partial observability

The partial observability issue occurs when a system specification, in our case
an MITL< formula, describes a behaviour of unobservable parts of the sys­
tem being verified. States of the tableau automata are labeled by propo­
sitions. To enable partial observability, we simply abstract away from all
unobservable proposition, that is we create a projection of the labeling func­
tion. Then, given a timed observation sequence p and an MITL< formula ip,
we create tableau automata Av and A^v and modify their labeling function
accordingly. Based on results of computations of Av and A^v over p we
state that the following holds.

• Aip accepts p ==> p can be refined and its observation sequence can
be augmented with unobservable propositions such that the resulting
timed observation sequence satisfies if.

• Aip does not accept p ==> no matter how p is refined and its ob­
servation sequence is augmented with unobservable propositions the
resulting timed observation sequence always violate if.

• A-nip accepts p ==> p can be refined and its observation sequence can
be augmented with unobservable propositions such that the resulting
timed observation sequence violates if.

• A-nip does not accept p ==> no matter how p is refined and its ob­
servation sequence is augmented with unobservable propositions the
resulting timed observation sequence always violate if.

Measurement inaccuracies

Measurement inaccuracies are inherent for any measurement of real-time sys­
tem. In the context of the MITL<, both issues can be dealt with using the
automata-theoretic approach. A specification of a real-time system may
contain timing constraints. To verify such a specification it is essential to
measure the actual timing of changes of system state with the highest pos­
sible precision. However, a higher precision introduces a further complex­
ity and it is infeasible to measure the timing precisely for real-time systems.
To avoid this problem, one can abstract away from the precise timing and
use lower and upper bounds approximating the actual timing. Therefore
a change occuring at time close to \/2 could be described as a change oc-
curing sometime between time 1 and 2. In other words, we create an over-
approximation of the actual run.

39

4. MONITORING OF M I T L <

The only obstacle to the application of this simple idea is that the de­
scription of the behaviour being monitored is no longer a single timed ob­
servation sequence but an infite set of timed observation sequences. The
key to make use of the timing abstraction is to represent the infite set of
timed observation sequences as a timed automata. This is easy and can be
done even on-the fly.

Then given a timed automata Ap describing the behaviour being moni­
tored and an MITL< formula p, we test for the emptiness both the intersec­
tion Ap n Ay and the intersection Ap n A-,^. Based on results of the test we
state that the following holds.

• Aip C\Ap = $ = > any potential system behaviour violates p

• Aip C\Ap^$ = > there is a potential system behaviour satisfying p

• A-nip C\Ap = $ = > every potential system behaviour satisfies p

• A-nip C\Ap^$ = > there is a potential system behaviour violating p

40

Chapter 5

Conclusions

"As for the future, your task is not to foresee it, but to enable it."
- Antoine de Saint-Exupéry

In this thesis, we have studied usage of monitoring for the purpose of
the verification. In particular, we have investigated techniques for the for­
mal verification of observed behaviours. As our specification language we
have chosen two temporal logics, Linear Temporal Logic (LTL) and a frag­
ment of Metric Interval Temporal Logic (MITL<). Although the latter can be
viewed as an extension of the former, the techniques for deciding each of
them differ. Therefore we make conclusions for each of them separetely.

As far as monitoring techniques for LTL are concerned, we have pre­
sented an asymptotically optimal algorithm based on the formula rewriting
approach that can be used both for offline and online monitoring. Further
we have estabilished a link to automata-theoretic approach. Lastly, we have
extended the algorithm to provide for partial observability, that is monitor­
ing of a system with unobservable parts.

In the context of MITL<, we have—analogously to LTL—presented an
asymptotically optimal algorithm based on the formula rewriting approach.
Although the algorithm provides for offline monitoring, its applicability to
online monitoring is limited. Consequently, we have pointed out situa­
tions for which the algorithm works. On top of that, we have referred to an
algorithm, based on the automata-theoretic approach, which provides for
online monitoring. Finally, we have described extensions of the latter algo­
rithm that cope with partial observability and measurement inaccuracies.

Future work

This work indicates several directions for future research. First and fore­
most, it is very important to resolve our conjecture about the function succ*
from the end of Chapter 4. We believe that its resolution could provide
a deeper insight into MITL<. Furthermore, its positive resolution would

41

5. CONCLUSIONS

extend the applicability of our algorithm. Next, it would be interesting to
estabilish a link between our algorithm for MITL< and the algorithm based
on automata-theoretic approach. Lastly, we plan to thoroughly evaluate
performance of our algorithms.

42

Bibliography

[1] Rajeev Alur, Tomas Feder, and Thomas A. Henzinger. The benefits of
relaxing punctuality. In Symposium on Principles of Distributed Comput­
ing, pages 139-152,1991.

[2] Rajeev Alur and Thomas A. Henzinger. Real-time logics: Complexity
and expressiveness. In Proc. 5th Logic in Computer Science (LICS), pages
390-101,1990.

[3] Rajeev Alur and Thomas A. Henzinger. Logics and Models of Real-
Time: A Survey. In Real Time: Theory in Practice, volume 600, pages
74-106. Springer-Verlag, 1991.

[4] Jiří Barnat, Luboš Brim, Ivana Černá, and Pavel Šimeček. DiVinE the
distributed verification environment. In 4th International Workshop on
Parallel and Distributed Methods in verification (PDMC), Lisbon, Por-
tuga, July 2005.

[5] Jiří Barnat, Luboš Brim, and Jitka Stříbrná. Distributed LTL model-
checking in SPIN. In Matthew B. Dwyer, editor, 8th International SPIN
Workshop, number 2057 in Lecture Notes in Computer Science, pages
200-216. Springer, 2001.

[6] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial
on UPPAAL. In Marco Bernardo and Flavio Corradini, editors, For­
mal Methods for the Design of Real-Time Systems: 4th International School
on Formal Methods for the Design of Computer, Communication, and Soft­
ware Systems, SFM-RT 2004, number 3185 in LNCS, pages 200-236.
Springer-Verlag, September 2004.

[7] Boris Beizer. Software Testing Techniques. John Wiley & Sons, Inc., New
York, NY, USA, 1990.

[8] Luboš Brim, Ivana Černá, Pavel Krčál, and Radek Pelánek. Distributed
LTL model checking based on negative cycle detection. In Proc. Foun­
dations of Software Technology and Theoretical Computer Science, volume
2245 of LNCS, pages 96-107. Springer, 2001.

43

BIBLIOGRAPHY

[9] Luboš Brim, Ivana Černá, Pavel Moravec, and Jiří Šimša. Accept­
ing predecessors are better than back edges in distributed ltl model-
checking. In Formal Methods in Computer-Aided Design (FMCAD), vol­
ume 3312 of LNCS, pages 352-366. Springer, 2004.

[10] Julius Richard Büchi. On a decision method in restricted second or­
der arithmetic. In Proc. International Congress on Logic, Methodology and
Philosophy Science, pages 1-11. Stanford university Press, 1960.

[11] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Auto­
matic verification of finite-state concurrent systems using temporal
logic specifications. ACM Trans. Program. Lang. Syst., 8(2):244-263,
1986.

[12] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model check­
ing. MIT Press, Cambridge, MA, USA, 1999.

[13] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Intro­
duction to algorithms. MIT Press, 2001.

[14] David A. Duffy. Principles of automated theorem proving. John Wiley &
Sons, Inc., New York, NY, USA, 1991.

[15] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Property
specification patterns for finite-state verification. In Mark Ardis, editor,
Proceedings 2nd Workshop on Formal Methods in Software Practice (FMSP-
98), pages 7-15, New York, 1998. ACM Press.

[16] Marc Geilen. On the construction of monitors for temporal logic prop­
erties. In Workshop on Runtime Verification (RV'2001), volume 55 of Elec­
tronic Notes in Theoretical Computer Science. Elsevier Science Publishers,
2001.

[17] Marc Geilen. Formal Techniques for Verification of Complex Real-time Sys­
tems. PhD thesis, Eindhoven University of Technology, 2002.

[18] Rob Gerth, Doron Peled, Moshe Y. Vardi, and Pierre Wolper. Simple
on-the-fly automatic verification of linear temporal logic. In Protocol
Specification Testing and Verification, pages 3-18, Warsaw, Poland, 1995.
Chapman & Hall.

[19] Gerard J. Holzmann. The SPIN model checker: Primer and reference man­
ual. Addison Wesley, 2004.

44

BIBLIOGRAPHY

[20] Saul A. Kripke. Semantical considerations on modal logic. Acta Philo-
sophica Fennica, 16:83-94,1963.

[21] Orna Kupferman and Moshe Y. Vardi. Model checking of safety prop­
erties. Formal Methods in System Design, 19(3):291-314,2001.

[22] Orna Kupferman, Moshe Y Vardi, and Pierre Wolper. An automata-
theoretic approach to branching-time model checking. Journal of the
ACM, 47(2):312-360, 2000.

[23] Leslie Lamport. Proving correctness of multiprocess programs. IEEE
Transactions Software Engineering, 3(2):125-143,1977.

[24] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Con­
current Systems: Specification. Springer-Verlag, Berlin, January 1992.

[25] Nicolas Markey and Philippe Schnoebelen. Model checking a path
(preliminary report). In Proc. Concurrency Theory (CONCUR'2003),
Marseille, France, volume 2761 of Lecture Notes in Computer Science,
pages 251-265. Springer, August 2003.

[26] A. Prasad Sistla. Safety, liveness and fairness in temporal logic. Formal
Aspects of Computing, 6(5):495-512,1994.

[27] Emanuel Sperner. Ein satz über untermengen einer endlichen menge.
Math. Z., 27:544-548,1928.

[28] Prasanna Thati and Grigore Rosu. Monitoring algorithms for metric
temporal logic specifications. Electronic Notes in Theoretical Computer
Science, 113:145-162, 2005.

[29] Moshe Y Vardi. An automata-theoretic approach to linear temporal
logic. Lecture Notes in Computer Science, 1043:238-266,1996.

[30] Moshe Y Vardi and Pierre Wolper. Automata theoretic techniques
for modal logics of programs: (extended abstract). In STOC '84: Pro­
ceedings of the sixteenth annual ACM symposium on Theory of computing,
pages 446-456, New York, NY, USA, 1984. ACM Press.

45

Appendix A

Description of the appended CD

The appended CD contains source files of this thesis as well as a prototype
implementation of algorithms from Section 3 and 4.

In the directory / t e x there are files chapOl . t e x through chap0 5 . t ex,
and main . t e x that contain KTgX source of this thesis. The bibliography
can be found in a separate file t h e s i s . b i b and the style and extra fonts
from this thesis are in the subdirectory / m i s c .

The directory / p r o t o t y p e contains a prototype implementation of the
following algorithms. The algorithm which uses the function suae and
given an LTL formula ip creates a Buchi automata accepting the language
{w p |= w} and Geilen's algorithm which given an MITL< formula creates
a timed automata accepting precisely those timed observation sequence
which satisfy the formula. The implementation of the latter algorithm is
a work of Gerd Behrman. Both algorithms are implemented in an object-
oriented language Ruby. Ruby interpreter for Windows and Linux can be
found in the directory / i n s t a l l .

46

