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Abstract

The systems we design are increasing in complexity and it is often beyond human ca-

pacity to verify their correctness. Research in formal methods has provided us with

automated tools that can help ensure correctness of a system that is beyond our capabil-

ities to check manually. Nowadays, for a variety of reasons, such tools are applied only

to a very limited number of systems. The broad goal of this thesis is to improve applica-

bility of model checking in design and implementation of general-purpose computer

software.

This thesis seeks to contribute to the state of the art in a number of areas closely

aligned with this goal. Primarily, we describe and implement an interpreter for LLVM

bitcode – a centrepiece of a software model checker. We then introduce a number of

improvements over the basic interpreter: 𝜏 and 𝜏+ reduction to trim state spaces of

threaded programs, heap symmetry reduction to make model checking with dynamic

memory practical, exception handling which allows for veri󰅭ication of realistic C++

code. In order to successfully confront the realities of complex software behaviour,

we propose a language for describing global program state. Both standalone and in

combination with LTL, it aims to be succinct, precise and natural. To further leverage

the unique features available in our explicit-state engine, we suggest a scheme for

abstracting and re󰅭ining LLVM bitcode in a composable manner.

Finally, a vital ingredient in a successful veri󰅭ication tool is the ability to expediently deal

with realistic problems, both in terms of size and complexity. A modern implementation

clearly needs to take advantage of parallel processors: we explore what it takes to do

so and press the state of the art forward in certain areas, obtaining results relevant in

the wider context of general-purpose data structures.

Signi󰅭icant advances have been made in the areas mentioned, even though many issues

are still open and a subject of ongoing research. Most importantly, our key contributions

lead to a practical implementation of a scalable, automated veri󰅭ication tool, DIVINE.

We demonstrate its capabilities by using DIVINE to verify important portions of its own

code base, as well as parts of the underlying standard library.

Keywords

Model checking, LLVM, Explicit-state model checking, Software model checking, Linear
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1 Introduction

The main concern of formal methods in general, and model checking in particular, is

helping to design “correct” systems. Informally, a correct system is one that does the

right thing (i.e. performs the tasks it has been designed to perform) and does it right

(i.e. the result of the performed task is the desired one). Nevertheless, it is dif󰅭icult

to capture these notions even informally – formal speci󰅭ication is still more dif󰅭icult.

Moreover, to formally reason about any system, the system itself needs to be described

in a rigorous, formal fashion.

Usually, when applying formal methods, the correctness requirements are expressed

as a set of properties, laid down in a suitable logic, that the system must satisfy to be

considered correct. This formal description usually originates in a less formal, natural-

language description of safety and behaviour requirements for the device or system in

question. It is (a very important) part of the work of the human veri󰅭ier to ensure that

the informal notion of correctness corresponds to the formal properties used in formal

(whether manual or automated) veri󰅭ication.

In contrast, testing is a lightweight method that dispenses with the need of formal spec-

i󰅭ication and chooses a different set of trade-offs, compared to formal methods. Testing

favours simple procedures, which require less expertise and are cheap to implement.

On the other hand, when using testing alone, a small increase in certainty requires large

(exponential) increase in testing coverage (and hand-in-hand, cost). At low to medium

assurance levels, this exponential increase is offset by the very low cost of a given 󰅭ixed

amount of testing. However, over a certain threshold, the exponential character of the

cost behaviour necessarily dominates.

On the other hand, the cost of applying formal methods has an entirely different cost

characteristic [31]. While the initial investment is high (and therefore, the cost curve

very steep, closely trailing the steep learning curve of formal methods), after a certain

level, it 󰅭lattens out and grows quite slowly.

In many applications, testing provides a very reasonable trade-off: especially in the

light of cost associated to deployment of formal methods. Moreover, the existing tool

support for formal methods is still mostly academic, and adoption of formal methods

in industry is lagging behind testing-based approaches to correctness evaluation.

Despite these issues, the acceptance of formal methods is slowly advancing and they

are increasingly relied upon for real-world systems. For a recent example, let us just

mention [102], a report about replacement of testing with symbolic model checking

in the Intel Core i7 processor design. Moreover, explicit-state model checking of com-

puter programs is known to have been exploited by some high-pro󰅭ile producers of
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critical software components (NASA JPL, the birthplace of the venerable SPIN model

checker [87], among others).

1.1 Model Checking

In full generality, the term model checking describes an automated process of verifying

the fact that a given structure (a model) satis󰅭ies a given logical formula. The formula

needs to be speci󰅭ied in a suitable logic: this could be as simple as propositional logic,

although most often, some kind of temporal logic [64] is used in conjunction with model

checking in practice. Temporal logics allow the user to describe behaviour of a system in

time – which allows useful statements to be made about hardware or software systems.

Indeed, proving (or disproving) properties of software or hardware systems is currently

the most common application of model checking.

Of course, there are certain limitations that need to be imposed on the models for the

model checking to be practically useful. It is required that the model is 󰅭inite, as to

be fully constructible by a computer: this may be especially problematic in case of

software. Nevertheless, there are important classes of software systems that are 󰅭inite,

and therefore where fully automatic model checking is applicable. Moreover, there are

even approaches for model-checking in󰅭inite-state systems, but these are out of the

scope of the proposed thesis – we will only discuss 󰅭inite models in the following.

Even more speci󰅭ically, we will concern ourselves with model checking of properties

given as Linear Temporal Logic (or LTL, for short) formulae. This is one of the temporal

logics that are in current widespread use in model checking: the other being CTL –

Computation Tree Logic and CTL∗ and various subsets of either (in fact, LTL is itself a

subset of the latter). In some cases, special consideration will be given to properties

that can be checked by a simpler algorithm (reachability) than required for full LTL

model checking. In general, safety conditions like absence of deadlocks and absence

of assertion violations fall into this category and are both very attractive targets for

automated, exhaustive checking.

1.2 Parallel Programs

Due to hardware development, parallel programming has become a very important

topic of research. In the current state of the practice, the overwhelming majority of pa-

rallel programs are lock-based: access to shared resources is controlled by acquisition

and release of exclusive locks. The major advantage of this approach is ef󰅭iciency: well-

written lock-based parallel programs can achieve very good scalability, with very little

sequential overhead. The major disadvantage, then, is lack of composability. In fact,

locking is inherently non-composable, a fact that makes testing of parallel programs a

very gruesome matter.

The practical consequences of non-composability are twofold: when implementing

the program, it is hard to control the non-local effects of lock acquisition, and easy to

introduce races or deadlocks. Moreover, testing effort cannot be easily decomposed to
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subsystems, because locking interaction of the different components needs to be tested

as a whole. Therefore, in parallel programs, whole-system testing will often invalidate

the positive testing results of its constituent components: much more often than it is

the case in sequential designs.

Even though testing lock-based parallel programs is hard on the grounds of non-com-

posability of locking alone, another issue compounds the problem, moving it into the

domain of nearly impossible: independent threads of execution can interleave arbi-

trarily, which makes testing results extremely hard to reproduce. Together, these two

problems present an insurmountable barrier to successful testing of parallel programs.

There are basically two options to deal with this problem. The 󰅭irst is to avoid lock-

based parallelism completely, using a different parallel programming paradigm: the

main candidates in this area are data parallelism [83] and (software) transactional

memory [80, 82 and 139]. While data parallelism (as opposed to control parallelism)

is much more robust, its applicability is limited to a certain class of problems. On the

other hand, software transactional memory offers a composable approach to control

parallelism, which in itself is a very promising concept. Unfortunately, an ef󰅭icient,

practically applicable implementation of software transactional memory has proven to

be quite elusive.

The other option in the locking dilemma is to 󰅭ind a suitable substitute for testing that

is more suitable to tackle the problem at hand. The one major candidate is explicit-

state model checking, although it comes with its own set of limitations and problems.

Nevertheless, combined with the high assurance potential of model checking in general,

we believe it can become a viable solution in many cases. Moreover, the opportunity

to apply model checking directly to programs, at a very low level (post-compilation

and, equally importantly, post-optimisation), uncovers new potential for the technique,

while at the same time posing new challenges.

1.3 Model Checking Software

In this thesis, we explore the latter of these two approaches: applying model checking

to parallel programs, in order to verify their correctness, as speci󰅭ied by a set of LTL

properties. We will focus on programs that exhibit control-level parallelism: this is

an area where it has the highest potential value and where few real alternatives exist.

Nevertheless, model checking can be applied more generally to other types of programs,

and we do not preclude any such applications.

A traditional hurdle in applying model checking is the requirement to maintain a sep-

arate model of the system, in addition to the actual implementation. While using a

separate modelling language is advantageous in the early stages of system speci󰅭ication

and design, this advantage is reversed later in the process of implementation. It is an

extremely rare occurrence when a design is 󰅭ixed at some point before implementation

starts and is never revised. In a vast majority of cases, the design will co-evolve as

the implementation progresses: it is in those cases that the requirement to maintain

an accurate model, completely separate from the implementation, becomes a major
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hindrance. On the other hand, if model checking could be applied directly to the imple-

mentation, this problem would be largely mitigated.

In addition to the extraneous maintenance burden, keeping the model and the imple-

mentation separate has another major disadvantage: while design-level bugs represent

a major class of software defects, when control-level parallelism is taken into account,

implementation bugs comprise a class equally important. Naturally, these implementa-

tion-level bugs cannot be uncovered through model checking the design alone.

Therefore, to address these two concerns, it is desirable to apply model checking to

the program directly. Moreover, to further improve the 󰅭idelity of the model checking

process, it is advantageous to apply the model checker as close to the 󰅭inal executable

form of the program as is feasible. This means that the input to the model checker should

have already been through all the code transformations that are routinely done by

compilers as part of code generation and optimisation. While model checking machine

code may be an option, there are nowadays multiple machine-independent, assembly-

level languages that may offer better trade-offs than machine code would.

Of course, applying model checking to programs directly is not devoid of challenges.

The most notorious problem of explicit-state model checking of parallel systems is

the so-called “state space explosion”, pertaining to the fact that the size of the state

space is exponential in the number of parallel processes. It is important to say that

this problem is inherent and cannot, in principle, be “solved”, as it is directly tied to the

interleaving behaviour of parallel programs. However, this does not mean it cannot be

fought, and for practical purposes even defeated. Moreover, the exponential growth

observed in explicit-state model checking is dwarfed by the double exponential growth

that plagues testing.1 In the next chapter, we will survey the existing techniques to 󰅭ight

the state space explosion problem in more detail. For now, we content ourselves with

the assumption that this problem, while important, is not entirely fatal.

1.4 DIVINE

An important part of this thesis is the implementation of a software model checker,

DIVINE2. As outlined in previous sections, model checking is still an expensive under-

taking, and we lack a mature tool which could handle real-world software with a high

degree of automation; DIVINE is a practical contribution toward this goal.

First versions of DIVINE emerged as an experimental vehicle for parallel distributed-

memory model checking of asynchronous systems with the clear motivation to increase

its power over that of sequential model checkers [7]. A modelling language, DVE [140],

1 To thoroughly test a parallel system, one would need to test every possible execution path. Even when we

only account for minimal execution paths (of which, there is a 󰅭inite number in a 󰅭inite-state system), the

number of such minimal execution paths is exponential in the size of the state space, which is in turn expo-

nential in the number of parallel processes. A model checker, on the other hand, only needs to construct the

state space, avoiding construction of paths through that state space.
2 DIVINE is an ongoing open-source project, and up-to-date information, source code and user-level documen-

tation can all be found at http://divine.fi.muni.cz.

http://divine.fi.muni.cz
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was created along with early versions of the tool. At that time, the primary platform

for DIVINE was an MPI-connected cluster, or a network of workstations. However, a

shift in the hardware market, towards SMP systems with signi󰅭icantly larger amount

of memory, had soon become apparent. Early on, the focus in development of DIVINE

moved towards ef󰅭icient use of commodity hardware. The effort to improve ef󰅭iciency on

SMP, shared-memory architectures culminated in the release of DIVINE Multi-Core [11],

based on distributed algorithms [17] adapted for better shared-memory performance.

The distributed and the shared-memory branches have been eventually merged to form

DIVINE 2.0 [18], with the latest stable release on this branch being DIVINE 3.2 [8].

Nowadays, DIVINE is a modern explicit-state model checker, building on high-perfor-

mance algorithms and data structures, offering unparalleled versatility. It scales from a

typical developer’s laptop, up to a high-end compute cluster. It can verify a wide range

of languages, including C and C++:

• LLVM bitcode (suitable for model checking C and C++ code)

• UPPAAL [24] timed automata

• DVE [140] – the original DIVINE modelling language

• user-implemented, compiled models via CESMI3

• MurPHI [56], including symmetry reduction

• CoIn [36], for modelling with component interaction automata

1.5 Organisation of This Thesis

In this thesis, we will discuss a number of topics, all of them important components

in the design and implementation of a modern software model checker. As such, the

techniques presented in this thesis have all been used in the implementation of DIVINE.

Chapter 2 recounts the state of the art in software model checking, explicit-state and

symbolic model checking methods, state space reductions for explicit-state model check-

ing, and the property speci󰅭ication logics that are in use in conjunction with model

checking of software.

Chapter 3 is focused on the implementation aspects of a parallel model checker: ef-

󰅭icient graph traversal, data structures and hardware considerations. Since model

checking is a computationally intensive task, scalable parallelisation is an important

aspect of every practical implementation, on par with algorithmic ef󰅭iciency.

Chapter 4 is concerned with the speci󰅭ics of model checking software written in com-

mon high-level programming languages, leveraging existing compilers and low-level

translation of programs. We describe the LLVM language itself, how C and C++ are

translated into LLVM, how to deal with language runtime libraries and system inter-

faces, how to approach exception handling of high-level languages like C++, and 󰅭inally

3 CESMI has been successfully used to implement a 3rd-party module for veri󰅭ication of Matlab Simulink de-

signs of avionics [6].
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we brie󰅭ly discuss the challenges and speci󰅭ics of counterexample generation in this

context.

In Chapter 5, we argue the importance of state-space reductions, both general and

those speci󰅭ic to model checking of low-level code. We describe the most important

reductions in detail and provide ef󰅭icient algorithms to compute them in the context of

parallel graph traversal.

In addition to reductions (Chapter 6), abstractions discussed in Chapter 7 present a

powerful way to 󰅭ight the state-space explosion problem. We discuss the well-known

CEGAR approach and how to apply it in the context of LLVM veri󰅭ication. An important

aspect of this endeavour is communication between the model checker proper and

the abstraction engine and the representation of counterexamples. We also discuss

the applicability of DIVINE’s LLVM abstraction engine outside of explicit-state model

checking.

Finally, Chapter 8 wraps up the broad spectrum of topics, how each contributed to the

success of DIVINE and maps out directions for possible future research and improve-

ments.

1.5.1 Contribution

Each of the following chapters constitutes an area where this thesis contributes to the

state of the knowledge in the 󰅭ield of formal veri󰅭ication (and falsi󰅭ication). Besides the

summary in Chapter 2, each chapter in some sense improves on the current state of

the art.

We would like to point out that the primary contribution of this thesis cannot be found,

as such, in the pages you are reading: it can be instead found in the source code of the

model checkerDIVINE. While source code is often highly technical and subject to various

language- and architecture-speci󰅭ic limitations, it is still the most rigorous description

(even if not the most accessible) of the ideas presented herein.

Chapter 3

Parallelism

We introduce, verify correctness and quantify the performance of a number of crucial

building blocks: algorithms and data structures. These building blocks allow us to

retain a high level of abstraction in the description of model checking algorithms in

DIVINE, while at the same time offering superior performance. The building blocks also

provide great potential for re-use in other endeavours, outside of model checking.

Chapter 4

LLVM

We show how to build an explicit-state model checker for LLVM. We consider how to

represent memory and how to treat pointers and how to deal with exception mecha-

nisms often used in higher-level programming languages. We also extensively deal with

the support code needed by real-world programs: language runtimes and system and

standard libraries; and with the interface between the model checker and the program

being model-checked (analogous to the interface that the operating system provides to

system libraries).

Chapter 5

Properties

We classify the properties commonly sought in programs and look at how these map to

model checking as provided by DIVINE and especially its LLVM support. We explore the
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combination of LTL properties with software (as opposed to models), a topic largely

ignored in the literature. We introduce a novel approach to specifying such properties

succinctly and intuitively.

Chapter 6

Reductions

We describe a new reduction (𝜏+) tailored to explicit-state model checking of LLVM

bitcode with parallelism, as well as an implementation of heap symmetry reduction

in an environment with unrestricted, untagged pointers. Moreover, we elaborate an

improvement of the pre-existing partial order reduction, suitable for parallel search

algorithms.

Chapter 7

Abstraction

Finally, we propose a novel approach to abstraction in the context of LLVM, as a compos-

able program transformation. This provides us with a framework to easily implement

and evaluate various abstractions in a real-world context. Our approach, just as impor-

tantly, closes the gap between the way we think about abstractions and the way they

are implemented in practice in model checkers.

1.6 Conventions

There are multiple areas where aspects of presentation deserve closer explanation.

We cover such cases together in this section for easy reference. While typographical

conventions should be rather self-explanatory, we do note that paragraphs labelled

as “note” and typeset in a lighter shade of text are reserved for low-level technical

information. Reading such notes is strictly optional.

1.6.1 Plots

The plots in this thesis use a ribbon style, where the central line represents the mean

value and the ribbon around it represents error margins. As explained in Section 3.1.2,

we use bootstrap to obtain con󰅭idence intervals on all measurements. Moreover, since

it is impractical at best to sample the parameter space 󰅭inely enough, we use quadratic

spline interpolation to estimate values between data points. Actual measurements are

displayed as black dots in the plots. The 𝑦 axis is always scaled for best detail, please

always remember to consult 𝑦 markings when comparing plots to each other. We have

strived, on the other hand, that the 𝑥 and 𝑧 axes are consistent across all the plots (over

the same parameter space).

1.6.2 Algorithms

In several places in this thesis, we describe algorithms. It is common that pseudocode

of the algorithm is included for reference in such cases. There is, however, a major

downside to how pseudocode is traditionally used: it cannot be executed, and as a

result, it is far too easy to introduce errors that go unnoticed. We have opted to instead

use a very concise, but executable form for writing down algorithms. The (pseudo)code

found in this thesis is written in the programming language Haskell, and is bundled
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in executable form in an (electronic-only) attachment. While some readers may be

unfamiliar with Haskell, we believe the small subset we use, tailored for high-level

algorithm description, is suf󰅭iciently self-explaining to pose no threat to comprehension.

Nevertheless, there are a few conventions worth mentioning explicitly: ⇐ operator

stores a value (on the right hand side) into a mutable state variable (left hand side),

while the ← syntactic shortcut binds result of a computation to a name – creating

an immutable variable. The Computation A B type describes a computation with

result A and global mutable state B. While it is customary to use set-based notation

in pseudocode, we use lists whenever sets are normally used. The usual operations

(∈, ∪, ∩ and set comprehension) work exactly as they do in sets, the only difference

being the square brackets ([] vs. {}).

In the electronic (PDF) version of this thesis, each algorithm is accompanied by the

symbol you can see to the left of this paragraph. This icon represents an attached

󰅭ile – the Literate Haskell source 󰅭ile, in the case of algorithms. The 󰅭ile attached to

this paragraph is the small Pseudocode.lhs library that all the algorithms require to

function.

note Technically, the algorithms are implemented in terms of a simple monad, built from

a state monad transformer stacked on top of a continuation monad. This makes it

convenient to express control 󰅭low and to keep mutable state, while at the same time

making both these aspects explicit. The mutable state is implemented using records

with fclabels; each time we de󰅭ine mutable state of an algorithm, an implicit call to

mkLabels is placed after the corresponding data de󰅭inition. It is elided in algorithm

presentation as this information doesn’t add any real value.


> {-# LANGUAGE RankNTypes #-}
> module Pseudocode (
>    module Prelude.Unicode,
>    module Control.Applicative,
>    module Control.Monad.State,
>    module Control.Monad.Cont,
>    module Data.List,
>    module Data.Label, update, get,
>    Computation, compute, empty, for, (⇐),
>    S, E, M, (∩), (∪), noop, trace, cat ) where

> import Prelude.Unicode
> import Control.Applicative hiding ( empty )
> import Control.Monad.State hiding ( modify, get )
> import qualified Control.Monad.State as State
> import Data.Label hiding ( get, for )
> import qualified Data.Label as Label
> import Data.List
> import Control.Monad.Cont
> import qualified Debug.Trace

> type S = Int
> type E = (Int, Int)
> type M = ([S], [E], [S], [S])

> x ∪ y = Data.List.union x y
> x ∩ y = Data.List.intersect x y
> x ⇛ y = x >>= y
> x ⇚ y = x =<< y
> (∅) = []
> cat :: (Eq a) => [[a]] -> [a]
> cat = nub . concat

-- (⋂) x = undefined
-- (⋃) x = nub $ concat x

> update l f = State.modify $ \x -> modify l f x
> get l = gets (Label.get l)

> type Computation res state = (res -> StateT state (Cont res) ())
>                                   -> StateT state (Cont res) res

> empty = null
> noop _ = return ()

> compute :: Computation res state -> state -> res
> compute c initial = runCont (evalStateT (callCC c) initial) id

> for :: (Monad m) => [x] -> (x -> m y) -> m [y]
> for = forM

> l ⇐ v = update l (const v)

> trace t x = Debug.Trace.trace (t ++ " " ++ show x) x


alg/Pseudocode.lhs
alg/Pseudocode.lhs
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2 State of the Art

In this chapter, we will survey the best known answers to the questions and challenges

outlined in the Introduction, providing a concise summary, augmented with references

to more detailed review works, as well as to individual technical papers.

2.1 Model Checking

While the concept of model checking is extremely general, we will focus on a speci󰅭ic

subclass – model checking of temporal properties. As far as temporal behaviour is

concerned, the natural structure to use as the model is a Kripke structure [104], a

triple (𝑠0, 𝑆,→) where 𝑠0 ∈ 𝑆 and →⊆ 𝑆 × 𝑆 . The set 𝑆 is a set of “states” (or “worlds”):

each element of this set represents an instant in the execution of the system (or in

the evolution of a world). The single state 𝑠0 represents the initial state of the system

(the real “world”) and → represents the transitions of the system (from one state to

another).

The structure itself corresponds to the featureless branching (and possibly looping)

behaviour of a system. For any practical use, we need to describe the individual states

of the system in more detail. For that, we use a simple propositional calculus: we

introduce a set of propositions true in a given “world”, or a system state. Technically,

we de󰅭ine 𝐿 a set of all possible propositions (or labels), and 𝜓 : 𝑆 ↦ 2𝐿 a function that

describes each of the states in terms of these propositions.

2.1.1 Symbolic vs Explicit

Automated model checking is always based on some sort of a search. The state space of

a system is systematically explored, ensuring that the state space as a whole satis󰅭ies

the properties required.

There are two main broad approaches to model checking temporal properties, distin-

guished by the way system states are represented in the model checker. The simpler

approach is to enumerate all the system states explicitly, storing each as a separate

entity in memory during a search. On the other end of the spectrum lie methods which

represent the entire state space as a symbolic set. The usual set representations range

from BDDs (Binary Decision Diagrams) [38], through propositional formulas [27 and

45], to 󰅭irst order logics with theories [3]. The latter two are usually found in systems

which apply model checking to a certain set of safety properties, which is a strict sub-

set of temporal properties (in the form of the LTL formula 𝒢𝜙 for some propositional

formula 𝜙), while BDDs are often used in conjunction with CTL properties.

The 󰅭irst apparent difference is that of complexity: an explicit-state model checker is a

relatively simple matter, building successor states and storing each, exploring the state

space systematically. A symbolic model checker needs to perform complex symbolic
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manipulation to build its representation. On the 󰅭lip side, the obvious advantage for a

symbolic model checker is its vastly more compact representation of the state space.

Of course, reality is not nearly as simple, the line between the two worlds is not quite

sharp nor straight, and the trade-offs involved are more intricate. In practice, all realistic

model checkers are symbolic to some degree, whether by the virtue of a partial order

reduction, symmetry reduction, or through use of abstractions. On the other hand,

explicit-state control 󰅭low seeps into the more symbolically minded world in form of

“concolic” (portmanteau of concrete and symbolic) methods or bounded-interleaving

symbolic execution [136 and 138].

2.1.2 Automata-based Approach

Contemporary explicit-state LTL model checkers are largely based on a scheme pro-

posed in [150]. The basic idea is to translate a negated LTL property into a Büchi

automaton (which is called a negative claim automaton in this context). This automa-

ton then accepts a language that corresponds to the runs violating the original LTL

property. In itself, this automaton will accept many words – however, when a synchro-

nous product is done with the modelled system, we obtain an automaton accepting

an intersection of two languages: the 󰅭irst one containing all the runs in the original

modelled system, and the second containing those that violate the desired LTL property.

The model checking problem then reduces to verifying that the product automaton

accepts exactly the empty language; moreover, if the language accepted is non-empty,

the (in󰅭inite) accepted words represent the undesirable behaviours (according to the

LTL property used), i.e. a set of counterexamples. Finally, the problem of language

emptiness for Büchi automata is a relatively easy problem: the language is non-empty

iff there is a reachable accepting cycle in the graph of the automaton.

Moreover, the model speci󰅭ication is usually not given as an explicit state graph of the

entire system: this would be, in most cases, rather impractical. The preferred input is in

the form of a set of (usually) small extended automata, augmented with communication

– the full state space of the system is then constructed on the 󰅭ly from this compact

description. Unfortunately, the resulting size of the state space is exponential in the

number of constituent processes.

Now we can identify the two most resource-demanding portions of the actual LTL

model checking: the construction of the full state space from the model, and the search

for reachable accepting cycles. In practice, these two processes are often interleaved

– the construction of the state space is driven by the demands of the accepting cycle

detection algorithm: only the parts that the cycle detection explores are computed, and

only when they are needed.

Quite importantly, this approach to LTL veri󰅭ication is incompatible with most of the set-

based symbolic methods outlined above. It is, however, possible to combine automata-

based LTL model checking with symbolic methods based on abstraction/re󰅭inement.
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2.2 Model Checking Software

The traditional LTL model checkers, as described in Section 2.1.2, rely on a description

of the (parallel, asynchronous) system in the form of extended 󰅭inite automata. This

is usually realised through a special “modelling” language (cf. ProMeLa, DVE, 𝜇CRL,

etc.). Nevertheless, applying model checking to unmodi󰅭ied, or only lightly annotated

software systems written in general-purpose programming languages is extremely de-

sirable. Among other advantages, this approach substantially reduces costs associated

with model checking, which – as outlined in Chapter 1 – is often an expensive under-

taking. This practice is, in some literature, also called code model checking. Tools that

bypass the modelling step, i.e. those, that model-check software directly, remove the

need for a signi󰅭icant part of the specialist work required for model checking (which is

how the cost savings are achieved, along with making the process more straightforward

and less prone to latency). These savings in turn enable wider applicability of formal

methods in general.

A number of advancements have been made in the area of software model checking.

One of the 󰅭irst examples is the support for combining C code with ProMeLa models in

SPIN, which can be used, although with a number of caveats and substantial amount of

extra work, to verify implementation-level properties. Another early approach to the

problem is constituted by automated model extraction [54, 84 and 93]. The ZING [2]

model checker is shipped with automated model extraction tools as well.

More direct approaches, which are in many cases also easier to apply, are embodied

by model checkers based on a particular programming language (or runtime), like

CMC [122], JCat [58], Java PathFinder [151] and MoonWalker [57]. Nevertheless, these

existing solutions to this problem are still somewhat limited in their applicability: most

are tied to a speci󰅭ic programming language, and often even to a speci󰅭ic subset of that

language. On the other hand, even though both Java PathFinder and MoonWalker are,

for most practical purposes, tied to Java and C# respectively, they are in fact targeting

JVM and .NET in general. This means that they can be used with other languages, as far

as these can be hosted by the respective runtime environment. Yet another approach,

pioneered by GMC [106], the GIMPLE Model Checker, is to leverage an intermediate

representation of a particular compiler, in this case GCC. In this case, the downside is

that GIMPLE is not supported as an external interface by GCC, and the required support

infrastructure is more or less internal to GCC.

An important sub-class of these direct approaches is constituted by systems based

on CEGAR ([48], CounterExample-Guided Abstraction Re󰅭inement), like BLAST [81].

Another popular technique for model checking of software is bounded model checking,

which puts an adaptive upper bound on loop unrolling, ensuring 󰅭initeness of the model

checker input [27]. This approach is used by, for example, CBMC [51 and 105], a tool

that applies bounded model checking to C code.

The latest crop of bounded model checkers has made a similar choice as we did inDIVINE,

opting to use the LLVM IR as their input formalism. Two such tools are LLBMC [71] and

NBIS [79]. Both use SMT solvers as their backend.
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Both CEGAR-based and bounded software model checkers primarily deal with open-

ended programs, where a fully non-deterministic environment is assumed, and the

job of the model checker is to ensure the program behaves correctly regardless of the

arbitrary behaviour of the environment. In contrast to this, most LTL model checkers

work with closed programs, that have no unspeci󰅭ied “outside the program” environ-

ment, and as such no input-output behaviour. From a theoretical standpoint, there is no

difference: since all model checkers admit non-deterministic choice as a building block

of the programs under scrutiny, any environment, including fully non-deterministic,

arbitrary-behaviour one, as assumed by the open-ended tools, can be recreated as part

of the program. The technical difference lies in how different tools deal with “wild” non-

determinism arising from such an environment: abstraction-based and bounded sym-

bolic tools are essentially built to deal with this type of behaviour. On the other hand,

explicit-state tools can in theory handle such programs, but in practice even reading a

single integer from the environment will easily overwhelm the capacity of the system.

Hence, even if the distinction is theoretically meaningless, it has substantial practical

consequences.

Besides this section, a fairly complete survey on the state of the art in software model

checking can be found in [152].

2.2.1 LLVM

LLVM (previously also known as the Low-Level Virtual Machine) [113] has been pri-

marily developed as a program compilation framework (both ahead of time and just in

time). Nevertheless, it turned out that the intermediate representation used by LLVM

(an assembly-level, machine-independent language) is an attractive target for other

applications. Additionally, LLVM provides a number of C++ libraries for manipulating

the intermediate representation, making it especially convenient to work with.

While the LLVM assembly is not the only such machine-independent, low-level language

in existence, it appears to be the most suitable for the purpose at hand. While languages

like the JVM and .NET assemblies are tailored for a speci󰅭ic programming language and

its semantics (even though they have been adopted by other language runtimes later),

the LLVM assembly is geared to more closely mimic the actual hardware architectures.

Moreover, the existing support for assembly code manipulation through the LLVM-

provided libraries is a signi󰅭icant advantage over the competition.

Interestingly, the formal semantics of LLVM IR have been partly worked out in [159],

using Coq. The authors used Coq’s code extraction to obtain a veri󰅭ied LLVM interpreter

and compared it to lli as distributed with LLVM itself. Additionally, and more interest-

ingly, they provide tool support for specifying IR-to-IR transformations directly in Coq

(including correctness proofs based on the provided operational semantics), extracting

those transformations and executing them as part of LLVM-based compilation.
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2.2.2 Interpretation

When applying LTL model checking to software, we need to interpret the program under

consideration as a Kripke structure. In fact, this is very simple and straightforward:

the state of the system (an element of 𝑆) is described by the execution state of the

machine running the program: the content of its registers and the memory accessible

to the program. The transition relation then encodes the behaviour of the program: for

all states 𝑎 and instructions 𝑖 in the program, 𝑎 → 𝑏 whenever the program counter

captured in 𝑎 points to 𝑖 and 𝑏 is the result of executing instruction 𝑖 in 𝑏 . For a

sequential, deterministic program, the resulting structure is very boring: it is a linear

sequence of snapshots of the program state, taken after executing each instruction.

However, in a parallel program, multiple program counters may be active at any given

time, and therefore some states 𝑎 may have more than a single successor, making the

structure much more interesting.

With this interpretation in place, the semantics of LTL properties are quite intuitive: the

labels (atomic propositions) are properties of individual program states – they corre-

spond to expressions over the current in-scope variables of the program. The formulae

then, in effect, can make statements about temporal evolution of the values of variables

of the program. If a global variable 𝑇 in a controller for a temperature regulation sys-

tem corresponded to, for example, the temperature measured on a sensor, it would be

certainly sensible to demand 𝒢(𝑇 < 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙). On the other hand, if 𝑖𝑛 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 was a

variable that is set to 1whenever a critical section is entered, and reset to 0when the

critical section is left, we could demand that𝒢ℱ(𝑖𝑛 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 1)∧𝒢ℱ(𝑖𝑛 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 0).

From how the interpretation is built, we can easily observe that the state space is

constructed at an extremely 󰅭ine-grained level, and while this allows us to get very

precise results, it also severely compounds the state space explosion problem outlined

above, placing signi󰅭icant stress on the implementation of the model checker.

2.2.3 Environment and Non-Determinism

In many cases, programs interact with their environment. Any of those interactions

could lead to a number of different outcomes observable by the program, and we

enumerate those as non-deterministic choice. This becomes a major problem quickly,

as the choices compound exponentially and the reachable state space of the program

in󰅭lates in a combinatorial explosion.

While part of this combinatorial explosion is unavoidable, in many practical programs,

most of it will be due to noise, choices mostly irrelevant with regards to the programs’

correctness. A typical example would be message payloads in a reliable network proto-

col: it is important that the message coming in is the same as the one coming out, but

other than this simple fact, the actual data is unimportant. In some cases, the program-

mer will supply this information in some form: in a unit testsuite of the implementation,

the payload will be mostly dummy data. There will be a few cases of “tricky” payloads
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that could interfere with the protocol’s data encoding. However, for the most part, the

payloads would be ‘foo’s and ‘bar’s.

Basically, the programmer has intuitively abstracted away the payload in their testcases.

Unfortunately, we can’t rely on programmers doing this manual abstraction everywhere

and for all kinds of data. While the programmer has unique insight into the structure of

the program that allows him to spot abstraction opportunities, an automated tool has

no such “intuition fairy” at its disposal. In terms of model checking, the programmer

may provide a model for the environment, as part of the program that is given to the

model checker. Despite this, it is desirable that the model checker can deal, at least in

some cases, with open-ended programs, by accounting for any conceivable behaviour

of the environment.

2.2.3.1 Arrays of Bytes

The tools that work with LLVM bitcode have a fairly limited understanding of what is

going on in a program. Data pours in with no obvious structure: the program reads

bytes from a 󰅭ile or a socket, usually in blocks through a 󰅭ixed-size buffer. A faithful

“non-deterministic” simulation of the program’s environment would give a random-

sized block of random bytes at each invocation of the `read` system call (bounded

by the output buffer size, of course). The program will inevitably look at the data,

mostly byte-by-byte and make decisions based on actual values of those bytes. Clearly,

enumerating all those possibilities is extremely expensive, and most of that work is

completely useless as well: vast majority of the inputs will quickly take the program

down a path that rightly rejects the input as garbage.

2.2.3.2 Structured Input

While analysis of “raw programs” is desirable, it is also very ambitious. A middle ground

can be struck by asking the programmer to provide veri󰅭ication “drivers” – basically,

unit tests. However, in a traditional unit test, everything is 󰅭ixed: all inputs are hard-

coded in the test itself. An extension of this approach is to allow unit tests to specify

ranges of values (say, an arbitrary integer between 0 and 10) instead of constants. This

is something real-world programs often do, using various strategies to provide the

inputs – whether by generating random inputs (like QuickCheck [44]), providing all

“small” inputs (using some metric on the inputs; like SmallCheck [135]), using static

analysis to come up with “interesting” cases to test, etc. Of course, it’s also possible to

use a model checker on such “open ended” test cases.

This compromise avoids most of the “garbage” inputs discussed in the previous section.

Yet it’s still easy to write unit tests that cause (exhaustive) model checkers to spin

out of control, or to cause “deep” bugs that elude bounded model checkers, even at

impractical unrolling depths. The favourite type of a bug with these symptoms is a

failure at a boundary condition – over󰅭lowing an integral type, off-by-one errors near

hard-coded application limits like static buffer sizes, message size limits, etc. When
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debugging, programmers will often arti󰅭icially drop these limits to a small number.

However, this usually only happens after a problem is found accidentally – a tool that is

trying to 󰅭ind the problem in the 󰅭irst place can’t rely on the programmer to turn “deep”

problems into “shallow” problems manually.

2.3 Program Semantics

In order to rigorously argue about programs, it is often useful to formalise theirmeaning,

i.e. their semantics. Many different approaches have been invented to formally describe

semantics of programs, and they usually work by assigning particular mathematical

objects to programs. Both operational and denotational semantics follow this pattern,

although they use a markedly different approach.

The difference between operational and denotational semantics mirrors the different

view of programs as either state transformers (imperative programming) or as refer-

entially transparent, possibly recursive expressions (functional programming, rewrite

systems). As such, operational semantics focus on the state transformations involved

in an imperative program, and they map program instructions to (total) functions that

operate on program state. These functions are then most often constructed using infer-

ence rules describing how to transform a particular syntactic element in a programming

language to a function of state.

In contrast, denotational semantics do not explicitly call for program state. In a purely

functional (side-effect-free) language, a (denotational) semantic function (we will write

𝒮 to mean the semantic function4) can assign functions to program expressions, effec-

tively translating the program into operators of the meta-theory. This translation is

compositional: a function assigned to a particular expression of the programming

language is expressed in terms of the functions assigned to its sub-expressions.

While in operational semantics, the values involved in a program are captured explicitly

as part of program state, in denotational semantics these values arise as domains (and

codomains) of the functions assigned to expressions. In a statically typed programming

language, the domains will most often consist of lifted types: say a value of type Word32

will correspond to the domain (set)𝑊32 = {⊥, 0, 1, ..., 232}. A function of type Word32

→ Word32 will correspond to some function 𝑓 : 𝑊32 → 𝑊32. These functions are

syntactically total, since non-de󰅭inedness is expressed using an explicit ⊥ symbol.

If we disregard type information, we can construct a single comprehensive domain

for the entire programming language (including functions). This domain can then

be ordered by “de󰅭inedness”: (42, 15) is more de󰅭ined than (⊥, 15) or (42, ⊥), and

these are in turn more de󰅭ined than (⊥, ⊥) and ⊥. Functions are ordered point-wise:

𝑓 ≥ 𝑔 ⟺ ∀𝑥.𝑓(𝑥) ≥ 𝑔(𝑥). This ordering forms a CPO (complete partial order), with ⊥

as the least element.

4 The parameter of 𝒮 is a program fragment and we will use Oxford brackets when applying 𝒮: eg ⟦𝟸 ∗ 𝟹⟧ =

𝟸 ⋅ 𝟹 = 𝟼. Please note that 𝟸, 𝟹 and ∗ are parts of the programming language, whereas 2, 3 and ⋅ are part

of the meta-theory. Moreover, if there is no risk of confusion as to which semantic function we mean, the

Oxford brackets alone will be used, without the name of the function.
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It is easy to see how to obtain semantics of simple expressions this way. However, a

naive approach for deriving semantics of recursive de󰅭initions only using the inference

rules has a fatal 󰅭law: it fails to terminate, generating an in󰅭inite de󰅭inition (even though

this de󰅭inition is otherwise correct). It is usually desirable that the semantic function

is computable though5, especially where we are interested in automated tools taking

advantage of the semantics.

In order to obtain the requisite algorithm, we only need to realise that for a recursive

de󰅭inition 𝑓 , there is a function𝑔 such that ⟦𝑓⟧ = 𝑔𝜔 (and function𝑔 can be obtained by

using 𝒮 on the right hand side of the recursive de󰅭inition). Then, if 𝑔 is monotonic6, the

function 𝑔𝑖(𝑥) = 𝑔 ∘ 𝑥 is monotonic as well and ⟦𝑓⟧ = 𝑔𝜔
𝑖 (⊥)

7. Since 𝑔𝑖 is monotonic,

𝑓 is obtained as its least 󰅭ixed point and ≥ is a CPO, we know that ⟦𝑓⟧ exists. [146]

This gives us a 󰅭inite description of the semantics, and an algorithm to obtain such

description.

2.3.1 Operational Semantics

As outlined above, operational semantics assign functions from state to state to program

statements. There are three main challenges in formulating this kind of semantics:

expressions, control 󰅭low and environment.

Operational semantics are normally presented, in fact, as a function of tuples (program,

state) – a computational step is allowed to “rewrite” the program8. This ef󰅭iciently deals

with 󰅭irst two problems of the enterprise: expressions are simply rewritten “in situ”,

the same way term rewrite systems like lambda calculus work. The reduction rules

are derived from semantics of the operators of the language. However, this approach

is only applicable to very simple languages and is entirely inadequate for real-world

programming languages. Even though it’s not impossible to express jumps (goto) or

recursion in this style, it is very awkward, and not very transparent. The rewrite rules

become complex and error-prone, and it is hard to verify that the resulting semantics

actually correspond to the intended semantics.

The way rewrite rules for the program portion of the tuple are formulated splits op-

erational semantics into “small step” and “big step”: small step semantics explicitly

construct a sequence of states by only allowing elementary operations to happen in a

single step. A program run corresponds to a long sequence of shallow derivations, each

derivation mandating an atomic rewrite. In “big step” variant, there is only a single

5 In the sense that the description of the semantics of the program can be computed. In other words, the

semantic function in this context goes from the syntax of the programming language to the syntax of the

meta-theory. The meta-theory itself is usually not decidable.
6 Clearly, not all computable functions are monotonic. However, functions arising as semantics of the non-

recursive fragment of many languages are naturally monotonic.
7 ∀𝑥.⊥(𝑥) = ⊥
8 In effect, the program text becomes part of the state and the machine “keeps track” of execution of the pro-

gram by rewriting it. The program text has in a way become a proxy for the program counter.
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derivation tree, and state transitions are implicitly encoded in the derivation tree. Nei-

ther of those styles is suitable for general-purpose imperative programming languages,

although the “small step” style is more useful than the “big step” style. Hence, let’s

consider an evolution of small-step semantics more useful in the real world, modelled

not after an abstract rewriting machine but an abstract von-Neumann-style machine.

In a non-rewriting abstract machine, the “normal” operational approach to expressions

no longer works, for two reasons: the program is now immutable, and all the state of the

program, including intermediate values arising from sub-expressions, need to become

part of the explicit state. Probably the best approach to this is to use three-address

code representation of the expressions. This transformation is very straightforward

and solves both problems: the abstract machine state is reduced to a single datum –

which statement is to be executed next. This corresponds to a program counter as it

exists in many abstract and most real machines. The problem of intermediate values is

solved by assigning a fresh name to each intermediate result, making it explicit.9

In the rewriting-based system, the simple control 󰅭low that can be reasonably captured –

if statements and while loops – are realised straightforwardly. The advantage of that is

that the semantics capture these constructs at a high level. Especially semantics of while

loops are expressed clearly – if the loop condition is true, the body is executed, followed

by a copy of the original while loop. Unfortunately, this only works in strictly structured

programming languages. Using program counters instead is far less intuitive in some

sense, but allows capturing arbitrary control 󰅭low uniformly: conditional branching (if

statements), local jumps (goto), recursion and even exception handling and non-local

jumps (akin to setjmp/longjmp or asynchronous signals). It has the added advantage

of mimicking a compiler more closely (even most modern real-world interpreters shun

term rewriting).10

2.3.2 Environment vs Operational Semantics

The last challenge remaining in formulating operational semantics is the environment.

Both input/output and scheduling in a multi-threaded program are a source of non-

determinism in program behaviour, which is however hard to capture in semantics as

we have de󰅭ined them so far. Computation trees provide one possible answer: each

“small operational step” gives a set of possible result states, instead of just one.11 This

9 This translation can be done at the level of the source text, or it can be made part of the semantic function.

The latter is in some way more “pure”, although it makes the semantic function more complicated. Never-

theless, since LLVM is in fact a form of three-address code, we won’t elaborate this topic any further.
10 In some sense, implementation of a language – be it a compiler or an interpreter – is a description of the

language’s semantics. While it is often bogged down in uninteresting implementation details, it is also an

exceedingly formal description. After all, it can be executed by a computer. We are however interested

in pen-and-paper semantics as a simpli󰅭ication, and as a basis for arguing about programs. A traditional

compiler is too complex for this role. However, see also CompCert [114], a veri󰅭ied compiler for a structured

subset of C. The semantics of the source language and of all the intermediate languages are speci󰅭ied in Coq.
11 This is, in fact, how explicit-state model checkers represent asynchronous systems.
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has a major downside though: a loss of composability – it is no longer possible to derive

semantics of sub-programs and compose them to obtain the semantics of the entire

program. This is a major 󰅭law, and a reason to avoid this style.

Instead, we extend the function that represents program semantics with a second

parameter, representing the environment. The function of program state and the envi-

ronment then works somewhat like an oracle machine: the environment can be queried

for values. Unlike with an oracle though, obtaining a value from the environment also

changes the environment. We could imagine a function like query : 𝐸 → 𝑉×𝐸 , where𝑉

is a suitable domain of program values and 𝐸 is the set of possible environment “states”.

Then, for some program 𝑝 , we have ⟦𝑝⟧ : Σ×𝐸 → Σ×𝐸 . The de󰅭inition of ⟦𝑝⟧makes use

of query to obtain data from the environment; it has no direct access to values from 𝐸 ,

as these are opaque objects. The existence of query is pre-supposed, but its de󰅭inition is

not given, since the representation of the environment is not important from the point

of view of program semantics. The existence of 𝐸 (the set of all possible environments)

is assumed as well.

The use of query in the derivation rules for building 𝒮 would look somewhat like this

(p refers to program text, pc refers to the program counter variable):

p𝜎(pc) ≡ x := read stdin ∧ query(ε) = (v, ε′)

⟨𝜎, 𝜀⟩ ⟶ ⟨𝜎[pc ↦ 𝜎(pc) + 1, x ↦ v], 𝜀′⟩

Besides the explicit manipulation with program counter, this rule doesn’t look so bad.

However, in multi-threaded program semantics, scheduling would also become explicit.

In this case, 𝜎 would need to encode a list of active threads and a 󰅭lag indicating whether

an execution or a scheduling step is active, as well as the thread selected for running. A

scheduling rule would then look roughly like this

𝜎(scheduling) ∧ (t, 𝜀′) = query(𝜀) ∧ t ≤ 𝜎(#threads)

⟨𝜎, 𝜀⟩ ⟶ ⟨𝜎[scheduling ↦ false, thread ↦ t], 𝜀′⟩

Clearly, all computation rules would need to add ¬𝜎(scheduling) to their premises

and set scheduling to true in the resulting state. They would also need to refer to

𝜎(pc
𝜎(thread)

) as the program counter.

Plainly, a system of rules as complex as this, fully spelled out, is rather impractical for

human use, especially for any realistic programming languages. Nevertheless, an extra

level of abstraction can be added fairly easily – a small set of syntactic shortcuts can

be used to write a relatively succinct set of derivation rules, hiding the bookkeeping

related to program counters and thread scheduling. Still, formulation of semantics such

as this is mainly useful in implementing the system – be it a compiler or an interpreter

– and as a part of a model checker.

2.3.3 From Operational to Denotational Semantics

Now that we have formulated operational semantics that act on states (and on environ-

ment), we would like to return to a higher-level view. As outlined earlier, denotational
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semantics assign mathematical objects to programs, in a compositional manner. We

now posses operational semantics that allow us to turn a program statement into a state

transformer and a program into a series of such transformers. Sequences of transform-

ers give rise to sequences of intermediate states, forming execution traces. These traces

are the main subject of our analysis. The semantic function for a program, then, gives

us a set of all possible execution traces – we know that our operational semantics make

it possible to enumerate this set of traces, as long as the program always terminates.

The high-level structure of this semantics is quite important, though, regardless of how

it is obtained. There are many ways to compute and to represent this set of traces,

ranging from a simple graph of possible states (merging identical states both from a

single trace and from multiple traces into a single node), through various symbolic and

approximate representations. We will deal with those in Section 2.4.

Hence, in the spirit (if not the letter) of denotational semantics, the mathematical

object we will assign to programs is a function from an environment (as de󰅭ined in

Section 2.3.2) to a sequence of states (a trace). In this model, the environments are a

generalisation of inputs. By lifting all non-determinism into a parameter, we obtain a

functional description of the program, as opposed to procedural (imperative). This is

intimately connected to how model checkers work in practice.

2.4 Symbolic Methods

We have outlined the basic idea common to all symbolic methods, namely use of a

symbolic representation for a set of system states, in Section 2.1.1. In this section, we

will further explore various representations and the model checking methods based

on these representations.

2.4.1 Binary Decision Diagrams

The 󰅭irst data structure in widespread use for representing sets in symbolic model check-

ing is known as a Binary Decision Diagram (BDD), a compact tree structure describing

a set of bit vectors. Early symbolic model checkers tailored towards veri󰅭ication of

hardware designs applied this simple but ef󰅭icient structure with extreme success [38].

The way this has been exploited is that in the model checker, the set of reachable states

is represented as a single BDD, and the transition function of the system is encoded as

a BDD as well. Finally, encoding the set of initial states and iteratively unioning it with

its own image under the transition function yields the entire reachable state space. A

safety criterion can then easily be checked by evaluating the property over all reachable

states, possibly in every iteration to obtain an on-the-󰅭ly algorithm.

For temporal properties, more elaborate algorithms are required. The logic usually

associated with BDD-based symbolic model checking is CTL, as those model checkers

have been usually targeted at hardware veri󰅭ication. Additionally, hardware models are

usually synchronous, unlike software. In this domain, BDDs are a particularly good 󰅭it,

as they represent logical circuits very well. The main weakness of BDDs, namely integer
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multiplication and arithmetic derived from multiplication, is less relevant in hardware,

as multiplication circuits are complex and as such expensive in terms of silicon – in

contrast to software, where multiplication is ubiquitous.

The main algorithm in use for symbolic CTL model checking is OWCTY [73] – it is a good

󰅭it, since it is readily expressed in terms of set operations. To our best knowledge, the

only symbolic LTL model checking tools that represent the reachable set as aBDDuse the

“liveness as safety” approach [26]: compared to automata-based LTL model checking,

this incurs an additional exponential penalty in the size of the state space. Since state

space size and tractability are only loosely related in symbolic model checking, whether

the extra complexity or whether the compact symbolic representation dominates is

highly model-dependent.

2.4.2 Abstraction & Re󰅭inement

In the software world, BDDs did not yield nearly as much success as with hardware.

Implementation of even basic integer arithmetic in terms of BDDs is very complex and

not very space ef󰅭icient. While integer addition is readily and ef󰅭iciently expressible

in terms of BDD operations, this is not the case for multiplication: in fact, in terms

of BDDs, multiplication is an inherently exponential operation, regardless of variable

ordering [37]. A similar problem exists with other canonical forms, eg. for functions

over bit vectors. Since multiplication is essential in almost all software, it is hard to

imagine relegating it to a second-class status as compared to addition.

Instead, abstractions, and most prominently predicate-based abstractions, have been

widely used in software veri󰅭ication. Even though abstraction-based model checking is

generally regarded as quite successful, it has failed to become a mainstream technol-

ogy in software development. Probably the closest we have seen is Microsoft’s driver

veri󰅭ication toolkit [4]. However, driver development is a niche market in the wider

context of software industry, even if we only consider software written in C and C++. In

Chapter 7, we will explore some of the options that might enable wide-scale abstrac-

tion-based veri󰅭ication of programs; a key ingredient in this effort is taking advantage

of pre-existing technology which works with concrete programs.

2.4.3 Abstract Interpretation

Abstract interpretation is a very general term: it is not particularly constrained to

interpretation in the sense of a program interpreter; instead, it refers to interpretation

as providing semantics to the program. In other words, abstract interpretation does

not change the syntax of a program being interpreted abstractly, but it changes what

the program means, in a way that allows us to infer important insight about the original

or concrete behaviour of the program.

Denotational semantics of a programming language are expressed using a semantic

function (see also Section 2.3), mapping program syntax to appropriate mathematical

objects: usually partial functions. Such partial functions over a partially ordered set
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form themselves a complete partial order (cpo) according to their point-wise “de󰅭ined-

ness”. In case of imperative programs (i.e. the case most interesting for model checking),

these partial functions map from program states to program states.

Abstract interpretation then essentially means replacing the semantic function of a

particular programming formalism with an abstracted version, and arguing about pro-

gram behaviour in terms of the new (abstracted), denotational semantics. In order

for such arguments to be sound, the abstraction must over-approximate the concrete

behaviour of the program. There is a formal relationship between the concrete and

the abstract domains. Let 𝒞 be the concrete semantic function, and𝒜 the abstract one.

Then, 𝒞⟦𝑃⟧ is the concrete semantics of𝑃 , a partial function from some concrete domain

𝐶 to itself. Likewise,𝒜⟦𝑃⟧ is the abstract semantics of 𝑃 . Let 𝑓 = 𝒞⟦𝑃⟧ and 𝑓′ = 𝒜⟦𝑃⟧.

In order to talk about validity of an abstraction – i.e. its ability to give answers that

are relevant in the concrete domain – we need to establish a connection between 𝑓

and 𝑓′. This connection is usually described in terms of two functions between the

abstract and the concrete domain, labelled 𝛼 and 𝛾 , for abstraction and concretisation,

respectively. Together, they describe how to translate concrete values into abstract

values and back again. While at a 󰅭irst glance, we would like 𝛾 ∘ 𝛼 to be an identity, this

would defeat the purpose of our exercise. In fact, even demanding (𝛼, 𝛾) to be a Galois

connection12 is often too stringent, although it can be satis󰅭ied in speci󰅭ic instances

(namely those where best abstractions exist). To guarantee that a particular abstraction

is over-approximating, it is enough that (𝑓 ∘ 𝛾)(𝑥) ≤ (𝛼 ∘ 𝑓′)(𝑥) (where 𝑥 is taken from

dom(𝑓′)).

While some analysis tools are concerned (in addition to these simple criteria) about

the existence and computability of 󰅭ixed points in the abstract domain (in order to

summarise loops or recursion) we are not directly interested in those issues. A future

extension of this work may entail more elaborate analysis of recursive program con-

structs in order to improve the ef󰅭iciency and/or precision of the abstraction. With this

in mind, we will generally try to use abstractions that have the requisite properties –

moreover, most research to date deals with such abstractions.

2.4.4 Symbolic Execution

In the domain of testing, there is a related trend for symbolic evaluation in place of

concrete (or explicit) execution. The problem formulation in testing is somewhat dif-

ferent from that of model checking – in the case of symbolic execution, the goal is to

construct a set of inputs for testing that cause all branches to be explored [52]. To this

end, a program is evaluated with input symbolic values and whenever branching is

encountered, the set is split using the branching conditional into two, each causing

one of the branches to be taken (in some cases, either of those sets can turn out to be

empty).

12 I.e. requiring that ∀𝑎, 𝑏.𝛼(𝑎) ≤ 𝑏 ⇔ 𝑎 ≤ 𝛾(𝑏), or, in other words, that 𝛼 and 𝛾 are adjoint.
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The input value sets are usually represented each by a set of symbolic constraints on

input variables, effectively implementing a speci󰅭ic kind of abstract interpretation. In

the context of LLVM, KLEE [39] is an example of a tool based on symbolic execution,

automatically generating test cases ensuring high coverage.

Clearly, since symbolic execution considers each execution path separately, it has to

deal with exponentially many paths through the program, resulting in a so-called path

explosion. Various methods for dealing with this problem have been proposed, in-

cluding composability and use of SMT solvers [1], parallelisation [142] and directed

search [116].

2.4.5 Bounded Model Checking

A major renaissance of symbolic methods in model checking coincides with advances

in satis󰅭iability checking: SAT and later SMT solvers had become suf󰅭iciently powerful

to make a formula-based symbolic representation feasible. However, bounded model

checking constitutes a marked departure from the earlier exhaustive approaches: a

straightforward bounded model checker cannot give a positive answer unless all the

loops in a program are bounded by a fairly small constant.

Clearly, bounded model checking can be augmented to make it possible to get a positive

answer for correct programs that execute endless (or very long) loops. Many heuristics

have been invented and implemented to eg. infer loop invariants – and with the right

invariant, the loop can be replaced by a 󰅭inite formula in construction of the SAT/SMT

representation, instead of its (possibly in󰅭inite) unrolling.

2.4.6 Set-based Model Checking

Yet another symbolic approach to model checking of programs is closely related to ex-

plicit-state model checking but builds on the ideas from early symbolic model checkers.

Namely, the gist of the technique is to follow the same exact, exhaustive procedure

as an explicit-state model checker would, but when possible, take advantage of regu-

larity in data. This is especially useful for open programs – those that read arbitrary

input data, from a possibly large domain. In those cases, it is easy to establish a clear

relationship between a large number of states: namely those that only differ in the

value of variables that somehow depend on the input. The idea is to 󰅭ind a compact

encoding for sets of values which also admits ef󰅭icient computation of their images

under operations encountered in programs. Equipped with such a set representation,

a large number of related states can be replaced by a single state, where some variable

values are represented as sets [5], and operations on these sets are carried out in bulk.

Additionally, when a value of particular variable affects program control 󰅭low, it must be

possible to prune the set based on that particular control 󰅭low decision – if a program

enters a then block of a conditional statement, guarded by, say 𝑥 < 5, the set represen-

tation of 𝑥 at that point must be intersected with set of all 𝑥 < 5. For this reason, it

is additionally required that such intersections can be ef󰅭iciently computed. Finally, it
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must be possible to ef󰅭iciently compare such sets: depending on a particular model

checking algorithm, either equality or subsumption may be required.

The large number and often con󰅭licting nature of those requirements makes it particu-

larly hard to 󰅭ind suitable set representations. However, as long as the bulk (set image)

operations are signi󰅭icantly faster than computing the image “one by one” (by applying

the primitive operation to each set element and accumulating the results) and as long

as the sets represented this way are signi󰅭icantly more compact than a list of elements

would be, this approach can save considerable resources. For many common domains,

fully explicit representation of all their possible values is prohibitively expensive: ap-

plication of this set-based approach can boost the chances of successful veri󰅭ication

whenever arbitrary values from large domains enter the computation.

2.5 Explicit Methods & Scalability

Explicit-state model checking techniques, while very appealing due to their full automa-

tion and simplicity, have serious scalability limits if implemented naively. Even though

computer hardware is advancing rapidly, automatic model checking can easily exceed

the capacity of a single computer, or even a sizeable cluster. Many approaches have

been invented to 󰅭ight this scalability problem, although they are often hard to combine

and such combinations are subject of ongoing research. Moreover, the scalability issue

has two related, but still separate aspects: space and time requirements.

There are two basic approaches to improve memory scalability of model checking to

larger systems: making the model smaller (which comprises state space reductions [127

and 157] and abstractions [49]) and making the capacity of the model checker bigger

(which comprises distributed memory and clusters [41, 43 and 75], leveraging external

memory like rotational hard drives or solid-state technology [19], state space compres-

sion [76 and 86], or combinations thereof [20]). A more complete survey of the state

of the art in memory scalability of explicit-state model checking may be found in [126].

While the runtime aspect can bene󰅭it from the memory-oriented optimisations listed

above, the effect may not be as pronounced, or may even be reversed by increase in

computational complexity and/or overhead. We have conducted intensive research

of using shared-memory parallelism for improving runtime performance of the model

checker DIVINE, both in terms of improved algorithms [15] and improved engineer-

ing [9]. Additionally, [111] comprises a substantial, recent collection of material on

scalability of explicit-state model checking on parallel shared-memory machines.

In addition to the above techniques, a number of heuristic approaches have been pro-

posed, that cannot give a de󰅭initive answer to the veri󰅭ication problem, but, using sig-

ni󰅭icantly reduced computational resources, can give a “very probably correct” answer.

For veri󰅭ication purposes, hash compaction [143 and 156] is the most suitable such

heuristic, with the additional advantage of allowing us to quantify the margin of error.

Other, more space- or time-ef󰅭icient techniques exist which are more suitable for falsi󰅭i-

cation efforts (“bug hunting”), including bitstate hashing [85], heuristic searches [63]

or random walks [141].
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2.5.1 Parallelism and Distributed Memory

Both these approaches serve to increase the raw power available to the model checker,

in terms of computing power and available fast random-access memory, and that way,

broaden the scope of models that can be successfully veri󰅭ied. However, the approach

is not without its own problems and challenges. The best sequential algorithms for

implementing an automata-based LTL model checker (primarily Nested DFS) cannot

be fully parallelised, being based on depth-󰅭irst postorder [132]. This led to the devel-

opment of a number of different algorithms, with different trade-offs, that can be used

in distributed-memory systems – the main rationale was that access to more powerful

hardware will outweigh the sequential disadvantage of these algorithms. The current

state of the art parallel (and distributed) algorithm for automata-based LTL model

checking is an improved variant of explicit-state version of One-Way Catch Them Young

(OWCTY) [15], which is in turn based on earlier parallel algorithms [33 and 42]. More

recently, speculative parallel execution of Nested DFS (Nested DFS) on shared-memory

parallel hardware has seen substantial success in the model checking community, in

the form of MC-NDFS [69], CNDFS [68] and related algorithms. Finally, a special case of

NestedDFS for a 2-core computer can achieve non-speculative parallelisation [89]. How-

ever, none of the parallel Nested DFS modi󰅭ications can be directly used for distributed

LTL model checking.

2.5.2 Compression

An important technique that can contribute to memory ef󰅭iciency of explicit-state mem-

ory is (lossless) state space compression. The oldest and simplest method was to use

a generic data compression algorithm (Huffman coding, arithmetic coding, etc.) to

compress individual state vectors before storing them into memory [76 and 90]. These

approaches only minimally exploit the redundancy between different states, which is

usually much higher than the redundancy within a single state vector.

In this respect, a better method has been proposed in [86], where the state space vector

is decomposed and each slice of the vector is hashed separately. This exploits the fact

that many state vectors contain parts that are identical and also much longer than a

single pointer – hence, storing a pointer to a separately hashed slice is more memory-

ef󰅭icient than storing the duplicated area repeatedly. While this idea is in a way a spe-

cialisation of otherwise very generic and well-known dictionary-based compression

(as employed by the commonly used LZ77 [160] algorithm), it has some special prop-

erties that make it more interesting for model checking: namely, the construction of

the “dictionary” makes it easy and ef󰅭icient to hash the compressed states and compare

them for equality – neither of those steps needs to decompress states already stored.

The one-level scheme proposed in [86] has been improved upon by [28], making

it fully recursive. It also removes the requirement that the compression algorithm

knows speci󰅭ics about the state vector layout. This recursive approach has been further
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adapted for parallel model checking in [110]. One downside of this implementation is

a requirement for a 󰅭ixed-size, pre-allocated hash table.

We use a similar scheme, but we re-introduce optional state vector layout awareness

into the compressor, we use generic 𝑛-ary trees instead of binary and we use resizing

hash tables in the implementation. More details about our approach can be found in

Section 3.6.

2.6 Algorithms for Accepting Cycle Detection

An ef󰅭icient parallel solution of many problems often requires approaches radically

different from those used to solve the same problems sequentially. Among classical

examples are list rankings, connected components, and depth-󰅭irst search in planar

graphs.

In the area of LTL model checking, the best known enumerative sequential algorithms

based on accepting cycle detection are the Nested DFS algorithm [55 and 92] (imple-

mented, e.g., in the model checker SPIN [87]) and SCC-based algorithms originating in

Tarjan’s algorithm for the decomposition of a graph into strongly connected compo-

nents (SCCs) [145]. However, both algorithm types rely on the inherently sequential

depth-󰅭irst search post-order. This property of the algorithms makes them dif󰅭icult

to adapt to parallel architectures. The SPIN dual-core algorithm [89] is a special case,

where the nested (second) search is independent of the outer (󰅭irst) search. Neverthe-

less, each of the searches is, in itself, executed serially – therefore, the algorithm cannot

be generalised to more than 2 cores. For distributed-memory model checking, different

techniques and algorithms are needed. While in shared memory, the CNDFS algorithm

is quite successful, distributed-memory algorithms executing in shared memory are

competitive, offering a different set of trade-offs.

First, let us de󰅭ine a concise way to describe the input and output of an accepting cycle

detection algorithm:

def. 2.1 The accepting cycle problem instance𝑀 is a tuple (𝑉, 𝐸, 𝐴, 𝐼)where𝑉 is a set of vertices

(states), 𝐸 ⊆ 𝑉 × 𝑉 is a set of edges (transitions), 𝐴 ⊆ 𝑉 is a set of accepting states and

𝐼 ⊆ 𝑉 is a set of initial states. ■

Further in this section, we will discuss reachability analysis, then proceed to the “staple”

sequential algorithm, Nested DFS, and its multi-core adaptations. Finally, we will look

at some of the most successful distributed-memory parallel LTL algorithms available:

MAP and OWCTY.

2.6.1 Reachability Analysis

Unlike LTL model checking, reachability analysis is a veri󰅭ication problem for which an

ef󰅭icient parallel solution is available. The reason is that the exploration of the state

space is independent of the search order. This makes the algorithm easy to implement
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on parallel architectures with relatively good ef󰅭iciency out of the box (assuming that

ef󰅭icient parallel primitives for given architecture are correctly employed – we will

discuss these in more detail in Chapter 3).

alg. 2.1 Reachability can be expressed as a simple stateful algorithm over sets. Its state can be

captured by two sets, open and closed:

data C = C { _open ∷ [S], _closed ∷ [S] }

The main procedure is a simple 󰅭ixed-point loop. While it could be implemented by

keeping two copies of the “closed” set and compare them for equality after each iteration,

this is less ef󰅭icient than keeping an explicit “open” set (even more-so in practical

implementations, where the open set is usually represented as a queue). When the open

set becomes empty, the algorithm escapes the loop by invoking the “done” continuation.

reachability' ∷ M → Computation [S] C

reachability' m@(vs, es, _, is) done =

forever $ do

c ← get closed

o ← get open

when (empty o) $ done c

closed ⇐ (o ∪ c)

open ⇐ nub [ s | (v, s) ← es, v ∈ o, s ∉ c ]

At the outset, we set the open set to be the set of initial states and the closed set starts

out empty:

reachability ∷ M → [S]

reachability m@(_, _, _, is) = compute (reachability' m) $ C is []

2.6.2 Nested DFS

Nested DFS is the staple sequential algorithm for accepting cycle detection, and as such,

for explicit-state LTL model checking (cf. Section 2.1.2). The algorithm proceeds by

󰅭irst exploring the graph from its initial vertices in a depth-󰅭irst order. Upon backtrack-

ing through an accepting state, a nested search is started: this nested search uses its

own closed set, which is shared by all instances of the nested search, but not with the

main (outer) search. This closed set is usually implemented as a single-bit 󰅭lag in the

representation of a vertex (the same technique is used for the outer search, giving

theoretical overhead of 2 bits per vertex, although achieving this overhead in practice

is not trivial due to memory layout issues).


<!-- To load this file into GHCi, you also need the file "Pseudocode.lhs",  --
  -- which is available in the attachment in Section 1.6                    -->

Reachability can be expressed as a simple stateful algorithm over sets. Its
state can be captured by two sets, open and closed:

\starthiding

> {-# LANGUAGE TemplateHaskell, UnicodeSyntax, RankNTypes #-}
> module Reachability( reachability ) where
> import Pseudocode

\stophiding

> data C = C { _open ∷ [S], _closed ∷ [S] }

\starthiding

> mkLabels [ ''C ]

\stophiding

The main procedure is a simple fixed-point loop. While it could be implemented
by keeping two copies of the “closed” set and compare them for equality after
each iteration, this is less efficient than keeping an explicit “open” set
(even more-so in practical implementations, where the open set is usually
represented as a queue). When the open set becomes empty, the algorithm escapes
the loop by invoking the “done” continuation.

> reachability' ∷ M → Computation [S] C
> reachability' m@(vs, es, _, is) done =
>   forever $ do
>     c ← get closed
>     o ← get open
>     when (empty o) $ done c
>     closed ⇐ (o ∪ c)
>     open ⇐ nub [ s | (v, s) ← es, v ∈ o, s ∉ c ]

At the outset, we set the open set to be the set of initial states and the
closed set starts out empty:

> reachability ∷ M → [S]
> reachability m@(_, _, _, is) = compute (reachability' m) $ C is []
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alg. 2.2 Most graph algorithms are stateful, and Nested DFS is not an exception. The state of the

algorithm is captured by the following data type:

data C = C { _c_inner ∷ [S], _c_outer ∷ [S], _seed ∷ Maybe S }

We keep two “visited” sets, one inner and one outer, and possibly a seed value (it is

initialised at the outset of the nested search). The main computation of the search

just runs the outer phase from each initial vertex in turn. If no sub-search invokes the

“done” continuation, the search has completed without discovering an accepting cycle

and returns Nothing:

ndfs' ∷ M → Computation (Maybe S) C

ndfs' m@(vs, es, as, is) done = do for is outer; return Nothing

both phases of the search have the same structure, the only difference being that the

outer search does its check in the “post” position (since the search is depth-󰅭irst, this

means in the DFS post-order), while the inner search runs its check (“has an accepting

cycle closed?”) in pre-order.

where

visit c pre post (v ∷ S) = callCC $ \skip → do

pre v

seen ← get c

when (v ∈ seen) $ skip ()

c ⇐ (seen ∪ [v])

sequence [ visit c pre post s | (v', s) :: E ← es, v ≡ v' ]

post v

Whenever the outer search encounters an accepting state, it sets the seed and runs the

inner search.

outer = visit c_outer noop $ \v →

when (v ∈ as) $ do

seed ⇐ Just v

visit c_inner inner noop v

Finally, the inner search short-circuits the computation by invoking the “done” contin-

uation if it 󰅭inds an accepting cycle. This makes the algorithm “on the 󰅭ly”, arranging

for an early termination when a counterexample is found. Please note that in actual

implementations, the inner search may be made more ef󰅭icient by checking whether it

has encountered a state that is on the search stack of the main (outer) search.


<!-- To load this file into GHCi, you also need the file "Pseudocode.lhs",  --
  -- which is available in the attachment in Section 1.6                    -->

Most graph algorithms are stateful, and Nested DFS is not an exception. The
state of the algorithm is captured by the following data type:

\starthiding

> {-# LANGUAGE TemplateHaskell, UnicodeSyntax, ScopedTypeVariables #-}
> import Pseudocode

\stophiding

> data C = C { _c_inner ∷ [S], _c_outer ∷ [S], _seed ∷ Maybe S }

\starthiding

> mkLabels [ ''C ]

\stophiding

We keep two “visited” sets, one inner and one outer, and possibly a seed value
(it is initialised at the outset of the nested search). The main computation of
the search just runs the outer phase from each initial vertex in turn. If no
sub-search invokes the “done” continuation, the search has completed without
discovering an accepting cycle and returns `Nothing`:

> ndfs' ∷ M → Computation (Maybe S) C
> ndfs' m@(vs, es, as, is) done = do for is outer; return Nothing

both phases of the search have the same structure, the only difference being
that the outer search does its check in the “post” position (since the search
is depth-first, this means in the DFS post-order), while the inner search runs
its check (“has an accepting cycle closed?”) in pre-order.

> where
>   visit c pre post (v ∷ S) = callCC $ \skip → do
>     pre v
>     seen ← get c
>     when (v ∈ seen) $ skip ()
>     c ⇐ (seen ∪ [v])
>     sequence [ visit c pre post s | (v', s) :: E ← es, v ≡ v' ]
>     post v

Whenever the outer search encounters an accepting state, it sets the seed and
runs the inner search.

>   outer = visit c_outer noop $ \v →
>     when (v ∈ as) $ do
>       seed ⇐ Just v
>       visit c_inner inner noop v

Finally, the inner search short-circuits the computation by invoking the “done”
continuation if it finds an accepting cycle. This makes the algorithm “on the
fly”, arranging for an early termination when a counterexample is found. Please
note that in actual implementations, the inner search may be made more
efficient by checking whether it has encountered a state that is on the search
stack of the main (outer) search.

>   inner v = do
>     visited ← get c_inner
>     Just s  ← get seed
>     when (s ∈ visited ∧ v ≡ s) $ done (Just v)

Finally, the entire Nested DFS procedure simply consists of running the
computation with empty “visited” sets and an empty seed.

> ndfs ∷ M → Maybe S
> ndfs m = compute (ndfs' m) $ C [] [] Nothing
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inner v = do

visited ← get c_inner

Just s ← get seed

when (s ∈ visited ∧ v ≡ s) $ done (Just v)

Finally, the entire Nested DFS procedure simply consists of running the computation

with empty “visited” sets and an empty seed.

ndfs ∷ M → Maybe S

ndfs m = compute (ndfs' m) $ C [] [] Nothing

2.6.3 Dual-Core Nested DFS

The paper [89] presents an extension of Nested DFS to two cores, on the observation

that once a nested search is entered, it cannot backtrack into the main search, and

hence can be safely executed in parallel. This algorithm is available in DIVINE, but only

used if explicitly requested, using divine verify --nested-dfs -w 2.

The algorithm is a straightforward modi󰅭ication of the sequential Nested DFS, where

the call of the inner search is implemented in terms of a promise that is processed in

parallel while the main search continues. There is only one thread that delivers on

promises created in this way.

2.6.4 CNDFS

The CNDFS algorithm represents a convergent evolution of two earlier multi-threaded

algorithms based on nested depth-󰅭irst search, LNdfs [108] and ENdfs [69]. While

the original algorithms are fairly complicated, the combined algorithm is surprisingly

simpler than either of its predecessors. A yet earlier idea is to run a number of non-

synchronised, randomised instances of Nested DFS on the same graph. In the case

where there is no counterexample (accepting cycle) in the graph, this scheme does not

improve anything – it does however lead to improvements in cases where accepting

cycles are present in the graph. Since depth-󰅭irst searches are subject to “luck” – they

may descend into a deep part of the graph where there are no counterexamples if

they are “unlucky” or conversely to a shallow area with a counterexample (if they are

“lucky“). The randomisation in this unsynchronised, swarm approach [91] helps to push

the odds of at least one search becoming lucky higher. Once any of the searches hits a

counterexample, the entire swarm can be stopped.

The approach of both LNdfs and ENdfs is similar to the swarm approach, but both these

algorithms try to also share some work in cases where there is no counterexample in

the state space. Where the LNdfs approach concentrates on sharing results of the nested

search – avoiding multiple nested visits of a particular area of the graph, possibly prun-

ing the outer search in late-coming threads as well; conversely the EMdfs approach tries
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to share the results of the outer visit by speculatively sharing the results of computing

the post-order and detecting cases where it was violated by the reordering, which are

then repaired. While a naive combination of both algorithms, dubbed NMCNdfs [109],

combines their strengths (where work is shared successfully by multiple threads) it

also combines their weaknesses, resulting in a very complex and a relatively memory-

intensive algorithm (requiring nearly a full byte of 󰅭lags per state per thread).

A better algorithm13 can be obtained by replacing the repair procedure from EMdfs by a

wait. Whenever a nested search is launched, since it may be running out of post-order,

it could encounter a state that was not yet visited in the outer search. In those cases,

instead of proceeding and trying to repair the post-order later, the algorithm simply

waits for those states to be marked as visited in a nested search by another thread –

clearly, there must be a thread to do so, since the current seed is out of post-order and

this must have been caused by another thread. That thread will therefore also run the

nested search on those (earlier in the post-order) states.

The 󰅭inal algorithm, CNDFS, is presented in more detail in [68], along with detailed

correctness and termination proofs.

2.6.5 OWCTY

The next algorithm is called One-Way Catch Them Young – or OWCTY for brevity. It has

been introduced for explicit-state model checking in [42], and is the main multi-core

LTL algorithm in DIVINE (with later extensions, as discussed in Section 2.6.8). The

algorithm is executed in passes, each of them consisting of a number of steps.

The scheme of the main loop basically describes how to convert any simple cycle detec-

tion algorithm into an algorithm for accepting cycle detection. The usual simple cycle

detection algorithm employed here is based on topological sort. The elimination step

uses this algorithm to remove all nodes that do not lie on cycles. Of course, the cycle

detection algorithm does not discriminate accepting and non-accepting cycles, which

is why we need to also exclude states that are not reachable from an accepting state:

these clearly cannot lie on an accepting cycle.

alg. 2.3 The (mutable) state of the algorithm can be kept down to a single set of states.

data C = C { _s ∷ [S] }

The main algorithm loop executes the passes until a 󰅭ixed point is reached. The result

is a set of states that, if not empty, contains an accepting cycle.

13 At least as far as model checking is concerned, since we only have experimental evaluation to back up the

relative performance of various parallel algorithms for accepting cycle detection.


<!-- To load this file into GHCi, you also need the file "Pseudocode.lhs",  --
  -- which is available in the attachment in Section 1.6 and                --
  -- "Reachability.lhs" from Algorithm 2.1.                                 -->

The (mutable) state of the algorithm can be kept down to a single set of states.

\starthiding

> {-# LANGUAGE TemplateHaskell, UnicodeSyntax, ScopedTypeVariables #-}
> module OWCTY where
> import Pseudocode
> import Reachability

\stophiding

> data C = C { _s ∷ [S] }

\starthiding

> mkLabels [ ''C ]

\stophiding

The main algorithm loop executes the passes until a fixed point is reached. The
result is a set of states that, if not empty, contains an accepting cycle.

> owcty' ∷ M → Computation [S] C
> owcty' m@(vs, es, as, _) done = forever $ do
>   s₁ ← get s
>   let s₂ = reachability (vs, es, as, s₁)
>   when (empty $ s₂ ∩ as) $ done []
>   s₃ ← callCC $ elimination s₂ es
>   when (s₂ ≡ s₃) $ done s₂
>   s  ⇐ (s₃ ∩ as)

The elimination algorithm (implemented using topological sort, as mentioned
above) is as follows:

> elimination ∷ ∀s. [S] → [E] → Computation [S] s
> elimination vs es done = do
>     when (empty tail) $ done vs
>     elimination [ v | v ← vs, v ∉ tail ] es done
>   where tail = [ t | t ← vs, empty [ () | x ← vs, (x, t) ∈ es ] ]

At the outset, we set the open set to be the set of initial states and the
closed set starts out empty:

> owcty :: M → [S]
> owcty m@(_, _, _, is) = compute (owcty' m) $ C is
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owcty' ∷ M → Computation [S] C

owcty' m@(vs, es, as, _) done = forever $ do

s₁ ← get s

let s₂ = reachability (vs, es, as, s₁)

when (empty $ s₂ ∩ as) $ done []

s₃ ← callCC $ elimination s₂ es

when (s₂ ≡ s₃) $ done s₂

s ⇐ (s₃ ∩ as)

The elimination algorithm (implemented using topological sort, as mentioned above)

is as follows:

elimination ∷ ∀s. [S] → [E] → Computation [S] s

elimination vs es done = do

when (empty tail) $ done vs

elimination [ v | v ← vs, v ∉ tail ] es done

where tail = [ t | t ← vs, empty [ () | x ← vs, (x, t) ∈ es ] ]

At the outset, we set the open set to be the set of initial states and the closed set starts

out empty:

owcty :: M → [S]

owcty m@(_, _, _, is) = compute (owcty' m) $ C is

It can be seen that there is a reasonable amount of available parallel work: each state in

𝑡𝑎𝑖𝑙 can be processed independently of all the others in each iteration. Unfortunately,

there is only limited parallelism available across the iteration boundary – we have to

wait till all predecessors of a state are processed before we can process the given state.

Looking at serial complexity of the algorithm, we should discuss two cases: a weak

graph, and an arbitrary graph. For the weak case, we ought to use a different main

loop. In a weak graph, there are no cycles that would contain both accepting and

non-accepting states – therefore, non-accepting states can be automatically discarded

from cycle detection: only a single pass of reachability needs to be done through non-

accepting components (to detect the possible neighbouring accepting components).

For the accepting components, we 󰅭irst do a single reachability pass to discover all

the vertices belonging to the given component and when this is done, execute a single

elimination pass on that component. The component contains an accepting cycle iff

the elimination pass returns a set of vertices that is a proper subset of the component’s

vertex set.

alg. 2.4 Unlike most algorithms for accepting cycle detection that we have presented here,

OWCTY for weak graphs is a linear algorithm that operates in a single pass. Since we


<!-- To load this file into GHCi, you also need the file "Pseudocode.lhs",  --
  -- which is available in the attachment in Section 1.6 and                --
  -- "Reachability.lhs" from Algorithm 2.1.                                 -->

Unlike most algorithms for accepting cycle detection that we have presented
here, OWCTY for weak graphs is a linear algorithm that operates in a single
pass. Since we re-use the elimination algorithm from \inalg{owcty}, the
formulation of weak OWCTY is extremely simple:

\starthiding

> {-# LANGUAGE TemplateHaskell, UnicodeSyntax, ScopedTypeVariables #-}
> module OWCTYWeak where
> import Pseudocode
> import Reachability
> import OWCTY

\stophiding

> owctyweak :: M → [S]
> owctyweak m@(_, es, as, _) = compute (elimination as' es) ()
>    where as' = as ∩ reachability m

All that we do is compute the set of all reachable accepting states and execute
elimination on this set -- since all accepting states come from neverclaim SCCs
that only contain accepting states, no accepting cycle can be interrupted by a
non-accepting state. Finally, `elimination` returns a non-empty set whenever a
cycle exists consisting entirely of vertices given by `as'`, the set of all
reachable accepting states in the graph.
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re-use the elimination algorithm from Algorithm 2.3, the formulation of weak OWCTY

is extremely simple:

owctyweak :: M → [S]

owctyweak m@(_, es, as, _) = compute (elimination as' es) ()

where as' = as ∩ reachability m

All that we do is compute the set of all reachable accepting states and execute elimina-

tion on this set – since all accepting states come from neverclaim SCCs that only contain

accepting states, no accepting cycle can be interrupted by a non-accepting state. Finally,

elimination returns a non-empty set whenever a cycle exists consisting entirely of

vertices given by as', the set of all reachable accepting states in the graph.

2.6.6 MAP

The name of this algorithm is an acronym forMaximal Accepting Predecessors. It has

been initially designed for distributed memory systems, in [33 and 35]. The algorithm

is based on the fact that every accepting vertex lying on a cycle is its own predecessor

(and this cycle, containing an accepting vertex, is an accepting cycle). An algorithm that

is directly derived from this idea would require expensive computation as well as space

to store all proper accepting predecessors of all (accepting) vertices. An improvement

over that, the MAP algorithm stores only a single representative of all proper accepting

predecessor for every vertex, chosen to be maximal accordingly to a presupposed

linear ordering ≺ of vertices (given, for example, by their memory representation).

Clearly, if an accepting vertex is its own maximal accepting predecessor, it lies on an

accepting cycle. On the other hand, it can, unfortunately, happen, that all the maximal

accepting predecessors lie outside accepting cycles. In that case, the algorithm removes

all accepting vertices that were the maximal accepting predecessors of any vertices

in the previous pass and recomputes the maximal accepting predecessors. This is

repeated until an accepting cycle is found or there are no more accepting vertices in

the graph.

alg. 2.5 The MAP algorithm maintains a set of vertices, shrink, which contains maximal ac-

cepting predecessors known to lie outside of any cycle. These are disregarded in later

passes. It also keeps a structure similar to an “open set”, although instead of single ver-

tices it contains tuples, each vertex accompanied by its best known maximal accepting

predecessor. Finally, a function from vertices to vertices called mapfun maintains the

current mapping from a vertex to its maximal accepting predecessor, for all vertices

(this function is progressively updated using the more recent data present in the open

data structure).

data C = C { _shrink ∷ [S], _open ∷ [(S, S)], _mapfun ∷ S → S }


<!-- To load this file into GHCi, you also need the file "Pseudocode.lhs",  --
  -- which is available in the attachment in Section 1.6                    -->

The \map algorithm maintains a set of vertices, `shrink`, which contains
maximal accepting predecessors known to lie outside of any cycle. These are
disregarded in later passes. It also keeps a structure similar to an “open
set”, although instead of single vertices it contains tuples, each vertex
accompanied by its best known maximal accepting predecessor. Finally, a
function from vertices to vertices called `mapfun` maintains the current
mapping from a vertex to its maximal accepting predecessor, for all vertices
(this function is progressively updated using the more recent data present in
the `open` data structure).

\starthiding

> {-# LANGUAGE TemplateHaskell, UnicodeSyntax, ScopedTypeVariables #-}
> module MAP where
> import Pseudocode

\stophiding

> data C = C { _shrink ∷ [S], _open ∷ [(S, S)], _mapfun ∷ S → S }

\starthiding

> mkLabels [ ''C ]

\stophiding

As stated earlier, \map is a multi-pass algorithm. This is because a single
pass may, as outlined above, fail to find an accepting cycle: all maximal
accepting predecessors may lie outside of accepting cycles. To this end, the
`shrink` set is maintained throughout the computation. After a given pass, the
set contains all maximal accepting predecessors that were found in that
pass. If no accepting cycles were found, this means that all these vertices lie
outside of cycles and the main algorithm can remove these from the accepting
set and start a new pass.

Each pass then consists of $\mathcal{O}(|E| \cdot |A|)$ steps, each of
which updates a single BFS row of states with new information (most importantly
the maximal accepting predecessor function, called `mapfun` in the source
code). A single step is implemented as follows:

> step ∷ M → C → ([S], C)
> step m@(vs, es, as, is) (C shrink₁ open₁ map₁) =
>   (map fst cycle, C shrink₂ open₂ map₂)
>  where
>   shrink₂ = [ x | x ← shrink₁ ∪ map fst open₁, map₁ x < x ]
>   upd = [ (x, if x ∈ as ∧ x > map₁ x then x else map₁ x)
>               | (x, p) ← open₁ ]
>   map₂ x = if (x, x) ∈ upd then x else map₁ x
>   next f = [ (w, p) | (v, w) ← es, (x, p) ← upd, x ≡ v, f p w ]
>   cycle = next $ \p w → p ≡ map₂ w
>   open₂ = next $ \p w → p > map₂ w

Each pass then consists of updating the state until either a fixpoint is
reached (no new map values can be propagated) or an accepting cycle is found.

> pass ∷ M → Computation [S] C
> pass m@(vs, es, as, is) done = do
>   open ⇐ zip is is
>   forever $ do
>     state₁ ← gets id
>     let (cycle, state₂) = step m state₁
>     put state₂
>     when (cycle ≠ [] ∨ _open state₂ ≡ []) $ done cycle

Finally, the algorithm is executed until either `shrink` encompasses all of
$A$, in which case no accepting cycles exist in the graph, or when a pass finds
an accepting cycle.

> mapalg :: M → [S]
> mapalg m@(vs, es, as, is) = compute loop $ C [] [] (const 0)
>  where loop done = forever $ do
>          shrink₁ ← get shrink
>          if empty shrink₁ then done []
>                           else pass (vs, es, as \\ shrink₁, is)
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As stated earlier, MAP is a multi-pass algorithm. This is because a single pass may, as

outlined above, fail to 󰅭ind an accepting cycle: all maximal accepting predecessors may

lie outside of accepting cycles. To this end, the shrink set is maintained throughout the

computation. After a given pass, the set contains all maximal accepting predecessors

that were found in that pass. If no accepting cycles were found, this means that all

these vertices lie outside of cycles and the main algorithm can remove these from the

accepting set and start a new pass.

Each pass then consists of 𝒪(|𝐸| ⋅ |𝐴|) steps, each of which updates a single BFS row

of states with new information (most importantly the maximal accepting predecessor

function, called mapfun in the source code). A single step is implemented as follows:

step ∷ M → C → ([S], C)

step m@(vs, es, as, is) (C shrink₁ open₁ map₁) =

(map fst cycle, C shrink₂ open₂ map₂)

where

shrink₂ = [ x | x ← shrink₁ ∪ map fst open₁, map₁ x < x ]

upd = [ (x, if x ∈ as ∧ x > map₁ x then x else map₁ x)

| (x, p) ← open₁ ]

map₂ x = if (x, x) ∈ upd then x else map₁ x

next f = [ (w, p) | (v, w) ← es, (x, p) ← upd, x ≡ v, f p w ]

cycle = next $ \p w → p ≡ map₂ w

open₂ = next $ \p w → p > map₂ w

Each pass then consists of updating the state until either a 󰅭ixpoint is reached (no new

map values can be propagated) or an accepting cycle is found.

pass ∷ M → Computation [S] C

pass m@(vs, es, as, is) done = do

open ⇐ zip is is

forever $ do

state₁ ← gets id

let (cycle, state₂) = step m state₁

put state₂

when (cycle ≠ [] ∨ _open state₂ ≡ []) $ done cycle

Finally, the algorithm is executed until either shrink encompasses all of 𝐴, in which

case no accepting cycles exist in the graph, or when a pass 󰅭inds an accepting cycle.

mapalg :: M → [S]

mapalg m@(vs, es, as, is) = compute loop $ C [] [] (const 0)

where loop done = forever $ do

shrink₁ ← get shrink

if empty shrink₁ then done []

else pass (vs, es, as \\ shrink₁, is)
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The overall time complexity of the algorithm is in 𝒪(𝑎2 ⋅ 𝑚), where 𝑎 is the number

of accepting vertices and 𝑚 is the number of edges. The 𝑚 factor comes from the

relaxation along edges, while one of the 𝑎 factors comes from the inner pass and the

second 𝑎 comes from the number of outer iterations of the algorithm.

One of the key aspects in󰅭luencing the overall performance of the algorithm is the

underlying ordering of vertices used by the algorithm. Computing the optimal ordering

is however dif󰅭icult to parallelise, hence heuristics for computing a suitable vertex

ordering are used.

2.6.7 On The Fly Execution

Parallel techniques for both symbolic and explicit state approaches have been consid-

ered. While the symbolic set representations, which often employ canonical normal

forms for propositional logic (BDDs, for example), have been a breakthrough in the

1990s (with the capacity to handle spaces of the size 1020 and beyond), they often

turned out to not scale well with problem sizes. Moreover, the success of their applica-

tion to a given veri󰅭ication problem cannot be estimated in advance, since no known

metrics for the system size have proved to be useful for such estimates. Finally, the use

of BDDs is often sensitive to the used variable ordering, which is sometimes dif󰅭icult to

determine.

For this reason, SAT-based model checking, in particular in the forms of bounded model

checking and equivalence checking have recently become very popular. They still bene-

󰅭it from the use of symbolic methods, but tend to be more scalable as they no longer

rely on canonical normal forms.

An alternative is the use of explicit state set representations. Clearly, for most real world

systems, the state spaces are far too big for a simple explicit representation. Apart from

partial order reduction, another important method for coping with the state explosion

problem in explicit state model checking, is the so called on-the-󰅲ly veri󰅭ication. The

idea of on-the-󰅭ly veri󰅭ication builds upon an observation that in many cases, especially

when a system does not satisfy its speci󰅭ication, only a subset of the system states need

to be analysed in order to determine whether the system satis󰅭ies a given property or

not. On-the-󰅭ly approaches to model checking (also referred to as local algorithmic

approaches) attempt to take advantage of this observation and construct new parts of

the state space only if these parts are needed to answer the model checking question.

As mentioned in Section 2.1.2, explicit-state automata-theoretic LTL model checking

relies on three procedures: the construction of an automaton that represents the nega-

tion of the LTL property (negative claim automaton), the construction of the state space,

i.e. the product automaton of system and negative claim automata, and the check for

the non-emptiness of the language recognised by the product automaton.

An interesting observation is that only those behaviours of the examined system are

present in the product automaton graph that are possible in the negative-claim au-

tomaton. In other words, by constructing the product automaton graph the system

behaviours that are not relevant to the validity of the veri󰅭ied LTL formula are pruned.
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As a result, any LTL model checking algorithm that builds upon exploration of the prod-

uct automaton graph may be considered on-the-󰅭ly. We will denote such an algorithm

as level 0 on-the-󰅭ly algorithm in the classi󰅭ication below.

When the product automaton graph is constructed, an accepting cycle detection algo-

rithm is employed for detection of accepting cycles in the product automaton graph.

However, it is not necessary for the algorithm to have the product automaton con-

structed before it is executed. On the contrary, the execution of the algorithm and the

construction of the underlying product automaton graph may interleave in such a way

that new states of the product automaton are constructed on-the-󰅲ly, i.e. when they

are needed by the algorithm. If this is the case, the algorithm may terminate due to

detection of an accepting cycle before the product automaton graph is fully constructed

and all of its states are visited.

Those LTL model checking algorithms that may terminate before the state space is fully

constructed are generally considered on-the-󰅭ly. If there is an error in the state space (an

accepting cycle), an on-the-󰅭ly algorithm may terminate in two possible phases: either

an error is found before the interleaved generation of the product automaton graph is

complete (i.e. before the algorithm detects that there are no new states to be explored),

or an error is found after all states of the product automaton have been generated

and the algorithm is aware of it. The 󰅭irst type of the termination is henceforward

referred to as early termination (ET). Note that the awareness of completion of the

product automaton construction procedure is important. If the algorithm detects the

error by exploring the last state of the product automaton graph before it detects that

it was actually the last unexplored state of the graph, we consider this to be an early

termination.

We classify “on-the-󰅭lyness” of accepting cycle detection algorithms according to the

capability of early termination as follows. An algorithm is

• level 0 on-the-󰅲ly algorithm, if there is a product automaton graph containing an

error for which the algorithm will never early terminate.

• level 1 on-the-󰅲ly algorithm, if for all product automaton graphs containing an error

the algorithm may terminate early, but it is not guaranteed to do so.

• level 2 on-the-󰅲ly algorithm, if for all product automaton graphs containing an error

the algorithm is guaranteed to early terminate.

Note that level 0 algorithms are sometimes considered on-the-󰅭ly and sometimes not,

depending on research community. Since a level 0 algorithm explores full state space

of the product automaton graph it may be viewed as if it does not work on-the-󰅭ly.

However, as explained above, just the fact that the algorithm employs product automa-

ton construction is a good reason for considering the whole procedure of LTL model

checking with a level 0 algorithm as an on-the-󰅭ly veri󰅭ication process.

To give examples of algorithms with appropriate classi󰅭ication we consider algorithms

OWCTY, MAP, and Nested DFS. The OWCTY algorithm is a level 0 algorithm, the MAP

algorithm is a level 1 algorithm and Nested DFS is a level 2 algorithm.
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As with state space exploration algorithms, the ef󰅭iciency of the on-the-󰅭lyness of the

algorithm may also be improved by other techniques. It might be the case that even

the level 2 on-the-󰅭ly algorithm fails to discover an error, if the examined state space is

large enough to exhaust system memory before an error is found. This issue has been

addressed by methods of directed model checking [60–62], which combines model-

checking with heuristic search. The heuristic guides the search process to quickly 󰅭ind

a property violation so that the number of explored states is small. It is worthwhile to

note that this approach can be extended with directed search as well.

2.6.8 OWCTY On The Fly

The idea of propagating one accepting predecessor along all newly discovered edges

is at heart of a heuristic extension of OWCTY [15]. If the propagated accepting state is

propagated into itself, an accepting cycle is discovered and the computation is termi-

nated. Like with the MAP algorithm, an accepting state to be propagated is selected as

a maximal accepting state among all accepting states visited by the traversal algorithm

on a path from the initial state of the graph to the currently expanded state. Since

the INITIALISE phase of OWCTY needs to explore full state space, we can employ it to

perform limited accepting cycle detection using maximal accepting state propagation.

Unlike the MAP algorithm, we however avoid any re-propagation to keep the INITIALISE

phase complexity linear in the size of the graph. This means that some accepting cycles

that would otherwise be discovered (i.e. with relaxation, or re-propagation, enabled)

may be now missed. In particular, there are three general reasons for not discovering

an accepting cycle with the heuristic.

ex. 2.1 There are three main scenarios where the MAP heuristic fails to discover an accepting

cycle. a) Maximal accepting predecessor is out of the cycle. b) There is no fresh path

back to the maximal accepting state. c) Wrong order of propagation, 𝐶 → 𝐷 is explored

before 𝐵 → 𝐷 , hence, 𝐶 is propagated from 𝐷 .

In case (a), the maximum accepting predecessor of the cycle does not lie on the cycle

itself, preventing propagation back to itself. In case (b), the maximum accepting pre-

decessor value does not reach the originating state because there is no fresh path (a

path made of yet unvisited states) that could reach it. Finally, the maximum accepting

predecessor value can fail to reach the originating state due to wrong propagation order

– this is case (c).

When the algorithm encounters an accepting state that is being propagated, it termi-

nates early, producing a counterexample. On the other hand, if the INITIALISE phase

(i.e. the 󰅭irst reachability) of OWCTY fails to notice an accepting cycle, the rest of the

original OWCTY algorithm is executed. Either the algorithm 󰅭inds an accepting cycle

(and again, produce a counterexample), or it proves that there are no accepting cycles

in the graph.
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case (a) case (b) case (c)

A

B

C D

A > B > C

A

A

B

C D

C A>D>

C

A

B

C D

B> > AC

C

󰅮ig. 2.1 Three scenarios where no accepting cycle will be discovered using

accepting state propagation.

2.7 State Space Reductions

For a predominantly unstructured model representation, like the one comprised by an

assembly-level language, reduction techniques appear to be the most suitable choice

for obtaining smaller, more manageable state spaces. While using abstractions may

be an option in the future, these are normally applied to much more structured model

representations (i.e. on the level of program source code, or equivalent). We anticipate

signi󰅭icant challenges in implementing useful abstractions over unstructured, assembly-

level programs.

Two main categories of state space reduction techniques are applicable in our case:

partial order reduction [77, 78, 127, 129 and 149] (POR for short) and symmetry re-

duction [47 and 66]. The former is extremely useful to reduce state spaces of parallel

programs, by avoiding exploration of super󰅭luous execution interleavings. On the other

hand, symmetry reduction is successful whenever a number of symmetric con󰅭igura-

tions of a particular system are equivalent with respect to the property of interest. In

the case of software, many different dynamic memory (heap) con󰅭igurations can be

considered equivalent (symmetric), whenever they only differ in ordering (but not

content, after adjusting the pointers to other heap areas).

While the most common approach to symmetry reduction is independent of exploration

order, and therefore parallelism, since it only uses state-local information, this is not the

case with reductions based on partial order. In fact, the most ef󰅭icient, most widely used

implementation of POR in LTL model checking is based on depth-󰅭irst postorder, which

is inherently sequential as outlined above and a comparable parallel implementation

has been elusive until recently [14].

Moreover, when applying partial order reduction to a state space of a parallel LLVM

assembly program, we expect to see many non-branched chains of states, due to very

󰅭ine granularity of interleaving and many of the transitions being completely invisible

– in those cases, partial order reduction will only pick a single interleaving of all the
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process 𝐴 process 𝐵

A B C D 1 2 3 4

process 𝐴 × 𝐵 reduced 𝐴 × 𝐵

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

A4 B4 C4 D4

A1 B1 C1 D1

A2 D2

A3 D3

A4 B4 C4 D4

󰅮ig. 2.2 Behaviour of POR in a system

where invisible actions are prevalent.

invisible instructions schedulable between the nearest visible actions. This is illustrated

in Figure 2.2. Therefore, it is desirable to combine this partial order reduction with a

suitable path reduction [100 and 157], that will eliminate the redundant intermediate

states. The desirable overall outcome is shown in Figure 2.3.

A partial order technique of special interest for software model checking is based on

the notion of transactions, where a transaction is de󰅭ined as a block that is, from the

point of view of any other thread of execution, atomic [74].

2.7.1 Partial Order Reduction

The Partial Order Reduction technique has been intensively studied as a leading tech-

nique to 󰅭ight the state explosion problem in explicit model checking. As a result, a

number of improvements and variants of the technique have been developed and suc-

cessfully integrated in veri󰅭ication tools. These results are mutually exclusive in many

cases and their usability depends on the target domain of application. In particular,

there are subclasses of properties to be veri󰅭ied for the system under consideration, for

which the formal requirements on ample sets may be safely weakened, hence different

reduction algorithms applied.



State of the Art State Space Reductions

44

A1 D1

A4 D4

󰅮ig. 2.3 Combined reduction.

For example, to prove deadlock freedom, the re-

duced structure does not have to ful󰅭il the C3 prop-

erty at all. Similarly, if we check the system for a

safety property, such as an assertion violation, it

is satisfactory for the states on a cycle in the re-

duced structure to be able to reach at least one fully

expanded (not necessarily immediate) successor

state [30]. In the following we will focus on various

strategies to deal with C3 proviso that have been

introduced in the literature so far. We will particu-

larly discuss their applicability to the distributed-

memory computing.

2.7.1.1 Static

Static Partial Order Reduction [107] builds upon the fact that the system under con-

sideration is an asynchronous product of individual system components. Since every

cycle in the system graph projects to a cycle in each of the components, it is possible

to a-priori construct a set of states that cover every possible cycle in the system graph.

Whenever a state of the reduced structure is a member of such a covering set, it is

fully expanded. The static partial order reduction technique is compatible with distrib-

uted-memory computation; however, it is generally considered to be less effective than

dynamic approaches listed below.

2.7.1.2 Dynamic

In the dynamic Partial Order Reduction approach, the decision about the full expansion

of a state is done for the state when it is processed by the exploration algorithm. There

are several nuances of the cycle proviso (condition C3) that depend on whether the

reduced structure is used for veri󰅭ication of safety or liveness properties, or whether

the exploration algorithm follows a particular search order (depth-󰅭irst, breadth-󰅭irst,

etc.).

The classical, stack-based cycle detection proviso is connected with a depth-󰅭irst tra-

versal algorithm. The depth-󰅭irst search algorithm maintains a stack of states on the

path from the initial state of the graph to the state currently being processed. If the

currently processed state has a direct successor that is on the stack, there is a cycle in

the reduced structure. In the case of veri󰅭ication of liveness properties, such a situation

requires that the currently processed state must be fully expanded. However, this is

not the case when verifying safety properties, where the full expansion of the currently

processed state may be safely avoided if there is at least one direct successor of the



State of the Art State Space Reductions

45

state that is outside the stack [90]. In other words, a state is fully expanded if all its

successors are in the stack.

If for whatever reason the algorithm for exploration of the reduced structure does not

follow a depth-󰅭irst visiting strategy, it cannot maintain the search stack, hence, cannot

apply the stack proviso. In general, whenever a graph traversal algorithm discovers a

transition leading to an already visited state, there is a potential risk that this transition

closes a cycle in the reduced structure. A conservative approach therefore is to fully

expand all states that have successors lying in the visited portion of the graph.

Unfortunately, even this conservative check is not free of issues in distributed memory

setting – checking whether a state is visited will cost two messages and, what is worse,

the successor generation will need to wait for the answer, introducing extra synchroni-

sation (and therefore delays) into the system. In shared-memory setting, the problem

is easier to resolve (the visited check can be implemented more ef󰅭iciently).

2.7.1.3 Parallel

A comprehensive survey of existing techniques for parallel POR and an exhaustive ex-

perimental evaluation is available in [121]. The work also introduces a number of

novel techniques for distributed-memory reductions, although they are often rather

dif󰅭icult to implement and often rely on successor locality to a workstation. The latter

requirement, that is, a special treatment of so-called “cross” transitions, proves to be

increasingly problematic with higher numbers of parallel workers – quickly, all tran-

sitions become „cross“ and the often more complicated and suboptimal treatment is

required for all transitions of the system. In contrast, our proposed C3 check is inde-

pendent of state space distribution and therefore a highly scattered state distribution

(which is common with hash-based state distribution) does not pose a problem for the

check. In a similar fashion, the check proposed in [34] relies on the ability to do a local

depth-󰅭irst search, which in turn relies on availability of local (i.e. non-cross) transitions.

Additional heuristic is proposed, that improves handling of cross transitions at the cost

of visiting any given state multiple times (at most once for each worker involved in the

computation). This unfortunately still translates to a high penalty for cross transitions.

A different approach to PORhas been proposed in [124] – an algorithm that does not rely

on C3 at all, and instead relies on following singleton ample sets while this is possible

and fully expanding otherwise. The algorithm shows promise, although it introduces

complications into generation of successors and for distributed computation. It is also

less general than the usual POR approach which is not restricted to singleton ample sets,

even though authors claim it often outperforms the traditional approach in practice. The

rami󰅭ications of a parallel, distributed implementation of this algorithm are currently

not known and are a subject of future work.

For the case of reachability (i.e. veri󰅭ication of safety properties) on shared-memory

systems, a heuristic [89] has been proposed that is usable with a multi-core extension of

the SPIN model checker. The check assumes usage of a so-called stack-slicing algorithm

(this is the reason the heuristic requires a shared memory environment), proposed
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in [88]. The heuristic itself, similar to the above-mentioned distributed algorithms,

treats cross transitions (as represented by boundary states, in SPIN terminology) spe-

cially – in this case, however, this is less problematic, since the partitioning of the state

space using the stack-slicing algorithm is not static and therefore the proportion of

border states in the state space is easier to control.

2.7.1.4 Transactions

An alternative approach to reducing state spaces of multi-threaded programs is to 󰅭ind

sections of code that are atomic with regards to accessing a particular variable. To a

certain degree, this approach assumes mutex-based protections on shared variables

and an equality relationship on variables14, and hence is limited to a particular class of

programs. The idea is to infer predicates that guarantee exclusive access to a particular

memory location, based on the status of locks held by the accessing thread. The main

property required of the predicates 𝐸(𝑡, 𝑥) and 𝐸(𝑢, 𝑥) for 𝑡, 𝑢 threads and 𝑥 a variable

is that these can never hold simultaneously for 𝑡 ≠ 𝑢 . The paper [74] presents a

procedure to 󰅭ind such predicates automatically for a class of multi-threaded programs

and how to statically infer transactions based on those predicates. Since a transaction

has the property that steps within the transaction cannot be observed by other threads,

the model checker can hence treat it as an atomic section of code, reducing the number

of interleavings, and consequently, the size of the state space.

2.7.2 Symmetry Reduction

Symmetry reduction builds on the idea that certain states of the system are symmetric

to each other in some respect. There are basically 2 criteria for symmetry: clearly, the

states need to be symmetric with regards to the property, and secondly, their successors

need to be likewise symmetric. If these conditions are met, we can reduce the state

space by only considering one state out of a set of symmetric states.

The successor condition ensures that all the states that we remove from the state space

by not considering symmetric states will be symmetric to some generated states.

There are two major classes of symmetries with the requisite properties: 󰅭irst, explicit

symmetry via a symmetric set construction – the model explicitly speci󰅭ies that a par-

ticular set of values (threads, processes, etc.) is symmetric – it is a “true” set with no

ordering, and hence the order of elements in the set cannot in󰅭luence the outcome of

any operation. This is enforced at a type level; the operations available on the symmetric

set type do not expose any property that could change based on the order of elements

in the set.

The second class of symmetries of this kind are heap symmetries or more generally

graph symmetries. The idea here is that there are many ways to lay out a particular

14 In real C and C++ programs, such equality is not available, and can be, at best, approximated using alias

analysis. See also Section 7.6.
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graph (heap15) in a linear address space. Nevertheless, as long as the program is disal-

lowed from making numeric comparisons of pointers to different heap objects, different

layouts of the same graph are indistinguishable, and as such conform to the de󰅭inition

of symmetry above.

2.8 Linear Temporal Logic

We will interpret LTL formulae on the structure known as a Kripke structure [104], i.e.

a triple (𝑠0, 𝑆,→) where 𝑠0 ∈ 𝑆 and →⊆ 𝑆 × 𝑆: with 𝑠0 representing the initial state

of the system, → representing the transitions of the system and 𝑆 comprising all the

possible states. Additionally, we de󰅭ine 𝐿 a set of labels, and 𝜓 : 𝑆 ↦ 2𝐿 a labelling

function.

def. 2.2 The syntax of an LTL formula is de󰅭ined by the following recursive equation:

𝜑 := 𝑡𝑟𝑢𝑒 | 𝑎𝑡𝑜𝑚 | ¬𝜑 | 𝜑1 ∧ 𝜑2 | 𝒳𝜑 | 𝜑1𝒰𝜑2
■

A path 𝜋 in a Kripke structure is an in󰅲inite sequence of states, 𝑠1𝑠2…, such that for every

𝑖 , 𝑠𝑖 → 𝑠𝑖+1. We use 𝜋𝑛 as a succinct way to express the suf󰅭ix of a path that has 󰅭irst 𝑛

states removed (i.e. 𝜋3 = 𝑠4𝑠5…).

def. 2.3 A path𝜋 = 𝑠1𝑠2…with a labelling function𝜓 satisfy an LTL formula𝜑 , that is, (𝜋, 𝜓) ⊨ 𝜑

iff:

(𝜋, 𝜓) ⊨ true ⇔ true

(𝜋, 𝜓) ⊨ 𝑎𝑡𝑜𝑚 ⇔ 𝑎𝑡𝑜𝑚 ∈ 𝜓(𝑠1)

(𝜋, 𝜓) ⊨ ¬𝜑 ⇔ (𝜋,𝜓) ⊭ 𝜑

(𝜋, 𝜓) ⊨ 𝜑1 ∧ 𝜑2 ⇔ (𝜋,𝜓) ⊨ 𝜑1 ∧ (𝜋, 𝜓) ⊨ 𝜑2

(𝜋, 𝜓) ⊨ 𝒳𝜑 ⇔ (𝜋1, 𝜓) ⊨ 𝜑

(𝜋, 𝜓) ⊨ 𝜑1𝒰𝜑2 ⇔ ∃𝑖.(∀𝑗 < 𝑖.(𝜋𝑗, 𝜓) ⊨ 𝜑1) ∧ (𝜋
𝑗, 𝜓) ⊨ 𝜑2

A model (the Kripke structure with an associated labelling function) satis󰅭ies an LTL

formula iff all possible paths in the structure starting at 𝑠0 satisfy the formula. 16 ■

15 In the sense of dynamic memory with pointers.
16 This “builtin” universal quanti󰅭ier in the semantics of LTL has interesting implications for behaviour of nega-

tion. In LTL, the law of the excluded middle does not hold: there are pairs of an LTL formula𝜑𝑖 and a structure

𝑆 such that 𝑆 ⊭ 𝜑𝑖 ∧ 𝑆 ⊭ ¬𝜑𝑖 .
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def. 2.4 A number of derived, more intuitive operators (shortcuts) is usually provided as part

of LTL:

false
df
= ¬true

𝜑1 ∨ 𝜑2
df
= ¬(¬𝜑1 ∧ ¬𝜑2)

𝜑1 ⇒ 𝜑2
df
= ¬𝜑1 ∨ 𝜑2

ℱ𝜑
df
= 𝑡𝑟𝑢𝑒𝒰𝜑

𝒢𝜑
df
= ¬ℱ¬𝜑

■

Intuitively, a path satis󰅭ies 𝒳𝜑 if the “next” state of the path satis󰅭ies 𝜑 , ℱ𝜑 whenever

there is a state on the path that satis󰅭ies 𝜑 (i.e. somewhere in the future), 𝒢𝜑 whenever

all states of a path satisfy 𝜑 .17 Of course, operators can be nested arbitrarily, with the

most common nestings being ℱ𝒢𝜑 meaning that from some point in future, 𝜑 will

hold continuously, 𝒢ℱ𝜑 meaning 𝜑 holds in󰅭initely often (i.e. 𝜑 holds at least once,

and whenever it holds, it’ll hold again in the future) and 𝒢(𝜑1 ⟹ℱ𝜑2), meaning that

whenever 𝜑1 “happens”, 𝜑2 will eventually follow.

Apart from LTL itself as a speci󰅭ication language, since we employ the automata-based

approach to LTL model checking [150], we can, alternatively, specify properties in terms

of Büchi automata, which may be more desirable in some cases (properties stated in

LTL are more declarative in nature, while properties expressed through automata are

more procedural: a trait that may make automata-based speci󰅭ications more palatable

to engineers without extensive formal method training).

2.8.1 Atomic Propositions

One of the challenges in applying LTL to model checking programs lies in formulating

suitable semantics for the atomic propositions in the LTL formulae. In specialised

modelling formalisms, it is usually the case that atomic propositions are allowed to

be arbitrary expressions of the modelling language, referring to any state variables

present in the system: the number and locations of such variables tend to be 󰅭ixed in

the system. Under these assumptions, assigning atomic propositions (labels) to states

of the system is trivial: whenever the associated expression evaluates to true in a given

system state, the atomic proposition holds in that state.

In general-purpose programming languages, however, state variables are often lexically

scoped. Referring to such variables in an LTL formula may be desirable, but it is not

17 The formulae of the form 𝒢𝑎𝑡𝑜𝑚 exactly correspond to “reachability” properties mentioned earlier: the

absence of deadlock and the absence of assertion violations.
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entirely clear how this should be done.18 To our best know, this problem has not been

addressed in the literature, a fact that is attributable to the general neglect of LTL in

relation to model checking of programs. In Section 5.2, we will explore a new approach

to this problem.

2.8.2 Related Logics

LTL does not live in a vacuum, quite to the contrary, it is part of a wider family of modal

and temporal logics. The closest relatives of LTL are CTL [46] (computational tree logic)

and a superset of both, CTL∗ [65]. CTL∗ is in turn a subset of modal 𝜇-calculus [103].

All of these logics have been targeted in automated model checkers, although CTL and

LTL enjoy the widest use, in model checking synchronous and asynchronous systems

respectively.

A different approach to speci󰅭ication of temporal properties is taken by TLA [112] –

Temporal Logic of Actions. Like LTL, TLA formulas describe behaviours, or system runs.

While LTL is usually either fully state-based (atomic propositions refer to states) or

fully action based (atomic propositions refer to transition labels), TLA is intrinsically

mixed. However, actions in TLA are always expressed in terms of states: it contains a

special language for describing actions in terms of before–after relationship between

variables. An action in TLA might look something like 𝑦′ = 𝑦 + 1, meaning that if 𝑦 is

a variable value in state 𝑠 , value 𝑦′ in the successor state 𝑠′ is 𝑦 incremented by one.

Additionally, TLA formulas can be subscripted by an expression – [𝐴]𝑓 – meaning that

the formula holds when either 𝐴 holds or when the value of 𝑓 remains unchanged.

One of TLA’s advantages over LTL is that it is intrinsically stutter-invariant, and as such,

speci󰅭ications written in TLA are more composable than comparable LTL speci󰅭ications.

This is achieved by requiring that the operand of 𝒢 is always of the form [𝐴]𝑓 for some

𝑓 , which makes the formula true whenever 𝑓′ = 𝑓 . As such, all variables that could

cause the evaluation to become “blocked” must be explicitly listed – speci󰅭ically, if

only variables not mentioned by a particular subformula change, this cannot cause

a 𝒢 clause to fail. Since stutter-invariant formulas are also intrinsically unfair, TLA

contains syntactic shortcuts for expressing both weak (ℱ𝒢enabled ⇒ 𝒢ℱtaken) and

strong fairness (𝒢ℱenabled ⇒ 𝒢ℱtaken), which share the “subscripting requirement”

of the 𝒢 operator.

As such, formulas in TLA can be combined naturally – unlike in LTL, if process𝑃 satis󰅭ies

speci󰅭ication 𝜋 and process 𝑅 satis󰅭ies speci󰅭ication 𝜌 (and 𝜋, 𝜌 use distinct variables),

process 𝑃‖𝑄 satis󰅭ies speci󰅭ication 𝜋 ∧ 𝜌 – in LTL, 𝜋 could all too easily fail during a

step done by 𝑄 .

18 In LTL extensions to Java PathFinder (JPF), a variable is speci󰅭ied using its name and its enclosing function.

From the documentation, it is not clear what happens when a variable is shadowed in an anonymous sub-

scope of the function (i.e. the atomic proposition could refer to the shadowed name, as well as to the orig-

inal, temporarily inaccessible variable, and in fact, both interpretations are sensible in different contexts).

Moreover, neither of the two existing LTL modules for JPF document the semantics of an atomic proposition

that mentions variables that are currently out of scope.
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Even though TLA is more-or-less equivalent to LTL without the𝒳 operator19, we still

need to consider the fact that large part of TLA’s power stems from its ability to concisely

describe actions, a feature entirely missing from LTL. Overall, TLA is more ”user-friendly”

than LTL in most scenarios; unfortunately, it is only rarely used in the context of model

checking. This might be attributed, among other things, to the fact that it is substantially

more complicated to implement.

LTL is also related to monadic 󰅭irst-order logic – namely, FO[<] has the same expres-

sive power as LTL [131] (that is, they both recognize the class of star-free 𝜔-regular

languages). As such, these logics cannot fully characterise all stutter-free 𝜔-regular

languages. The language μTL(𝒰) is a 󰅭ixpoint extension of 𝐿𝑇𝐿−𝒳 (which is the same

stutter-invariant fragment of LTL as LTL (𝒰)), and covers all stutter-invariant𝜔-regular

languages. An even more powerful formalism is the modal 𝜇-calculus (a strict superset

of 𝜇TL) which also describes branching time (although it is not stutter-invariant).

19 L. Lamport, the inventor of TLA, writes in [112]: “TLA can express all formulas invariant under stuttering

that Manna and Pnueli’s logic can. However, their logic can also express formulas that are not invariant

under stuttering. Such formulas yield speci󰅭ications that cannot be re󰅭ined. Although all TLA formulas are

expressible in Manna and Pnueli’s logic, there is no simple translation from TLA to their logic because its

quanti󰅭ication operator is not invariant under stuttering. ”
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3 Parallel Search Implementation

There are multiple approaches to implementation of parallel algorithms, most notably

differing in the treatment of memory: whether each parallel process has its own pri-

vate working memory and all communication is implemented as message passing,

or whether the parallel processes access and modify a single shared data structure.

This distinction is partially dictated by hardware: it is simpler and cheaper to design

hardware with local memory and message passing (even low-latency, high-bandwidth

message passing) than it is to design systems with uniform memory access across all

processors.

However, small-scale (semi-)uniform memory architectures are widespread today, with

almost all computers sporting multi-core CPUs. It is therefore desirable to “scale down”

parallel systems originally designed for clusters in a way that makes them run ef󰅭iciently

on modern “small scale” parallel hardware. Multiple stages of such down-scaling are

possible: software written for MPI-based [118] clusters can be directly executed on

SMP machines using loopback interfaces, or even using an implementation of MPI opti-

mised for passing messages through shared memory buffers. Such an implementation,

however, is largely inef󰅭icient since it still obeys many of the limitations dictated by

distributed memory hardware, which are no longer applicable on a shared memory

platform.

A slightly more involved approach is to replace MPI-based message passing with data

structures optimised for shared memory, most importantly use of lock-free, wait-free

IPC queues for passing data, and to a lesser degree, use of ef󰅭icient shared memory barri-

ers. This approach was pioneered in [9], providing signi󰅭icant scalability improvements.

We will brie󰅭ly discuss the data structures that are used to this effect in Section 3.2

and Section 3.3.

Finally, further scalability improvements can be achieved by leveraging the uniform-

ness of memory access to the largest extent possible, i.e. by fully sharing the data

structures used by the algorithm among processes. In a typical graph exploration ap-

plication, the two most important data structures are a queue and a set, the latter

usually implemented as a hash table. We will discuss these structures in Section 3.4

and Section 3.5.

While contemporary SMP systems provide vast processing power, it cannot rival that

of large clusters, counting in hundreds or even thousands of nodes. However, modern

clusters use a hybrid architecture, with each node of the cluster becoming a small pa-

rallel machine in its own right. Algorithms that offer the ability to run in distributed

memory can be, using the techniques outlined above, transformed into ef󰅭icient shared-

memory algorithms. Fortunately, this transformation does not change the algorithms

themselves in a way that would prevent their use with distributed memory: in fact, the

execution of these algorithms can be arranged in a way that mimics the architecture of

modern clusters, using a shared-memory implementation within each cluster node, but
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falling back to distributed-memory techniques for communication across node bound-

aries. This way, execution of the algorithm can use the available hardware resources

most ef󰅭iciently.

Additionally, systems with shared memory pose one additional challenge for implemen-

tation of parallel algorithms. While memory allocation and deallocation is usually taken

for granted in sequential algorithms without giving it a second thought, the situation

is not as simple in the parallel world: hardware provides a 󰅭lat memory space, and in

order to make ef󰅭icient use of this 󰅭lat space, programs use elaborate data structures to

organise it. However, these data structures are as much subject to concurrent access as

any other data structures explicitly used in a parallel algorithm, even though their use

is usually implicit in an algorithm’s design. Hence, the design of these data structures

can be crucial for practical performance of such algorithms, and this is especially true

of allocation-intensive workloads (and graph exploration in model checking is in fact a

very allocation-intensive problem). Hence, in Section 3.7, we will discuss the problem

of memory allocation in a parallel shared memory program.

3.1 Data Structure & Algorithm Design

In this section, we will discuss the considerations that go into designing a data structure

or an algorithm, with special emphasis on parallelism and concurrency.

3.1.1 Hardware Limitations

While multi-core and SMP systems present a single very large address space, they also

exhibit a deep memory hierarchy, with many levels of cache. Some of this cache is shared

by multiple cores, some is private to a particular core. This translates into a complex

memory layout. To further complicate matters, multi-CPU computers nowadays often

use non-uniform access architecture even for the main memory: different parts of RAM

have different latency towards different cores. Most of this complexity is implicitly

hidden by the architecture, but performance-wise, this abstraction is necessarily leaky.

Finally, the gap between the 󰅭irst and the last rungs of the hierarchy is huge: this means

that compact data structures often vastly outperform asymptotically equivalent, but

sparse structures. Due to cache organisation constraints, memory cells that live close to

each other are usually fetched and 󰅭lushed together, as part of a single “cache line”. They

are also synchronised together between core-private caches. A modern data structure

should therefore strive to reduce to an absolute minimum the number of cache lines

it needs to access in order to perform a particular operation. When concurrency is

involved, there is a strong preference to have threads use non-overlapping sets of cache-

line-sized chunks of memory, especially in hot code paths.
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3.1.2 Benchmarking & Performance Evaluation

In previous section, we have laid out the guiding principles in implementing scalable

data structures for concurrent use. However, such considerations alone cannot guaran-

tee good performance, or scalability. We need to be able to compare design variants,

as well as implementation trade-offs and their impact on performance. In turn, we

need a reliable and comprehensive way to measure performance: this comes down

to 󰅭inding what to measure and how to measure it. Both are surprisingly tricky: in

order to identify what to measure, we need to have a fairly good idea on how is the data

structure or algorithm going to be used in the bigger picture.

We will discuss the what individually for each set of benchmarks. There are, however,

many common factors in deciding how to measure and we will detail them here.

The main problem with computer benchmarks is noise: while modern CPUs posses

high-precision timers which have no impact on runtime, modern operating systems are,

without exceptions, multitasking. This multitasking is a major source of measurement

error. While in theory, it would be possible to create an environment with negligible

noise – either by constructing a special-purpose operating system, or substantially

constraining the running environment, this would be a huge investment. Moreover, we

can, at best, hope to reduce the errors in our measurement, but we can hardly eliminate

them entirely.

Henceforth, we accept the existence of measurement errors as a fact of life (and there

seems to be little choice in the matter). However, since all kinds of measurements –

not only benchmarking – are subject to error, a comprehensive toolkit of statistical

methods to counteract those errors already exists. While many methods are available,

benchmark results have a certain peculiarity: the distribution of the times we measure

is decidedly non-normal (in the statistical sense). In fact, it’s often hard to predict what

the distribution is, and this may even depend on circumstances of the measurement

(in other words, the same benchmark may produce markedly different distributions

on different days).

One way to counteract these effects is to choose a robust estimator, such as median,

instead of the more common mean. However, since we only posses 󰅭inite resources, we

can only obtain limited samples – and even a robust estimator is bound to 󰅭luctuate

unless the sample is very large. Ideally, we would be able to understand how good our

estimate is. If our data was normally distributed (which we know is, sadly, not the case)

we could simply compute the standard deviation and base a con󰅭idence interval for our

estimator on that. However, since we need a computer for running the benchmarks

anyway, we can turn to bootstrapping: a distribution-independent, albeit numerically

intensive method for computing con󰅭idence intervals.

Bootstrapping works as follows: since the sample we have is the best (and only) data

about the phenomenon we are measuring (i.e. the hypothetical population of all possi-

ble data points), we need to derive the properties of the sample from the sample itself.

The way to do this is to take samples from the sample: this is called resampling, and is

done with the same sample size, butwith replacement. This means we draw data points
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from our sample at random, without eliminating them – a single data-point will likely

end up in the resample many times, while others will be absent.20 We can compute

our estimator of interest on this resample, and obtain a different value – a value that

is different from the one for the original sample, yet very likely to be just as realistic.

If we repeat this resampling and estimation many times, we obtain a large number of

estimator values that are more or less valid for the original phenomenon – a sample in

its own right.

Now if we were to take an entirely new sample of the original phenomenon, the value

of our chosen estimator for this sample would be overwhelmingly likely to fall into the

range of our resampled (bootstrapped) estimator sample. This will remain true even if

we only take the central 95% of the resampled estimator values into account. In other

words, the 2.5th and 97.5th percentile of the bootsrapped sample constitute a (very

nearly) 95% con󰅭idence interval for our estimator of choice. While a single outlier can

substantially affect the mean value of a sample, many of the resamples will lack this

particular outlier, and as such, a value of the mean that excludes this particular outlier

will still fall within our bootstrap-computed con󰅭idence interval.

While bootstrapping gives us a good method to compute reliable con󰅭idence intervals

on population estimators, it doesn’t do anything to make those con󰅭idence intervals

tighter. Given a sample with high variance, there are basically two ways to obtain a

tighter con󰅭idence interval: measure more data points, or eliminate obvious outliers.

While a bigger sample is always better, we are constrained by resources: each data

point comes at a cost. As such, we need to strike a balance. For measurements in this

thesis, we have removed outliers that fell more than 3 times the interquartile range (the

distance from the 25th to the 75th percentile) of the sample from the mean, but only if

the sample size was at least 50 measurements, and only if the con󰅭idence interval was

otherwise more than 5% of the mean.

Finally, most of our benchmarks measure time as it scales with some parameter (or two).

Not only is the measurement of a single data point affected by resource constraints,

but so is the sampling of these parameters. Ideally, we would be able to measure every

sensible parameter value separately – however, this would in many cases cover millions

of data points, which is entirely impractical. We have chosen to measure (at most) a

few dozen data points for each benchmark, spread out evenly over the range of the

parameter21 and use cubic spline interpolation to 󰅭ill in the gaps.

In all benchmark plots in this thesis, we use a line plot for the mean value of the measure-

ment sample, with black dots on the line representing the actual measurements, the

line being an interpolation of those. The shaded area in the same colour then represents

the 95% con󰅭idence interval obtained via bootstrapping.

20 Bootstrapping is closely related to a technique called the jackknife – where the stochastic approach of boot-

strap is replaced by a deterministic elimination of one data point at a time.
21 I.e. linearly for linear parameters and exponentially for exponential parameters
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3.1.3 Veri󰅭ication

In order to ensure that the data structures we use work as expected, we have used

DIVINE to check some of their basic properties. The properties are expressed as small

C++ programs – basically what a programmer would normally call a unit test. They

are usually parametric, with the parameters governing the size and parameters of the

data structure as well as the way it is used. A property of a queue, for instance, may

specify the maximum length of the queue, if the queue is shared a number of threads

that access it, or the number of distinct elements to insert into the queue.

Clearly, the parameter space of such a property is in󰅭inite, and admittedly, even for fairly

small values the veri󰅭ication problem becomes very large. Nevertheless, most bugs

happen in boundary conditions, and these are identical for all parameter instantiations

upwards of some structure-speci󰅭ic minimum. The amount of “󰅭luff” data in the data

structure is largely irrelevant in systematic exploration.22

The second limitation is that we can only currently verify the code under the assumption

of sequential consistency. At 󰅭irst sight, this may seem like a severe limitation – on

a closer look, though, it turns out that vast majority of relevant memory access is

already tagged as sequentially consistent using appropriate std::atomic interfaces

(this translates to appropriate architecture-speci󰅭ic memory access instructions that

guarantee sequential consistency on the value itself, as well as working as a memory

fence for other nearby memory accesses). In this light, the limitation is not quite fatal,

although of course it would be preferable to obtain veri󰅭ication results under a relaxed

memory model.

3.2 IPC Queues

Normally, an implementation based on message passing will operate on the premise of

seeing an entirely distinct address space in each process. This means that all data that

needs to be shared with another process must be packed in its entirety into a message

and shipped to the other process somehow. If this data is bulky, this packing represents

signi󰅭icant overhead. With a little care on the side of the receiver, we can immediately

improve on this by only sending pointers to data residing in memory shared by the

processes. The additional requirement on the receiving side is that a copy of the data

must be made before any modi󰅭ications are done to it. However, often the data is entirely

read-only and the communication can become zero-copy.

However, we still need to pass around the pointers to the bulk of data between processes.

One way to go about this would be to obtain a shared memory area mapped at the same

address into multiple processes and use MPI to communicate the pointers. However,

this approach breaks down if we use multi-threading instead of multi-processing in our

application: MPI is ill-suited for passing messages between threads. Also, the latency

22 If we use random sampling (as in, for example, testing multi-threaded code), bigger (“󰅭luf󰅭ier”) data points

contribute to our chances of discovering a problem. This intuition somewhat skews our perception of veri-

󰅭ication results.
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of MPI is, compared with latency of RAM, still unreasonably high. Instead, we can take

advantage of shared memory to move the pointers from one thread to another by using

an appropriate data structure.

In order to minimise latency and overhead, we should not need to take any locks when

writing to, or reading from, this data structure. It should operate in FIFO order, just like

MPI messages: data written 󰅭irst by the sender should be the 󰅭irst seen by the reader.

Hence, the data structure we need is a lock-free queue with one writer and one reader

thread. There are many ways to implement such a data structure – however, to make

most of the hardware, we need to ensure, in accordance with the considerations laid out

in Section 3.1.1, that it is cache-ef󰅭icient [67] as well, and that it reduces the amount

of read-write alterations on a single cache line [147] to the necessary minimum.

Our design uses a lock-free queue for passing pointers between threads, implemented

with good memory locality in mind: instead of using a linked list of pointers – which

can be implemented in a lock-free fashion, we instead use a linked list of blocks, each

block containing a constant number of items. This not only improves cache locality by

using contiguous blocks of memory for related data, it also reduces memory overhead

signi󰅭icantly (the savings asymptotically approach 50% as the block size increases).

Each block contains a pair of indices, one for indicating the reading, and one for writing

position – ensuring that reads and writes to the same block (when the queue is nearly

empty) do not contend on a single memory location.

The enqueue and dequeue operations are described in more detail Algorithm 3.1 and

Algorithm 3.2, respectively.

alg. 3.1 Unlike with high-level algorithms, we will use C++ fragments to give a formal presen-

tation of the algorithm for manipulating the IPC queue. When pushing new elements,

the algorithm 󰅭irst needs to check whether the currently active queue node has enough

space in it, and if no, create a new node to be pushed onto the linked list:

Node *t;

if ( tail->write == tail->buffer + NodeSize )

t = new Node();

else

t = tail;

Now that we selected the target node (in case of a new node, this node is not yet part

of the linked list, since it must not be chained in while it is empty. The __sync_syn-

chronize call inserts a memory fence, barring both the compiler and the CPU from

re-ordering the update of the write pointer with the update of the buffer (buffers rep-

resent blocks of data in the queue) inside the node. I.e., the write pointer must only be

updated when the value in the buffer was already written, so that another core does

not see the new write value and read the content of the buffer before the current core

󰅭inishes writing.
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*t->write = x;

__sync_synchronize();

++ t->write;

Finally, the enqueue algorithm, in case it has created an entirely new node, needs to

update the top-level linked list of nodes. This entails 󰅭irst updating the next pointer of

the current tail and then updating the tail pointer itself to the new node. Again, a

memory fence prevents incorrect re-ordering of memory accesses. The tail pointer

needs to be updated last, because it is used in the emptiness check. If the writes were

reversed, another thread may conclude there are more nodes in the queue (because

head != tail) but access aNULLpointer still stored in thenextpointer of the previous

tail (in cases where it is equal to head).

if ( tail != t ) {

tail->next = t;

__sync_synchronize();

tail = t;

}

Besides inserting elements, the queue needs to support reading and removing elements,

a process that happens in another thread, and as such is asynchronous (concurrent)

with the algorithm above. Of course, the threads may be running on the same core, or

on different cores. In both cases, the code needs to be very careful about operation

ordering.

alg. 3.2 While the enqueue algorithm operates on the tail of the linked list, the reverse is true of

dequeuing. Fetching a value from the queue is done in multiple steps, and is therefore

slightly more complicated than inserting values is. First, we need to be able to check

whether the queue has any values in it, before attempting to fetch one:

bool empty() {

return head == tail && head->read >= head->write;

}

As outlined in the description of Algorithm 3.1, we require that the tail pointer is

updated last, so the emptiness check errs on the safe side: “falsely” reporting that the

queue is empty even if it is not. Since the reader and the writer are concurrent to

each other, this situation must be handled by the code, whether the emptiness check

of the queue is exact or not: a new value might arrive into the queue right after the

emptiness check has 󰅭inished executing in the reader thread. Claiming a non-empty

queue while it was empty, however, would be fatal for the rest of the code, which would

then inadvertently manipulate invalid pointers.
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The next piece of fetching an item is actually reading the value at the front of the queue.

This would be trivial, was it not for an edge case where a full block was emptied but

not dropped from the linked list yet. In that case, the node needs to be discarded. The

invariant that the queue is not entirely empty at this point allows us to assume that

head->next is a valid pointer.

T &front() {

if ( head->read == head->buffer + NodeSize )

head = head->next;

return *head->read;

}

Finally, after we have read it, we need to be able to remove the value at the front of

the queue. Again, we need to take care of the same edge case, since the data structure

allows reading and removing values independently: for example when an algorithm

decides that it won’t need to examine further graph edges in a particular round, it can

remove values from the IPC queue without examining them. Finally, if the active head

node has become empty, it is removed from the queue. Please note that the details of

memory management have been elided from the code to improve readability.

void pop() {

++ head->read;

if ( head->read == head->buffer + NodeSize && head != tail )

head = head->next;

if ( head != tail && head->read > head->buffer + NodeSize ) {

head = head->next;

pop();

}

}

3.2.1 Veri󰅭ication

For verifying that the IPC queue behaves as expected, we have used the following

property: for two threads (since an IPC queue always operates between two threads,

hence in this case the number of threads is not a parameter of the property), one a

writer and one a reader, the values inserted in the writer are the same as seen by the

reader. The property has 3 parameters, 𝐵 for block size of the queue (in number of

items), 𝐿 the maximum length of the queue and𝑁 , the number of distinct elements that

are inserted cyclically into the queue by the writer (and checked by the reader). There

are 2 global variables in the test:
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using Q = brick::shmem::Fifo< int, B >;

Q *q;

std::atomic< int > length( 0 );

the queue itself, and a helper atomic counter (the queue itself does not provide an

interface to obtain its length, as this cannot be done ef󰅭iciently). The writer thread is

implemented as follows:

struct Push : brick::shmem::Thread {

void main() {

int i = 0;

while ( true )

if ( length < L ) {

q.push( i );

++ length;

i = (i + 1) % (N - 1);

}

}

};

The main thread of the program then serves as the reader thread. We 󰅭irst initialise the

queue and start the writer thread:

int main() {

try {

q = new Q;

Push t;

t.start();

The main reader loop checks that the items inserted by the writer come in the correct

order. The implementations of front and pop perform additional assertions about the

state of the queue.

while (true)

for ( int i = 0; i < N - 1; ++i ) {

ASSERT_EQ( i, q.front( true ) );

q.pop();

-- length;

}

Since the loop above is in󰅭inite, all we need to do is clean up in case the loop was never

reached.
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} catch (...) {}

delete q;

return 0;

}

note The try blocks in the program are somewhat peculiar, as is allocation of the queue on

the heap. After all, we would normally construct the queue as a global variable, and

at 󰅭irst sight there do not seem to be any exceptions involved. However, both these

assumptions are false: memory allocation may always fail, and in C++ this leads to an

exception. Moreover, the constructor of the queue allocates memory from the heap

– if allocation fails in the constructor of a global object, there is no way to catch the

resulting exception and the program will crash. Under usual circumstances, this is not a

big problem – if there isn’t enough memory to construct the global state of the program,

it is unlikely that the program can do anything useful at all anyway. Nonetheless, DIVINE

will notice this problem and report it. Since this is undesirable, we need to write our

test code robustly.

While this may seem entirely super󰅭luous, it might constitute a real problem in practical

circumstances. If we consider programs that load shared libraries at runtime, presum-

ably for non-critical functionality, the global constructors of the library will need to

be executed at library load time. Since this might cause the program to crash even

though it would be able to operate normally under given circumstances without the

functionality provided by the library, this could be a serious problem.

B L N states walltime memory

2 2 2 18 675 0:15 829MB

2 2 3 18 408 0:15 819MB

2 3 2 64 543 1:26 1 446MB

2 3 3 63 870 1:24 1 430MB

3 2 2 21 951 0:22 869MB

3 3 3 132 147 2:12 2 006MB

tab. 3.1 IPC queue veri󰅭ication.

We have compiled a few stats about the model

used in veri󰅭ication of the IPC queue in the

following table. Especially the time measure-

ment is rather informal but should represent

veri󰅭ication time on a typical development lap-

top. The results can be seen in Table 3.1.

note The implementation of the IPC queue dates

back to 2008, and has seen extensive use ever

since. It is heavily used byDIVINE in its default

mode, and thanks to automated regression

testing, there have been tens of thousands of

successful runs of DIVINE on its regression test cases, and many other runs in different

circumstances. Despite these 6 years of continuous use, our veri󰅭ication effort in 2014

has uncovered an error in the implementation.

The code treated the conditions head == tail and head->next == 0 as equivalent,

even though the implementation of push created a brief window where this was vio-

lated. The emptiness check used 󰅭irst of the two conditions but the code to shift the

head pointer, quite naturally, checked the next pointer in head. In retrospect, this is

clearly wrong, but despite heavy use and multiple reviews of the code, the problem

only came to light as a counterexample in a veri󰅭ication attempt.
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3.3 Termination Detection

Parallel algorithms with communication do not always posses simple locally-observ-

able termination criteria, like their sequential counterparts. If termination criterion

of a parallel algorithm is described through its global state, the individual constituent

processes need to cooperate (and communicate) in order to decide whether the com-

putation is 󰅭inished. In many parallel algorithms, parallel searches being among those,

there is a simple termination condition – there are no more items on the work lists:

in graph exploration, this translates to “the open set is empty”. Nevertheless, since

the open set (or work lists in general) are distributed among the various participating

processes, agreement must be achieved that no process has any work remaining to do.

In distributed systems, this is made more complicated by the fact that parts of the open

set may be represented by in-󰅭light messages, already gone from process A, but not yet

arrived in process B.

All in all, there are 3 different contexts in which we need to consider the problem of

detecting termination: fully distributed memory, shared memory with message-based

communication and fully shared memory. Each of these contexts requires different

trade-offs.

In fully distributed memory, the solution is straightforward: use an established method,

eg. Safra’s algorithm [59]: whenever a process is active, the termination fails. When

all processes are passive and message counts in the system are stable, the system is

terminated if a second round of the distributed algorithm 󰅭inishes successfully. In

this case, it is the job of the message-passing infrastructure (MPI) to suspend passive

processes in order to conserve resources.

With shared-memory parallelism, however, there is no such infrastructure in place, and

our termination detection algorithm should be able to suspend execution of idle threads.

For this reason, we use a relatively complex scheme, employing pthread condition-

signalling primitives to allow suspension of idle threads until they receive work to do.

The details of the scheme are laid out in Algorithm 3.3.

alg. 3.3 Like with the IPC queue, we show (skeleton) C++ code for the idleness check algorithm

instead of pseudocode, in this case because we rely on pthread threading and locking

primitives, which are hard to model in executable pseudocode. The entire algorithm

runs with the global lock (mutex) held. Variables that start with an underscore are

member variables of the class: their values are persistent across multiple calls into this

code. The code runs in the context of any of the worker threads, whenever the thread

decides that locally the criteria for termination are met.

MutexLock __l( _global_mutex ); // RAII

_done = false; // reset

bool done = true;

Set locked, busy; // a set of mutexes



Parallel Search Implementation Termination Detection

62

The algorithm uses an array of mutexes, one for each worker thread. The 󰅭irst thing the

algorithm does is to try locking these mutexes in a non-blocking manner (who points to

the worker thread currently executing the algorithm):

for ( auto &i : _mutexes ) {

if ( i.first == who )

continue;

if ( i.second->try_lock() )

locked.insert( i.first );

else

done = false;

}

Next, if we managed to lock all the threads out using their respective mutexes, the algo-

rithm checks whether any worker threads have work waiting (regardless of whether

they are currently running or not):

if ( done ) {

for ( auto &i : _mutexes )

{

if ( (i.first != who && i.first->isBusy()) ||

i.first->workWaiting() )

{

busy.insert( i.first );

done = false;

}

}

}

All the locks are then released, since we now have decided whether the system as a

whole is idle or not.

for ( auto &i : locked )

mutex( i ).unlock();

If the decision was that everything is done, the persistent _done variable is updated, so

that all threads know that they can exit (no new work can appear in the system at this

point) and they are all woken up.
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if ( done ) {

_done = true; // mark

for ( auto &i : _conditions ) {

if ( i.first == who )

continue;

i.second->notify_one();

}

}

Otherwise, all threads that have work waiting (i.e. their IPC queues are not empty)

are woken up and this thread (the one executing the check) is suspended until another

thread decides to wake it up because work has accumulated while it was sleeping (or

the system terminates).

if ( !done ) {

for ( auto &i : _conditions ) {

if ( !i.first->workWaiting() )

continue;

i.second->notify_one(); // wake up this thread

}

if ( !who->workWaiting() ) {

__l.unlock();

condition( who ).wait( mutex( who ) );

__l.lock();

}

}

The 󰅭inal result is stored in the _done variable: if the system terminated while this

particular thread was sleeping (i.e. _done is true, regardless of the value of done), the

thread can safely exit.

Finally, in the case of a fully shared-memory system, we have the bene󰅭it of dynamic

load-balancing, hence it never happens that a subset of threads would be idle while an-

other subset of threads would be busy. This removes the need to suspend idle threads,

and makes the algorithm fairly simple: all it takes is to maintain a single counter rep-

resenting the total amount of un󰅭inished work in the system. Clearly, maintaining this

counter naively would result in a sort of “ping-pong” between the participating CPU

cores updating and testing the value all the time.

In order to mitigate this update problem, the counter is only approximated, adding and

subtracting work in fairly big steps. The exact value of the counter is only computed

when it is suspected that the computation may have terminated (eg. fetching items from
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a shared work queue fails). To this effect, all threads locally maintain their approxima-

tion error – the amount by which they caused the shared counter to be over-estimated.

When there appears to be no work left, all threads will in turn adjust the shared counter

down towards its exact value – if it becomes 0, the system has terminated.

3.4 Shared Queues

Queues are a basic building block for parallel graph exploration algorithms, as those

are usually based on some form of breadth-󰅭irst search. Graph exploration in shared

memory is most ef󰅭icient when both the open and the closed set are shared by all

threads. In this case, the vertices do not need to be statically partitioned and assigned

to worker threads, but the work can be balanced dynamically – any work done by

one thread is immediately and transparently seen by all other threads. In this kind of

implementation, the queue is both a representation of the open set, and at the same

time an instrument of load-balancing.

The 󰅭irst thing we notice is that all workers will be trying to push items onto one end of

the queue at once, and likewise, all workers will be trying to pull items out from the

other end – all at once. This means that whatever representation we choose for the

queue, its endpoints will be subject to considerable contention. In practice, this means

that inserting or removing individual elements is not a viable strategy, as the contention

overhead would dominate and worker threads would experience so much latency on

queue operations that we would be unlikely to be able to leverage any parallelism at all.

󰅮ig. 3.1 A multi-headed shared queue.

The natural design stemming from this consideration, then, looks like a rope frayed at

both its ends: each thread has its own end for both reading and writing to the queue, and

only when the length of this private end is suf󰅭iciently large (or small, on the reading

end), it is twisted into (or twisted out of) the common “trunk” that is shared by all

workers (cf. Figure 3.1). Clearly, this will only work for a suf󰅭iciently long queue: this

corresponds to the intuitive understanding that in a very narrow graph, it is basically

impossible to leverage any parallelism in the search.

While it is hard to imagine a signi󰅭icantly different basic design, there are still multiple

options on how to actually implement the idea, and a few parameters to tweak for

optimal performance. If the frayed ends are too short, we will see more contention –

however, if they are long, we risk compromising load balance, as some threads fail to

extract any items to process due to the entire queue being tied up in thread-speci󰅭ic

areas.
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The last question to answer is how to actually represent this frayed queue in terms

of memory organisation. We can imagine the entire queue being a singly-linked list,

with two “hubs” where the fraying happens. Whenever a strand becomes too long, it

can be spliced into the shared section of the queue. Likewise, when a strand becomes

too short, a section of the shared section can be atomically spliced into it. This clearly

achieves the goal of reducing contention at the ends – splicing a section of a pre-built

linked list is, afterall, a single atomic operation from the point of view of the shared

section of the queue. There is, however, a downside to this approach: it has poor cache

locality.

󰅮ig. 3.2 A chunked, multi-headed shared queue.

Like with IPC queues (Section 3.2), we would like to clump together at least a cache-

line worth of items in a contiguous memory block, ideally more. While it is dif󰅭icult to

imagine a fully concurrent queue that is not at some level represented as a linked list,

like it was the case with an IPC queue, nothing prevents us from chaining contiguous

blocks of items into this linked list. This also happens to play well with the idea of per-

thread strands – each such strand can be represented as a contiguous block, perhaps a

vector of items. The shared section of the queue then becomes a linked list of just such

blocks, appending and removing blocks – or chunks – as its units (see also Figure 3.2).

Finally, depending on workload, it may be the case that the shared section of the queue

is in fact accessed only very rarely. In such case, it may ostensibly make sense to drop

the requirement for lock-free manipulation at the hubs, winning a modest improvement

in memory ef󰅭iciency (when a lock is involved, we can safely use a deque for the list of

chunks instead of a linked list, which saves a few pointers – memory locality is unlikely

to be a concern in this case, as most of the time, threads will alternate in accessing a

particular hub).

3.4.1 Veri󰅭ication

Unlike the IPC queue, which is a lock-less design, the shared queue uses a lock-based

approach: adequate performance is instead recovered by coalescing many similar

operations (push and pop) into chunks which only need a single lock/unlock. Since

all access to the queue is guarded by RAII-style locks, correctness is reasonably easy

to ensure through code inspection. This does not preclude veri󰅭ication effort as such,

but is not a high-priority undertaking either; as such, veri󰅭ication of the code has been

relegated to future work.
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3.4.2 Benchmarks

To asses the trade-offs involved in the design, we have created a few benchmarks, the

results of which are shown in Figure 3.3. We have used four different implementations:

spinlock is a simple spin-lock protected deque (the same that we used in comparison of

IPC queue implementations), lockless is a lock-free implementation provided by Intel

TBB [96], hybrid is a chunked implementation with a lock-free shared section of the

queue while chunked is a chunked implementation with deque-based, lock-protected

shared section.

Benchmark results for different object sizes are shown in Section B.1.
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󰅮ig. 3.3 Scalability of various shared queue implementations.

3.5 Hash Tables

Hash tables comprise a very ef󰅭icient representation of sets, and in model checking, they

are the data structure of choice for representing the closed set during graph exploration.

A hash table is represented as a vector of values in memory, associated with a function

that maps keys to indices within this vector. The function is known as a hash function and

should posses a number of speci󰅭ic properties: the distribution of key images should be

uniform across the entire length of the vector, a small change in the key should produce

a large change in the value, the function should be fast to compute and such a function

should be available for arbitrary index size.



Parallel Search Implementation Hash Tables

67

In practice, to implement the last criterion, hash functions for hash tables are usually

implemented over the range of all 32 (64, 128 bit) integers in such a way that the

remainder of division by an arbitrary integer 𝑛 (or at least a power of two) will yield an

uniform distribution in {1, ..., 𝑛}. The current practice is to use a purpose-built lookup

function, either providing 64 (lookup2 [97] or the more recent lookup3 [98] are good

candidates) or even 128 bits of output (the currently best available are spooky hash [99]

and the city hash [130]).

3.5.1 Open vs Closed Hashing

Even with the best lookup function, hash collisions, and more importantly, index colli-

sions will happen in a dynamic hash table. Hence, an important part of the hash table

design is how to deal with such collisions, and there are two main options: open and

closed hashing. With a closed hashing scheme, each position in the hash table is a

“bucket” – capable of holding multiple values at the same time. This is implemented

using an auxiliary data structure, usually a linked list. While closed-hashing is easier to

implement and to predict, it usually gives poor performance. An alternative is to make

each position in the table only hold at most one value at a time, using alternate positions

for items that cause a collision. Instead of using a single 󰅭ixed position for each value,

the hash table has a list of indices. The most common such series are ℎ + 𝑎𝑖 + 𝑏 where

𝑖 is the sequence number of the index, ℎ is the index assigned by a lookup function

and 𝑎, 𝑏 are arbitrary constants (a linear probing scheme). Another common choice is

ℎ + 𝑎𝑖2 + 𝑏𝑖 + 𝑐 , obviously known as quadratic probing. An important property of a

probing scheme is that it does not (signi󰅭icantly) disrupt the uniform distribution of

values across indices. In case of a quadratic function and a hash table with a size that is

a power of 2, a simple set of constraints can be shown to give a good distribution [23].

3.5.2 Cache Performance

There are many considerations when choosing a good hash table implementation for

a particular application. In model checking, the hash table becomes very big, and as

such, it cannot 󰅭it in the CPU cache entirely. For that reason, it is very important that all

hash table operations have as much spatial and temporal locality as possible, to make

best possible use of the CPU cache. The very nature of a hash table means that multiple

insert or lookup operations on different keys will end up in entirely different memory

regions: this is unavoidable. However, with a naive implementation, even a single

lookup or insert can cause many cache misses: a closed-hashing scheme, for example,

will need to traverse a linked list during collision resolution, which is a notoriously

cache-inef󰅭icient operation. Even if we would use a different auxiliary data structure,

we would still face at least one level of indirection, causing an extra cache miss. With

open hashing and a linear probing function, we can expect a high degree of spatial

locality in the collision resolution process: all candidate positions can be fetched in a
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burst read from a continuous block of memory. In fact, this is a cache-optimal solution,

as it only incurs the one unavoidable initial cache miss per lookup.

However, linear probing has other problems: the property that makes it cache ef󰅭icient

also means that it has a strong tendency to create uneven key distribution across the

hash table. The clumping of values makes the collision chains long, and even though it is

cache-ef󰅭icient, the linear complexity of walking the chain will dominate after reaching

a certain chain length. In contrast, a quadratic scheme will scatter the collision chain

across the table. Hence, as a compromise, a hybrid probing function can be used: a

quadratic function with a linear tail after each “jump”: ℎ + 𝑞(𝑖/𝑏) + 𝑖%𝑏 where 𝑞 is a

quadratic function. This has the advantage of scattering keys across the table, but in

small clumps that load together into cache, without seriously compromising uniformity.

3.5.3 Variable-Length Keys

If there is substantial variation in key size, it is inef󰅭icient to store the entire key inline

in the hash table, and impossible if no upper bound on key size is known. This means

that we need to store pointers in the table and the key data becomes out-of-line. Unfor-

tunately, this has disastrous effects on cache performance: each key comparison now

requires an extra memory fetch: in order to 󰅭ind a key in the table, we need to compare

it to each element in the collision chain.

To negate this effect, we can store the actual hash value of each key inline in the table:

this way, we can 󰅭irst compare the hash values, without incurring a memory fetch. In

vast majority of cases, a 64-bit hash will only test as equal if the actual keys are equal

– we will only pay the price of an extra memory fetch in the cases where the keys are

actually equal, which is at most once per lookup, and in only a tiny fraction of cases

where the keys are distinct.

Even though ef󰅭icient, this approach doubles the memory overhead of the hash table,

storing a pointer and an equal-sized hash value for each key. This is especially prob-

lematic on 64-bit machines, making the overhead 16 bytes per slot when using a 64-bit

hash value. Moreover, a 64-bit hash value is needlessly big, a much smaller, 32 or even

16 bit value would provide nearly the same value in terms of avoided cache misses. On

most platforms, though, this will require arranging the hash table in terms of cache

lines, as 96 or 80 bit slots will cause serious mis-alignment issues. With the knowledge

of a cache-line size, we can organise the hash table into “super-slots” where each super-

slot 󰅭its in a cache line, and packs the pointers 󰅭irst and the corresponding hash values

next, in the tail.

This way, we can store 12 slots of 64-bit pointer + 16-bit hash values in a typical 128-

byte cache line, or 10 slots of 64-bit pointer + 32-bit hash value. On architectures with

64-byte cache lines, this becomes 6 and 5, respectively. The downside of this approach

is that it requires a rather peculiar hash table layout, or alternatively, a careful use of

manual memory prefetching together with a two-vector representation (one vector for

pointers, another for hash values).
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On 64-bit machines, though, there is another option, which avoids most of the layout

complexity at the table level. Contemporary CPUs only actually use 48 bits out of the

64 bit pointer for addressing, the rest being unused. While it is strongly discouraged

to use these 16 extra bits for storing data (and CPU vendors implement schemes to

make it hard), this discouragement is more relevant at the OS level. At the expense of

forward portability of the hash table implementation, we could use these 16 bits to

store the hash value, reconstructing the original pointer before dereferencing it. Finally,

it is also possible to use an ef󰅭icient pointer indirection scheme, which explicitly uses

48-bit addressing (see also Section 3.7) in a portable, forward-compatible fashion.

3.5.4 Capacity & Rehashing

As we have already said, a hash table is normally implemented as a vector, whether it

contains single-value slots or multi-value buckets. As such, this vector has a certain

size, and as keys are added into the table, it becomes increasingly full. The ratio of slots

taken to slots available is known as a load factor, and most hash table implementations

perform reasonably well until load of approximately 0.75 (although factors as high as

0.9 can be ef󰅭icient [70]) is reached. At certain point, though, each hash table will suffer

from overlong collision chains. This problem is more pronounced with open hashing

schemes: in extremis, if there is only one free slot left, an open hashing scheme may

need to iterate through the entire vector before 󰅭inding it. There are two options on

how to avoid this problem: the more ef󰅭icient is to approximately know the number of

keys that we’ll store beforehand. However, this is often impossible, and in those cases,

we need to be able to resize the table. This is usually done in the manner of a traditional

dynamic array, only the values are not copied but rehashed into the newly allocated

vector, which is usually twice the size of the current one.

Rehashing the entire table is at best a linear operation, but amortizes over insertions

down to a constant per insert. In real-time applications, gradual rehashing schemes

are used to avoid the latency of full rehashing. However, in most application, latency

is of no concern and monolithic rehashing is in fact more ef󰅭icient. As a small bonus,

rehashing the table will break up existing collision chains and give the table an optimal

uniform layout.

3.5.5 Concurrent Access

As we have discussed, open hashing is more cache ef󰅭icient, and compared to a simple

closed hashing scheme is also more space ef󰅭icient. However, closed hashing has an

important advantage: linked lists are a data structure easily adapted for lock-free

concurrent access. Hence, most concurrent hash table implementations are based on

closed hashing. The situation with open hashing is considerably more complex. It is

relatively straightforward to implement a 󰅭ixed-size hash table (i.e. for the scenario

where we know the size of the working set in advance). InDIVINE, we have implemented

a (nearly) lock-free, resizable open-hashed table [155], to retain the advantages of
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open hashing, while at the same time being able to share the closed set among multiple

threads.

Let’s 󰅭irst discuss how a 󰅭ixed-size open-hashed table can accommodate concurrent

access. The primary data race in a non-concurrent table is between multiple inserts: it

could happen that two insert operations pick the same free slot to use, and both could

write their key into that slot – this way, the insert that wrote later went OK; however,

the 󰅭irst insert apparently succeeds but the key is actually lost. To prevent this, write

operations on each slot need to be serialised. The simple way to achieve this is with

a lock: a spinlock over a single bit is simple and ef󰅭icient on modern hardware, and

since each hash table slot has its own lock, contention will be minimal. Using a lock

is necessary in cases where the key cannot be written atomically, i.e. it is too long. If

the key 󰅭its within a single atomic machine word, a locking bit is not required, and an

atomic compare-and-swap can be used to implement writing a slot. When a lock is used,

the lock is acquired 󰅭irst, then the value to insert and the locked slot are compared and

possibly written. When using a compare-and-swap, in case it fails, we need to compare

the keys – concurrent inserts of the same key could have occurred, and the same key

must not be inserted at two different indices.

Concurrent lookups are by de󰅭inition safe, however we need to investigate lookups

concurrent with an insert: it is permissible that a lookup of an item that is being inserted

at the same time fails, since there is no happens-before relationship between the two

(this is in fact the de󰅭inition of concurrency). It can be easily seen that an insert of a

different key cannot disrupt a lookup of a key that is already present: all inserts happen

at the end of a collision chain, never in the middle where they could affect a concurrent

lookup.

In cases where variable-length keys are used based on the scheme presented in Sec-

tion 3.5.3, lock-free access is only possible for variants where the pointer and the hash

(if present) are located next to each other in memory, i.e. a hash-free (pointers only)

table, or the 64 bit + 64 bit variant (only on machines with atomic 128-bit compare-

and-swap), or the variant with pointer and hash combined into a single 64 bit value.

3.5.6 Concurrency vs Resizing

However, the scheme outlined in last section does not take the need for resizing and

subsequent rehashing into account. The 󰅭irst problem of a concurrent resize operation

is that we cannot suspend running inserts, as this would require a global lock. However,

insert as a whole is not, and cannot be made, an atomic operation: only the individual

probes are atomic. As a consequence, if we were to re-allocate the table at a different

address and de-allocate the existing one, a concurrent insert could be still using the

already freed memory. Since we cannot interrupt or cancel an insert running in a

different thread, nor can we predict when will it 󰅭inish, the best course of action is to

defer the de-allocation. Unfortunately, even if we avoid writing into invalid memory, the

same set of circumstances can cause an insert to be lost, since at the point it is written,
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the copying (rehashing) of the table might have progressed beyond its slot (and since

the probing order is not, and cannot be made, monotonic, this cannot be prevented).

In order to clean up unused memory as soon as possible, and to solve the “lost insert”

problem, we can, after each insert, verify that the currently active table is the same as

the table that was active when the insert started. When they are the same, no extra

work needs to be done, and the insert is successful: this case is the same as with a 󰅭ixed-

size table. If however the active table has changed, the insert has to be restarted with

the new table. Additionally, we can use the opportunity to also clean up the old table if

it is no longer used – if there are no further threads using the table. To reliably detect

this condition, we need to associate an atomic reference counter with each pointer.

Finally, if an insert has been restarted and succeeds, but the reference count on the old

table pointer is not yet zero, the thread doing the insert can optionally help rehashing

the table.

3.5.7 Veri󰅭ication

For veri󰅭ication of the concurrent hashset implementation, we have opted for a property

parametrised with two numbers, 𝑇 – the number of threads accessing the shared data

structure, and 𝑁 – the number of items each of those threads inserts into the data

structure. The item sets inserted by each thread are disjoint.

First, we de󰅭ine a few types, namely the hasher which de󰅭ines how to compute hashes

from items and a few other item properties, like which value of the item type (int in

this case) represents non-existence. The HS type represents the test hash table itself,

and t is a pointer to the instance of the hash table we will be using for expressing the

property.

using hasher = brick_test::hashset::test_hasher< int >;

using HS = brick::hashset::Concurrent< int, hasher >;

HS *t = nullptr;

With those de󰅭initions out of the way, we de󰅭ine what our model thread is like: namely,

it takes two parameters – from and to, and inserts those items into the hash table. When

all the items have been inserted, it veri󰅭ies that the items it has inserted are indeed

present.
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struct Insert : brick::shmem::Thread {

int from, to;

HS::ThreadData td;

void main() {

try {

int i = from;

for ( int i = from; i < to; ++i )

t->withTD( td ).insert( i );

for ( int i = from; i < to; ++i )

assert( t->withTD( td ).count( i ) );

} catch (...) {}

}

Insert() : from( 0 ), to( 0 ) {}

};

Finally, we need to set up the worker threads and the hash table. We use a table which

is limited to 4 size increases (the hash table normally uses a factor 16 resize until it

reaches the size of at least 512k cells, but this fast initial growth is suppressed for

veri󰅭ication runs, using the normal 2-fold increase in each growth step). The initial

size of the hash table is set to 2 cells, so that in most cases at least 1 resize is required

during the test.

int main() {

try {

Insert th[T];

t = new HS( hasher(), 4 );

t->setSize(2);

We then proceed to set up parameters of the individual threads, setting their from/to

parameters to non-overlapping, consecutive ranges.

for ( int i = 0; i < T; ++i ) {

th[i].from = 1 + N * i;

th[i].to = 1 + N * (i + 1);

}

The threads are then started, with the main thread taking a role of a worker thread as

well, in order to reduce state space size by not spawning an extra thread when it is not

needed. Since memory allocation can happen during thread creation, we need to guard

the loop for exceptions and clean up in case of an allocation failure.
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int i;

try {

for ( i = 0; i < T - 1; ++i )

th[i].start();

} catch(...) {

for ( int j = 0; j < i; ++ j )

th[i].join();

}

try {

th[T - 1].main();

} catch (...) {}

When the main thread 󰅭inishes its portion of the work, it waits for the other threads

and cleans up.

for ( int i = 0; i < T - 1; ++i )

th[i].join();

} catch (...) {}

delete t;

return 0;

}

In this scenario, we can observe the huge impact of the exponential state space increase.

For 𝑇 = 3,𝑁 = 1, veri󰅭ication of the above test-case took multiple days using 32 cores,

generated over 716 million states and used about 80GiB of RAM. On the other hand,

veri󰅭ication for 𝑇 = 2,𝑁 = 1 󰅭inishes in less than 3 minutes, uses 1.4GiB of RAM and

generates fewer than 100 000 states.

This means that out of the desirable properties, we were able to verify that a cascade of

two growths (possibly interleaved) is well-behaved when two threads access the table –

using 𝑇 = 2,𝑁 = 4 – in this scenario, a single thread can trigger a cascade of 2 growths,

while other threads are inserting items. We were also able to verify that a single growth

is correct (it does not lose items) in presence of 3 threads. A scenario with cascaded

growths and 3 threads, however, seems to be out of our reach at this time. Nevertheless,

the veri󰅭ication effort has given us precious insight on the behaviour of our concurrent

hash table implementation.

note While the hash table described in this section was in a design and prototyping phase

we have encountered a race condition in the (prototype) implementation. The fact that

there is a race condition was discovered via testing, since it happened relatively often.

The problem was 󰅭inding the root cause, since the observable effect of the race condition

happened later, and traditional debugging tools do not offer adequate tools to re-trace
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the execution back in time.23 In the end, we used DIVINE to obtain a counterexample

trace, in which we were able to identify the erroneous code.

3.5.8 Benchmarks

To assess performance of the 󰅭inal design with concurrent resizing, we have created

a number of synthetic benchmarks. As the baseline for benchmarking, we used im-

plementation of std::unordered_set provided by libc++ (labelled “std” in results).

Additionally, we have implemented a sequential open-hashed table based on the same

principles as the 󰅭inal design, but with no concurrency provisions (tables “scs” and

“sfs”) – this allowed us to measure the sequential overhead of safeguarding concurrent

access. Moreover, DIVINE uses this sequential-access-only implementation for cases

where concurrent access cannot happen.

Since std::unordered_set is only suitable for sequential access, as a baseline for mea-

suring scalability, we have used a standard closed-hashing table (labelled as “cus”, from

concurrent_unsorted_set), an implementation of a concurrent hash table provided

in Intel Thread Building Blocks [96]. The 󰅭inal designs presented here are labelled “ccs”

and ”cfs”. The middle letter indicates the size of the hash table cell c for “compact” and

f for “fast”: the “fast” variant uses a hash cell twice as wide as a pointer, storing a full-

sized (64b) hash inside the cell. The “compact” variant uses a truncated hash that 󰅭its

in the spare bits inside a 64-bit pointer. (The hash inside cells is only useful in hash

tables with out-of-line keys; for integer-keyed tables, they are simply overhead).

As the common performance measure, we have chosen average time for a single opera-

tion (an insert or a lookup). For benchmarking lookup at any given load factor, we have

used a constant table with no intervening inserts. Five types of lookup benchmarks

were done: miss (the key was never present in the table), hit (the key was always

present) and a mixture of both (1/2 hit chance, and 1/4 hit chance). For insertions, we

have varied the amount of duplicate keys: none, 25 %, 50 % and 75 %.

All of the insertion benchmarks have been done in variant with a pre-sized table and

with a small initial table that grew automatically as needed. Finally, all of the bench-

marks outlined so far have been repeated with multiple threads performing the bench-

mark using a single shared table, splitting workload equivalent to the sequential bench-

marks, distributed uniformly across all threads. All the benchmarks have been done on

multiple different computers, with different number of CPU cores and different CPU

models, although we only report results from a single computer – a 12-core (2 sockets

with 6 cores each) Intel Xeon machine.24

As a representative plot, we have chosen insertion with 50 % key duplicity rate, with 1

million items and a pre-sized hashtable with half a million cells, in Figure 3.4. All the

remaining plots were relegated to Appendix B, Section B.3.

23 An extension to gdb to record execution exists, but we were unable to use it successfully. Either the window

in which time reversal was possible was too narrow, or the memory and time requirements too high.
24 The full data set will be eventually published online, but is too extensive to 󰅭it even in an appendix of this

thesis.
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󰅮ig. 3.4 Scalability of insertion into various hash table implementations; each item

was inserted twice on average.

3.6 Compression

Depending on the veri󰅭ication task, the storage size of a single vertex (state) can be

fairly large. This is especially true of more complicated model checking inputs, like

LLVM25. In those cases, as we have mentioned in Section 2.5.2, it makes sense to

consider compression schemes for states and/or the entire state space. In DIVINE, we

have implemented the latter [153], using a scheme similar to collapse [86]. Since our

hash table is resizeable to facilitate better resource use, we cannot directly use some of

the improvements that rely on 󰅭ixed-size hash tables [110]. On the other hand, since

the hash table we use can accommodate variable-size keys, we are not limited to 󰅭ixed-

layout trees and can use content-aware state decomposition like in the original collapse

approach (but unlike original collapse, we can decompose the state recursively, which

is useful with more complex state vectors, like those arising from LLVM inputs). The

decomposition tree structure is illustrated in Figure 3.5.

Our approach uses three hash tables that are adaptively resized as needed. One holds

root elements – one root element corresponds to each visited state 1:1. These root

25 In theory, nothing about LLVM per se causes states to be large; in practice, however, inputs that are expressed

in terms of LLVM have a tendency to have much richer state than more traditional formalisms, like DVE or

ProMeLa.
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state vector

root component vector

internal component vectors

leaves

󰅮ig. 3.5 A decomposition of a state into a component tree. The leaves represent

fragments of the original state vector.

elements are represented as component vectors, where each component is represented

as a separate object in memory. Those components are de-duplicated using a leaf table –

a state fragment that is identical in multiple different states is only stored once, and the

root table refers to the de-duplicated instances of those objects. To facilitate recursive

decomposition, we also maintain a third table, internal, for internal nodes of the state

decomposition tree. The internal nodes have the same structure as root nodes (a vector

of pointers), but they do not correspond to complete states and the internal table is not

consulted by the model checking algorithm when looking up vertices during search.

The component vectors contain a 󰅭lag to decide whether a particular component is

another component vector or a state fragment, as otherwise they are not distinguishable

– both are stored as raw byte arrays in memory, without distinct headers. Clearly,

reconstructing a state vector from a component vector is easily done by walking the

decomposition tree and copying leaf node content to a buffer from left to right. In

theory, storing the size of the entire state in the root component vector could improve

ef󰅭iciency by making the reconstruction work in a single pass, copying fragments into a

pre-allocated buffer. In practice however, the decomposition trees are small and the

requisite pointers are retained in fast CPU cache on the 󰅭irst pass (when the buffer size

is computed), making the savings from a single-pass algorithm small. Moreover, the

extra memory overhead of storing another integer along with each state is far from

negligible.

ex. 3.1 The trade-off inherent in tree-based compression schemes is visible in Figure 3.5 and

3.6. Compare the number of squares (memory cells) in these two pictures. The original

state vector occupies 11 cells, its decomposition uses 18 cells. However, adding another

similar state (state B in Figure 3.6) increases the memory use only by 9 cells in the

compressed variant, while it would add another 11 cells without compression. The

state vectors illustrated here are extremely small; real-world LLVM states typically

occupy hundreds or thousands of memory cells and bigger states naturally favour
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state A state B

󰅮ig. 3.6 A de-duplicated pair of states. The layers are analogous to Figure 3.5. States

A and B differ only in the light green component.

compression. On the other hand, a realistic implementation introduces slightly more

memory overhead than the idealised picture show here.

3.7 Memory Allocation

Memory allocation is an extremely frequent operation in an explicit-state model checker.

Moreover, the memory pool that threads allocate from is a shared resource, requiring

certain amount of synchronisation. One way to side-step this issue is to statically pre-

allocate as many resources as possible – this is the approach taken by, most prominently,

the model checker SPIN. The main downside of this approach is that the tool either has

to “guess” resource use very well ahead of time, or rely on the user to provide guidance.

In all but very simple scenarios, the former is very hard to get right – models vary

wildly from one to another in which parts of the model checker they stress. Some

require very long queues or deep stacks, even when the overall size of the state space

is comparatively small. Others only need a very small queue but the state space is huge,

and almost all memory needs to be allocated towards the closed set. Some models

have few big states, requiring few slots in the hash tables, but need a lot of memory for

storing the states themselves.26

However, there is a more important limitation, namely with regard to multitasking:

users expect to be able to execute multiple instances of a program at the same time,

especially if the veri󰅭ication runs are well below the limits of the computer they are

using. Static resource allocation in such cases becomes a chore – especially so if multiple

users are involved on shared hardware. In most cases, we aim at interactive use: batch

scheduling is only suitable for very large instances, where the entire computer (or a

cluster) is tied up in a single veri󰅭ication task. Meanwhile, a large SMP system can easily

serve many tasks and many users interactively – but this means that tasks should only

consume resources that they actually need, so that resource con󰅭licts are minimised.

26 The LTSmin model checker avoids this particular resource split by storing state vectors decomposed, each

󰅭ixed-size chunk stored inline in the large pre-allocated hash table.
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This is very hard to achieve if memory needs to be pre-allocated at a time when the size

of the state space is not yet known.

To address those issues, DIVINE uses dynamic allocation for all resources, achieving op-

timal hardware utilisation when multitasking. There are, however, multiple challenges

associated with this 󰅭lexibility, especially when dealing with parallel algorithms.27

3.7.1 Allocation Pro󰅭ile

When designing a custom memory allocator, the 󰅭irst thing to ask is what is the allocation

pro󰅭ile of our target application. Are object sizes similar, or distributed across a wide

spectrum? Are there many small allocations, or few big allocations? Is memory retained

for a long time, or a short time? Is memory deallocated often?

We can answer most of those questions for DIVINE: for one, there is a tendency to

see many objects of similar size. This is most visible in models with 󰅭ixed-size states

(this is actually the case with majority of input languages in DIVINE: most traditional

modelling languages require all state variables to be explicitly declared and do not

provide dynamic variables). It is also true, to a smaller extent, with variable-size state

vectors: many states will differ in content but not the size of the state vector. For LLVM,

state size changes when a thread is created, a function is entered or left and when a

new thread is created. All these operations are comparatively rare, so we can expect

many states of any given size to appear over time. This is even more pronounced when

compression enters the picture, since the fragments have more uniform sizes than the

entire state vectors. This favours a design where objects of a particular size are grouped

into bigger blocks, causing fewer calls to the parent allocator.28

note This layout also offers the opportunity to store object size as allocator metadata, once

per block of objects. When state vectors are of variable length, their length needs to be

stored somewhere: if each state vector stores its own length, this either adds 4 bytes

of overhead per state, or causes the rest of the vector to be stored unaligned. Both are

far from optimal. If the size is stored once per block, a single 4-byte word can be used

to keep the size for hundreds of objects, saving considerable amounts of memory. This

scheme however means that the allocator needs to be able to 󰅭ind block metadata from

a pointer, to read the object size associated with the pointer.

Second, there are two main classes of objects during state space exploration: the 󰅭irst

class contains state vectors that are part of the closed set, and will be reclaimed at the

end of the veri󰅭ication run, but not earlier. The second class contains newly generated

successor states that may or may not be duplicates of states in the closed set – some of

27 Intra-process parallelism can be very useful even when multiple veri󰅭ication instances are involved. A 64-core

system can easily accommodate 4 veri󰅭ication tasks running on 16 cores each, splitting memory between

those 4 tasks as needed. If memory becomes scarce, some of the processes can be suspended and swapped

out to disk and later, when other tasks have 󰅭inished, resumed again.
28 In case of DIVINE, the parent allocator is the Intel’s TBB [96] malloc, which in turn calls glibc’s malloc to

obtain memory in yet larger chunks.
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those will go on to be added to the closed set (which may require their re-allocation

if compression is enabled) while others will be deallocated when they are found to

be duplicates. In other words, some objects are short-lived, and some are very long

lived – however, there are few, if any, “in-between” objects. This split would favour a

generational allocator – especially since we often know ahead of time whether a partic-

ular object will be short- or long-lived (at least in the case where compression comes

into play – in other circumstances, the distinction is less clearly cut). Nevertheless, we

eventually decided against using generational approach: the advantages of multiple

generations are more pronounced in a garbage-collected scheme (whereas DIVINE re-

leases memory explicitly), and there is still the question of extra overhead of moving

objects across generations when compression is not in use. The possible advantage

even in an explicitly managed heap would be the ability to pack the mature space more

tightly and optimise the nursery for high allocation performance and best possible

alignment.

Finally, the number of memory allocations is very high, so throughput of the allocator

is very important. Latency, on the other hand, is not very interesting, as DIVINE is not

in any sense a real-time application. This means that when there are opportunities to

pre-compute particular operations for many objects at once, this should be preferred if

it improves throughput at the expense of latency.

3.7.2 Pointer Representation

There are two basic options on how to represent pointers: either use raw machine

pointers, or use an indirection scheme. The former has a clear advantage in terms

of access speed: dereferencing a raw machine pointer is as fast as it gets – any other

representation will incur additional costs. On the other hand, most contemporary

platforms use pointers that are 64 bits wide – for realistic memory sizes, this constitutes

substantial overhead. Current CPUs can physically address at most 48-bit memory

addresses, while the rest of the pointer representation is unused – that is 16 bits of

memory lost for every pointer. Moreover, there are plenty of places in DIVINE where

extra bits packed inside pointers can save considerable amount of memory: the hash

tables, for example, can use (some of) those 16 bits to store a small part of the hash value

to avoid full object comparisons and speed up lookups considerably (see Section 3.5.3),

at no extra memory expense. The compression algorithm can use a few bits for type-

tagging pointers (see Section3.6), making it free, in terms of memory use, to distinguish

state vector fragments from state component vectors.

Moreover, a custom pointer representation enables the allocator to easily 󰅭ind the block

header for any given pointer, making it possible to obtain object sizes from pointers to

those objects. As explained in previous section, this can save considerable memory in

some cases.

The main downside is that the pointer dereference operation needs to consult a lookup

table to reconstruct the raw machine pointer. The lookup tables can be represented in

such a way that this can be implemented using a single addition instruction, followed
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by a memory fetch from the lookup table, followed by another addition instruction.

Since the lookup tables are small, we can hope that they will always be readily available

from fast CPU cache. In our informal testing, the slowdown from this indirection was

in single-digits percent range, while the memory savings were considerable. Based on

this, we have decided to use indirect pointers for storing states and state fragments.

3.7.3 Concurrent Access

Clearly, multiple threads need to allocate memory. The canonic way to ensure scalable

multi-threaded allocation is to keep per-thread allocation structures and only synchro-

nise threads when large blocks are requested from the parent allocator. Somewhat

more importantly though, multiple threads need to free memory, without synchronis-

ing too often. This is more problematic, because one thread may allocate memory and

another thread may need to free it. Normally, memory allocators use a data structure

called a freelist to maintain the map of released but not yet re-used memory. Since

our allocator is tuned for managing many objects of a limited selection of sizes, it is

possible to maintain a separate freelist for each object size – this is by far the most

ef󰅭icient option. General-purpose allocators often need to use more complicated freelist

representations in order to support more advanced heap maintenance in presence of

highly variable object sizes.

note Freelists are often implemented inline – when a heap object is freed, the memory it

occupied is rewritten with a freelist cell – in our case, the freelist is a singly-linked

list with no additional structure. The downside of this approach is that each memory

object needs to be at least as big as a pointer. For very small objects, this could mean

signi󰅭icant overhead. However, since this is a special-purpose allocator, we know that

DIVINE rarely needs to allocate objects signi󰅭icantly smaller than a single pointer – even

very simple models usually have states at least 8 bytes long.

As mentioned above, a concurrent allocator needs to be able to ef󰅭iciently share the

freelists among multiple threads. There are two basic freelist operations: insert and

remove. First is used when memory is freed and the reclaimed memory needs to be

tracked so it can be re-used later. The latter is used when an allocation request is

made – if there is a non-empty freelist for the right object size, a cell is removed from

that freelist and used to satisfy the request. New memory is only allocated when the

corresponding freelist is empty. When the freelist is represented as a singly linked list,

it can be used either as a queue or as a stack: in case the insert and remove operations

are performed on opposite ends of the list, the freelist behaves as a queue and when

they happen on the same end, it behaves as a stack. In most cases, stack semantics are

the more suitable choice: they are easier to implement (there is no need to maintain a

separate pointer to the end of the list) and newly re-used block have usually been freed

recently; as such they stand a better chance of being still present in CPU cache.

At 󰅭irst sight, a queue-style freelist may offer better access from multiple threads – after

all, it provides two distinct locations for the remove and insert operations, reducing the
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amount of synchronisation that is required if multiple threads access the same freelist

at once. However, this is far from enough: in a multi-threaded environment, there will

be many insert-insert and remove-remove con󰅭licts. In all but very special circumstances,

the freelists cannot be entirely shared. The correct approach is very similar to what

we have used in the implementation of a shared queue (see Section 3.4). We set a

threshold 𝑛 (the exact value is subject to 󰅭ine-tuning), which dictates how big a per-

thread freelist can become – after reaching this size, the freelist is abandoned by its

owner thread and moved to a shared list of freelists, and a new empty freelist is created

for local use.

This means that we have 2 types of freelists in the system: private, per-thread freelists

– one for each object size in each thread. Each private freelist contains at most 𝑛

objects. Additionally, there are shared freelists – these are always of the same size, each

containing exactly 𝑛 objects. When a thread needs to allocate memory and its private

freelist for the particular size is empty, before resorting to obtaining fresh memory, it

checks whether a suitable shared freelist exists. If this is the case, it claims ownership

of that freelist, changing its status to private and satis󰅭ies the allocation request from

this newly private freelist.

This way, insert and remove operations of a single thread always share the same location

– maximising cache re-use, but multiple threads never use the same location for any

freelist operations, minimising synchronisation overhead.

3.7.4 Implementation

The considerations laid out in previous sections give us a fairly good guidance on how

to implement an ef󰅭icient allocator for use in DIVINE. Our implementation uses a custom

pointer type, which is translated to machine pointers on demand, at the cost of an

extra memory fetch (which is expected to be served from cache, since the indirection

table is usually very hot) and a couple of addition instructions. All data structures in

the hot paths of the allocator (object allocation and deallocation) are thread-local and

expensive thread synchronisation only happens in special circumstances, usually after

some threshold is exceeded: either per-thread freelists have grown too big, or they

have become empty; or when all freelists are empty and no pre-allocated memory is

available, in which case it needs to be obtained from the parent allocator.

New memory is obtained in blocks of adaptive size. Even though we expect that each

object size will contain many different objects, this is not always, strictly the case: one

particular corner-case is LLVM models with compression. Even though many states

of the same size are allocated and later deallocated, their lifetimes only rarely overlap

– therefore, it is advantageous to 󰅭irst allocate blocks for only a few objects of a given

size. The overhead per object is higher in those cases, but if many objects of the same

size are allocated later, the extra cost of the 󰅭irst few blocks is quickly amortised by

allocating larger and larger blocks over time.
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The shared data structures: indirection tables and lists of shared freelist, are imple-

mented as standard lock-free data structures. Since they are only accessed compar-

atively rarely, no special precautions need to be taken to make access to them more

ef󰅭icient – the indirection table is almost entirely read-only – it is only written when a

new block is allocated. Additionally, a shared counter is maintained to assign blocks to

threads (threads claim 16 blocks at once to minimise contention on this counter; the

blocks are only allocated when they are needed though).
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4 LLVM

In this chapter, we will focus on LLVM bitcode, its role in the LLVM program compilation

framework, its semantics, and our adaptation of DIVINE to work with it as an input

language.

4.1 Language & Bitcode

LLVM is, foremost, a toolkit for building compilers. It consists of a set of libraries

for building an intermediate representation of a program, a large number of transfor-

mations on this intermediate representation, and a number of platform-speci󰅭ic code

generators, which output a CPU-speci󰅭ic assembly program.

This is very similar to how all modern compilers work. The interesting difference that

we can exploit for model checking is that the intermediate language has a speci󰅭ication

and a stable external representation. The libraries can load this external representation,

called LLVM bitcode, and work with it the same way as a compiler middle-end would

work with the output of a front-end. Finally, LLVM libraries provide a simple interpreter

for this intermediate representation, which is very unusual in compilers.

The language is, in a way, similar to a traditional assembly language of many CPUs, but

also has some crucial differences. An LLVM bitcode 󰅭ile contains global data speci󰅭ica-

tion and a number of function de󰅭initions. Each function is represented as a control-

󰅭low graph, in terms of basic blocks.

def. 4.1 A basic block is a sequence of machine (or LLVM) instructions with no branching. The

computation of a program within a basic block is entirely sequential, performing in-

structions in their order of appearance in the block. The 󰅭inal instruction of a basic

block may be a branching (jumping) instruction. ■

The instructions in each basic block operate on values in virtual registers, or they can

move values from registers to memory or vice-versa. Each instruction has at most one

output value which is stored in a virtual register upon execution of the function, and

any number of inputs which must all reside in registers, or can be provided in the form

of constants. Memory access is implemented through load and store instructions,

which take an address stored in a register.

In addition to memory access, the instruction set of LLVM includes the standard 󰅭ixed-

-point and 󰅭loating-point arithmetic operations, bitwise operators, control 󰅭low (branch-

ing, function calls and exception handling), comparison operators and value conver-

sions.

ex. 4.1 Let’s have a look at a fragment of an LLVM bitcode program. Here, @i is name of a global

value (containing a memory address), %n are names of registers, br is a branching
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instruction. i32 is the data type – a 32bit integer – stored in registers %5 and %10, i32*

is the type – a memory address of a 32 bit integer – of the value stored in @i.

Bitcode is naturally broken up into basic blocks (see De󰅮inition 4.1):

<label>:4

%5 = load i32* @i

%6 = icmp slt i32 %5, 2

br i1 %6, label %7, label %4

Different basic blocks are connected via jump instructions, in this case br in a three-

parameter form, i.e. a conditional jump. It might either loop back on its own start (label

4) or continue on to the second basic block:

<label>:7

%9 = load i32* @i

%10 = add nsw i32 %9, 1

store i32 %10, i32* @i

br label %4

4.1.1 Control Flow Instructions

In LLVM, like in most machine languages, there are a few instructions implementing

control 󰅭low, namely conditional and unconditional branching (or jumping; both direct

and indirect), call, return and invoke (a special variant of call for use with exception

handling). All control 󰅭low instructions other than call/invoke are terminator instruc-

tions: they always come last in a basic block. Moreover, the target of a jump in LLVM is

a basic block: it is not allowed to jump into the middle of a basic block.

4.1.2 Single Static Assignment

LLVM bitcode is always in a (partial) SSA form: each register is only assigned (de󰅭ined)

once. However, this is only true of register values: address-taken variables (i.e. those

that can become targets of a pointer) are not part of the SSA and exist in a separate

space as normal “mutable” variables. In straightforward, unoptimised LLVM bitcode,

each C-level variable is an address-taken variable, created by an alloca instruction.

Only compiler-created intermediate values become register values. However, the LLVM

optimiser can (and will) lift many address-taken variables into registers if the addresses

of those variables are not actually taken.

In order to allow non-trivial control 󰅭low, SSA needs so-called 𝜑 instructions, or nodes.

These instructions may appear in the head of a basic block whenever multiple distinct

branching instructions contain this basic block as a target. The semantics of the𝜑 node
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is then to create a new register, with content copied over from another pre-existing

register depending on which other basic block transferred control to this basic block.

4.1.3 Data and Registers

Both values and variables are typed in LLVM: the types are either primitive/scalar

(integer values with speci󰅭ic bit widths, 󰅭loating-point numbers, pointers) or aggregate:

arrays, vectors and tuples. Many instructions put restrictions on data types that their

operands can take, eg. integer arithmetic requires integral arguments, and provides an

integral result. Additionally, LLVM provides explicit type casting, bit-extension and bit-

truncating operations. Unlike 󰅭irst-class values in registers,memory is untyped in LLVM.

Storing a value at a particular address and loading the same address into a register of

different type is permissible, and is equivalent to a bitcast operation. This somewhat

reduces the strength of the type system, as it only applies to the SSA portions of the IR.

Since layout of aggregate types is a complex issue – depending on particulars of the tar-

get architecture and the target ABI29 – LLVM provides primitive operations to compute

offsets into aggregate types, getelementptr and to extract/insert individual compo-

nents out of aggregate values stored in registers (insertvalue and extractvalue).

Unfortunately, clang does not exclusively use getelementptr, and as such, we need to

make sure that the LLVM bitcode layout matches clang’s expectation. For this reason, we

have to respect the layout of structures used by LLVM– even though it would be possible

forDIVINE to pack certain values more tightly than they are in usual circumstances. This

most importantly includes 64-bit wide pointers in LLVM bitcode generated in 64-bit

mode of clang.

4.1.4 Exception Handling

Exception handling is an area where the code generator needs to cooperate in order

to implement correct language semantics. Since code generators are part of LLVM,

but LLVM itself is programming-language-agnostic, the LLVM code generators need to

provide a suf󰅭iciently generic interface to allow implementation of ef󰅭icient exception

handling.

In all modern C++ compilers, zero-cost exceptions are the norm: the exception handling

machinery imposes no overhead at all unless an exception is actually thrown. This

means that the code generator is not allowed to insert special instructions for calls or

for saving context when entering try blocks. In order to allow this sort of behaviour, all

exception handling logic needs to happen at an exception throw time, and for this to be

possible, a stack unwinder is required. The unwinder is platform-speci󰅭ic, and needs

to understand the particular ABI and most importantly the layout of the program stack

29 Application Binary Interface, in this context meaning the set of rules in use for data layout, calling conven-

tions, endianness, etc. Some CPU architectures allow multiple incompatible ABIs on the same chip, most

prominently the ARM family of CPUs.
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and individual stack frames. LLVM itself does not provide an unwinder library: it is

usually provided by the operating system.

Unfortunately, the interface of the unwinder library is not entirely speci󰅭ied, and as such,

it is also somewhat platform-speci󰅭ic. There are two major surfaces of the unwinder,

each exposed to different part of the compiler/standard library duo. On one hand, the

unwinder needs unwind tables in order to correctly unwind the stack. These unwind

tables are generated by LLVM, since they re󰅭lect the high-level structure of individual

stack frames, which is itself generated by LLVM. These tables end up being a part of

the program text, i.e. they are stored in the executable image, and are as such a static

part of the program. On the other hand, there is the “dynamic”, or runtime, interface

of the unwinder library, which is exposed to the language runtime instead: when an

exception is raised, the language runtime uses the unwind library and the unwind tables

generated by LLVM to guide the exception handling process.

While C++ is the primary target of the exception-handling mechanisms in LLVM, care

has been taken to make it suf󰅭iciently general to accommodate other language runtimes,

as long as their exception handling works along the same general principles. The main

requirement for an exception system to be compatible with LLVM is that it can use

the same unwinder interface, or at very least that it can process the unwind tables

produced by LLVM. On many platforms (all modern UNIX systems based on the ELF

executable format), these unwind tables are in a standardised format, mandated by the

DWARF speci󰅭ication [53]. Other platforms use different unwind tables, though.

Besides information about the structure of a stack frame, unwind tables contain infor-

mation about how exception handling should process this particular stack frame. In

programming languages with lexical scoping, lexically scoped variables cease to exist

when their scope terminates: normally, this happens when a function returns. However,

exceptions create a new way in which a lexical scope can cease to exist, namely that

an exception is propagated through this scope upwards. As long as lexically scoped

(local) variables are suf󰅭iciently simple (plain old data in C++ terminology), this is not

a major problem: the stack is unwound, so the storage associated with those variables

is automatically reclaimed. However, C++ and a number of other languages allows

scoped variables of complex types, with associated destructors: code that the runtime

guarantees is executed just before the variable is deallocated. Particularly in C++, this is

widely used to implement reliable, automatic resource acquisition and release30. Even

though similar schemes have been proposed for C [148], they are usually implemented

using setjmp and longjmp primitives, do not use any compiler support and therefore

do not map to the LLVM exception handling mechanism.

ex. 4.2 A C++ program which works with some sort of a managed resource (in most programs,

at least heap memory works in this way) may use a de󰅭inition along these lines:

30 In the C++ community, this design pattern is known as RAII: Resource Acquisition Is Instantiation. Among

other things, it is used to safely hold mutual exclusion locks, dynamically allocated memory and other non-

composable resources inside functions that could experience non-local loss of control due to exceptions.
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struct R1 { R1() { /* ... */ } ~R1() { /* ... */ } };

struct RC { R1 r1; int *resource;

RC() : r1() {

resource = new int[32];

}

~RC() { delete[] resource; }

};

The destructor of the class frees up a locally acquired resource. In fact, the standard

C++ library provides templates for exactly this purpose (std::auto_ptr and in C++11

std::unique_ptr and std::shared_ptr which also provides reference counting).

Since the C++ runtime guarantees invocation of destructors of local objects when their

stack frame is destroyed, the resource is safely freed even if the owner of the object

does not take any special precautions against exceptional situations. The user code

could look something like this:

int main() {

try {

RC res;

// work with the resource...

} catch ( ... ) {

// handle exceptions

}

// some other code here; res is no longer in scope

}

When an exception is thrown, or when control normally leaves the scope of the try

block, the dynamic memory is correctly freed by the destructor of RC. Moreover, in the

case where the resource allocation in the constructor of RC fails, but the constructor

in R1 has already allocated its resource, the R1 destructor is invoked on the partially

constructed object.

Nevertheless, LLVM as such has no concept of destructors, nor does the unwinder

library. The language compiler needs to generate cleanup handlers, i.e. blocks of code

that take care of calling any appropriate destructors, or performing other language-

speci󰅭ic cleanup when a stack frame is torn down because the stack is being unwound.

Moreover, the same mechanism is used for exception handlers: the main difference

is that an exception handler stops the propagation of an exception, and its role is to

deal with the exceptional situation: exception handlers correspond to the catch blocks

attached to a try block.

In order to improve ef󰅭iciency (at the expense of simplicity) of the unwinder, it has

a concept of exception type: different types of exceptions can happen, and a particu-

lar catch block may handle only a subset of those exception types. Each call-site in
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each call frame possibly contains a cleanup handler, and a list of exception handlers.

Deciding whether a particular exception handler can handle a particular exception

type is deferred to a personality function: a language-speci󰅭ic callback provided to the

unwinder. This personality function helps the unwinder decide, among other things,

which handler to invoke for a particular exception type.

4.1.5 Mapping Exceptions to LLVM

Now that we have established the basics of how exceptions are implemented in general,

we will look at how those concepts map to LLVM. The machinery provided by LLVM

to handle exceptions consists of 3 instructions: invoke, landingpad and resume. The

invoke instruction is like a call instruction, but it provides extra provisions for ex-

ception propagation: unlike call, it is a terminator instruction, i.e. it is always last in

a basic block. It is also a branching instruction: it takes two basic block addresses as

parameters corresponding to two branches – the 󰅭irst is taken upon a normal return

from the function, the other is taken if an exception has been raised in the callee.

The invoke instruction co-operates tightly with the landingpad instruction: the basic

block that the exception branch of invoke points to must begin (after any possible𝜑 in-

structions) with a landingpad instruction, and the entire basic block is called a landing

block31. The landingpad instruction then encodes the list of exception handlers and

whether there is a cleanup handler present, and which personality function to invoke

for the corresponding callsite (invoke instruction). The syntax of the landingpad

instruction is following:

<r> = landingpad <rt> personality <t> <pers_fn> <clause>+

<r> = landingpad <rt> personality <t> <pers_fn> cleanup <clause>*

<clause> := catch <type> <value>

<clause> := filter <array constant type> <array constant>

If the landing block is a cleanup one, the stack unwinder always transfers control to the

landing block during the unwinding process, regardless of any exception handlers. If

the landing block is not a cleanup landing block, it is only executed if some catch clause

in the landingpad instruction matches the exception type (as decided by the provided

personality function).32

31 In upstream LLVM documentation, what we call a “landing block” here is referred to as a “landing pad”. The

reason for this departure is that the original terminology makes it easy to confuse “landingpad” as an

instruction and “landing pad” as a basic block.
32 Additionally, the 󰅭ilter clauses restrict the types of exceptions that can be propagated through the invoke

instruction corresponding to this landing block, akin to how exception speci󰅲ierswork in C++. If an exception

is thrown and it reaches a 󰅭ilter clause of the appropriate type, a language-speci󰅭ic action is invoked. In C++,

this action is user-speci󰅭ied, and defaults to terminating the program.
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Since each invoke instruction only has a single landing block associated, this landing

block is responsible for handling any and all catch clauses of the higher-level program-

ming language covering the particular callsite. The return value of the landingpad

instruction is crucial in deciding what action to take when the landing block is entered,

and corresponds to the return value of the personality function. In other words, when

the unwinder executes the personality function (which is part of the language runtime),

it stores its return value, and provides this return value in the result of the landingpad

instruction. Since the personality function has access to the part of the unwind tables

generated from the landingpad instruction, it can communicate information encoded

in the unwind table to the landing block itself. In the libc++ runtime, the personality

function returns a tuple consisting of a pointer to the exception object itself, and a

“handler switch value”, an integer which corresponds to the index of a relevant “catch”

clause of the landingpad instruction, or a special value (-1) when no catch clauses

match but a cleanup needs to be performed.

The code generated for the landing block then checks the handler switch value com-

puted by the personality function, and transfers control to a cleanup or handler block

accordingly. Finally, if the selected handler is a cleanup handler, the exception propaga-

tion (stack unwinding) needs to be resumed after the cleanup is done. This is achieved

by the resume instruction, which expects as a parameter the same value that was re-

turned by the corresponding landingpad instruction which interrupted the exception

propagation.

Interestingly, there are no LLVM instructions for raising (throwing) exceptions. This

is left entirely in the management of the language runtime, which needs to closely

co-operate with the stack unwinding library anyway (the interface of the personality

function is mandated by the stack unwinder).

ex. 4.3 Consider the program in Example 4.2. We start in an out-of-memory condition in the

program, at the point where RC::RC() is trying to allocate an array of characters. As

a result, operator new throws an exception – the throw statement in the C++ source

code of the implementation is translated to a __cxa_throw call. The __cxa_throw

implementation then calls into libunwind – the _Unwind_RaiseException function in

particular. At this point, libunwind takes over control, looping over active stack frames.

Each frame is examined by calling the personality routine with a _UA_SEARCH_PHASE

󰅭lag, in the context of the throw statement. In this phase, an exception handler is

identi󰅭ied, but the stack is not yet unwound. In the next phase, the stack is actually

unwound, and again, each frame is examined by a call to the personality routine. If a

cleanup handler or the selected exception handler is found, it is invoked by returning

_URC_INSTALL_CONTEXT to libunwind (otherwise, _URC_CONTINUE_UNWIND indicates

that unwinding should continue with the next frame). Cleanup handlers return control

to libunwind by invoking _Unwind_Resume.
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main()

RC::RC()

operator new

__cxa_throw

__Unwind_RaiseException

_UA_SEARCH_PHASE _UA_CLEANUP_PHASE

main()

RC::RC()

operator new

__cxa_throw

__Unwind_RaiseException

__cxa_personality

main()

RC::RC()

operator new

__cxa_throw

__Unwind_RaiseException

__cxa_personality

main()

RC::RC() [cleanup]

(unwound)

main()

RC::RC() [cleanup]

R1:: R1()

main()

RC::RC() [cleanup]

(return)

main()

RC::RC() [cleanup]

_Unwind_Resume

_UA_CLEANUP_PHASE

main()

RC::RC() [cleanup]

_Unwind_Resume

__cxa_personality

main() [catch]

(unwound)

󰅮ig. 4.1 Execution 󰅭low from Example 4.3. Source code in Example 4.2.

4.1.6 Metadata

Since version 2.7, LLVM supports adding extensible metadata to the IR (and the meta-

data is persisted in the bitcode format). The purpose of this metadata is to allow

specialised annotations to be added to the IR – by default, LLVM uses the metadata to

encode debug information, which is later translated to a platform-speci󰅭ic format at the

code generation time.

The metadata is formatted as a graph, where each node can contain a tuple of arbitrary

LLVM values (integers, aggregates, etc.), in addition to references to other metadata

nodes (which become the outgoing edges in the metadata graph). Metadata nodes can

be either global, or they can be attached to instructions using a textual label (the label

dbg, for example, is used by LLVM to provide location information for an instruction)
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and they can be passed as parameters to intrinsic functions. They are, however, not

󰅭irst class LLVM values – they cannot be passed as parameters to regular instructions

or regular functions. LLVM ensures that the metadata graph is properly de-duplicated:

any two nodes that are equal are merged in the bitcode representation.

In addition to dbg metadata attached to individual instructions, it recognises calls to

llvm.dbg.declare, an intrinsic which ties a variable declaration to the result of a

particular invocation of alloca. Since various optimisation passes can move values

from alloca memory to registers (and possibly remove the alloca calls entirely),

LLVM also makes it possible to express value changes in user-level variables that are

not currently tied to any particular memory location, using a call to llvm.dbg.value.

Even though metadata is generally preserved by LLVM transformations (including

optimisation passes), this is not a requirement, and in some cases metadata will be lost

– especially in cases where instructions are removed by a transformation, metadata

attached to those instructions will disappear as well.

4.2 Semantics

Since LLVM is an imperative language, small-step operational semantics are a good

starting point. Rather luckily, LLVM IR does not have expressions: no intermediate,

unnamed values arise, like they do in human-friendly programming languages. Each in-

struction is semantically atomic, and only refers to existing, named values. Additionally,

each instruction changes at most a single component of the data portion of program

state. As such, the semantic function is derived quite straightforwardly, by consulting

the LLVM language reference [115] and almost mechanically translating the human-

readable descriptions into derivation rules for the semantic function.

The program state (conventionally denoted𝜎 when dealing with operational semantics)

of an LLVM program consists of two interesting components: execution stacks (which

in turn contain stack frames) and memory. In LLVM, execution stacks are conceptually

separate from program memory, even though at actual execution time on most real-

world machines, the stacks are implemented partly through memory and partly through

CPU registers. Memory in LLVM is simple: the representation of memory in 𝜎 can be a

󰅭ixed array of bytes, dictated by the size of the pointer type33, effectively a huge 𝑛-tuple

where 𝑛 is the highest value a pointer can take. Only a small subset of instructions

directly reference memory.

4.3 Control Flow

The graph induced by a single execution of a deterministic program is a linear sequence

of states, with no branching (cf. Section 2.2.2 and Section 2.3): each state has (at

most) one successor. Each “edge” of this induced graph represents a single instruction

and each node corresponds to a snapshot of the machine state visible to the program

33 Pointer width is a 󰅭ixed property and part of each LLVM program
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(registers and mapped memory). In a sequential program, this “trace” is identical

every time the program is executed with a given input. Without loss of generality,

we can assume that input (and any interaction with the environment) is part of the

program34 (an assumption which is actually true in many interesting cases, notably

various automated test cases, whether unit, functional or integration).

Generally, a trace that only has single instruction on each edge is more detailed than is

useful. A chain of states can be collapsed if they are not relevant for analysis, forming

a compound edge which represents an arbitrary instruction block. This technique is

known as path compression [100 and 157].

However, while any single execution may yield a sequential trace, in parallel programs,

the trace may be different every time the program is executed, due to non-determinism

inherent in how instructions are scheduled by individual CPUs or cores, and a time-

sharing, asynchronous nature of the entire system. This non-determinism is re󰅭lected in

explicit-state model checkers by introducing branching into the execution trace (which

is called a state space in this context), thereby encoding all possible interleavings. In any

given state, the system makes a non-deterministic choice on which thread is executed

next, creating a single successor state for each active thread. The number of states in

the state space is exponential in the number of different threads.

While there are cases where different interleavings produce different end results, there

are also many cases where the exact ordering of instructions is irrelevant: different

interleavings will yield the same end state. Such con󰅭luent executions are redundant

and only one of each equivalent set needs to be explored. This idea is at the heart of a

class of techniques known as partial-order reductions [127].

In a state space (as opposed to a trace), path reduction can only straightforwardly apply

to trace-like sequences of states, where each state has exactly one successor. However,

such sub-traces do not naturally occur in state spaces of multi-threaded programs, since

almost all states will have multiple successors caused by interleaving. Nevertheless,

when a partial order reduction is applied, we choose a single execution among a set

of many possible, replacing a diamond-like structure with a trace-like structure (cf.

Figure 2.2) . This new trace-like structure is in turn amenable to path reduction, further

reducing the number of intermediate states.

Both these reductions can be approximated statically, and one example of such an

approximation is the 𝜏-reduction [16], and a semi-dynamic 𝜏+reduction [133]. More

on these can be found in Section 6.2.

4.4 Heap

Most non-trivial programs nowadays use dynamic memory, also called a “heap”. This

memory is allocated on demand using function calls (usually malloc and its variants

and free) provided by the runtime. The heap allows transparent re-use of memory

34 There are other ways to ef󰅭iciently deal with open-ended inputs and interactivity, most notably symbolic

methods and abstraction. See also Section 2.4 and Chapter 7.
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that is no longer needed, without the requirement to allocate and de-allocate in 󰅭irst in

/ last out order like with the C-style stack.

We can consider a heap to be an oriented graph, with nodes representing individual

objects and arrows representing pointers. A heap object is a result of a single allocation,

it is internally always contiguous, but there is no guarantee on the actual layout of

multiple objects in memory. In addition to pointers originating inside heap objects,

there may be pointers in stack frames and registers pointing into heap objects (these

are known as “root” pointers).

4.4.1 Pointer Tracking

For implementation of several desirable features in a model-checker, it is necessary to

exactly know which pieces of memory are pointers, and where they point. The features

in question are heap symmetry reduction (cf. Section 6.3), veri󰅭ication of memory

safety properties (cf. Section 5.1.3) and tracking per-thread memory visibility (cf.

Section 4.4.2).

One of the problems to solve is exact pointer tracking. While approximate solutions

for C and C++ exist, these so-called conservative approaches [101] cannot be used for

implementing heap reorganisation. A conservative collector will, in a nutshell, treat any

bit-pattern as a pointer as long as it corresponds to a valid memory location. Since in a

typical program, the heap size is much smaller than the address space and the heap is

usually located near its end, this only introduces a small amount of harmless error for

a mark&sweep collector, where in the worst case, some garbage is retained. However,

a conservative collector must not alter pointers, since it could accidentally alter an

integral value that has no relation to the heap, simply having the same bit pattern as a

valid pointer.

This means that for successfully tracking pointers, we must use a tagging scheme, where

an integer can never be constructed to resemble a pointer and vice versa. On one hand,

shrinking pointers by one or two tag bits is not a problem – the address space of the

model checker itself is a limiting factor, not the size of a pointer. On the other, it is not

feasible to shrink integral types, as this would wreak havoc with established semantics

of integer arithmetic35. Hence, we cannot easily prevent an integer from mimicking a

bit pattern of a pointer. An alternative is to keep tagging information out of band, in a

separate image of the address space. This is possible since we can instrument any and

all memory access with updates to this tag space at the interpreter level.

All the tracked pointers are created in heap allocations, and their pointer status is

preserved throughout their lifetime. We use a special pointer representation, where

the heap object and offset into that object are kept apart and manipulated separately.

This prevents pointers from over󰅭lowing into a neighbouring heap object (this would

35 This scheme has been adopted in early garbage-collected runtimes, like that of LISP, where all scalars would

reserve tagging bits and integer size would not match the machine word size. However, this approach is not

feasible in low-level languages.
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be a programming error, and must be detected) and makes pointer arithmetic safe and

supported. Since programs may not make any assumptions about the bit content of

heap pointers, they cannot be legally hijacked for integer constants. Therefore, we can

safely rewrite the tracked pointers, without the risk of accidentally altering integral

values, or missing actual valid pointers.

Finally, a simple yet ef󰅭icient optimisation can theoretically further reduce the tracking

overhead: since we can require and enforce alignment constraints on pointer values,

any pointer value will start at a 4-divisible address, thus only requiring a single tracking

bit per 4 bytes of memory.

4.4.2 Memory Visibility

The availability of exact pointer tracking offers an opportunity to improve 𝜏+reduction.

In its general form, 𝜏+reduction operates with a notion of “observability”: an instruc-

tion’s effect is a cause for an interleaving point whenever this effect might have been

observed by another thread. The main source of observability is writing to (shared)

memory: in the thread-based programming model, all memory is implicitly available to

all threads. However, it should be noted that in order for a thread to observe a memory

write, it must be in possession of a pointer to that memory location.

Therefore, if a memory location has been allocated from the heap by a thread, but the

pointer to this heap object is never provided to another thread, this memory location

is essentially private to the allocating thread (this most importantly affects alloca-

obtained memory – see also Section 4.5.1, although private heap-allocated structures

are common as well). Since the layout of heap objects cannot be effectively predicted

by the program being veri󰅭ied, it cannot “construct” pointers to objects out of thin air,

and they must be explicitly shared by the allocating thread.

In order to effectively identify the area of memory visible to a particular set of threads

(or processes), we trace the root set of these threads, the same way as a “mark” phase

of a mark & sweep garbage collector.

ex. 4.4 We will demonstrate the idea on a simple program with linked lists. The layout of

the program is shown in Figure 4.2. Three threads are currently running, all holding

pointers into a shared linked list (these pointers are stored in the per-thread stacks).

4.5 Implementation

In order to enumerate the state space of an LLVM bitcode program, we need to be able to

construct an initial state, and construct successors of any given state. The component of

DIVINE that takes care of this task is called a generator, and in this case is implemented as

a special-purpose interpreter (or equivalently, a virtual machine) which can ef󰅭iciently

store and load its state into a byte array (this array is called a machine state vector, and

is discussed in detail in the next section).



LLVM Implementation

95

threads & stacks heap

address 1 → 3

address 2 → 1

address 3 → ∅

address 4 → 3

address 5 → 4

thread 1

thread 2

thread 3

󰅮ig. 4.2 Memory visibility: Objects with red background are visible to

thread 1, the rest is invisible.

In addition to the interpreter giving semantics to individual instructions, it also needs to

provide an interface for operations that are normally not part of a CPU implementation

but reside in the operating system: thread creation and scheduling, memory manage-

ment, etc. This interface consists of a few functions (distinguished by their __divine_

pre󰅭ix), also called traps. We will discuss these in more detail in Section 4.5.2.

Also unlike a traditional interpreter or a virtual machine, a single instruction can have

multiple different outcomes in our interpreter, causing multiple successors from a

particular state (this is the case with a call instruction which refers to the __di-

vine_choice trap; any other instruction will exhibit deterministic behaviour equiva-

lent to what a normal CPU would do. However, there is another, more important, source

of non-singleton successor sets, namely thread interleaving. When multiple threads

are ready to execute, one is chosen non-deterministically to make progress.

4.5.1 Machine State Vector

An explicit-state model checker based on a virtual machine (like our LLVM interpreter),

needs to be able to take snapshots of the machine’s entire state in order to be able to

explore the con󰅭iguration graph (the state space). These snapshots should be compact

and ideally stored as continuous, hashable blocks of memory. In an earlier version

of the interpreter, the states needed to be unpacked into internal data structures and

repacked every time a new snapshot was made. On the other hand, the current version

takes a different approach, using the compact state representation directly to execute

instructions, avoiding expensive unpack/repack operations. Moreover, since most of
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the data required by the interpreter is packed close together in memory, its cache

performance has improved substantially.

A running program on a contemporary commodity computer normally has access to a

number of resources. The most important, apart from the CPU itself, is a bulk of random

access memory that is traditionally divided into text (program), data, stack and heap.

Most systems today, with only a handful of specialised exceptions, do not allow the text

of a running program to be modi󰅭ied. In DIVINE, we treat it as constant. Apart from

the program text, part of the data region of memory is constant and never modi󰅭ied by

the program. This usually entails message strings and numeric constants used in the

program. These two sections (text and constant data) are stored only once for each

instance of the interpreter. The remainder is stored as a compact machine state vector,

with layout illustrated by Figure 4.3.

global

heap

tid 0

tid 1

flags problems global memory

bitmap jumptable object object

pc + registers pc + registers pc + registers

pc + registers pc + registers

󰅮ig. 4.3 Representation of a state vector

in a program with two running threads.

Out of the items in a machine state vector, the register stack needs special attention. Real

machines (as opposed to virtual) have a limited set of registers, but a (comparatively)

unlimited amount of memory. The “stack” in a C program consists of mapped memory

and is used for many purposes: saving registers across function calls, storing return

addresses and return values, and storing “automatic” local variables. All of this is

organised into frames, and each frame on the C stack corresponds to a single entry into

a C function.

Contrary to this, the LLVM virtual machine has an unlimited register 󰅭ile. When gener-

ating actual executable code, these virtual registers are allocated to machine registers

and code for managing register spills (into the C stack) is inserted. However, at the level

of LLVM instructions, access to the C stack is provided through the alloca instruction

and is needed because values stored in registers have no address, and therefore cannot

be passed by reference36.

In our interpreter, we have a structure analogous to C frames, but our frames are not

located in memory: they only contain register values and are not addressable (from the

point of view of the code being executed). Since LLVM gives no guarantees about layout

of memory coming from multiple alloca instructions, we allocate alloca memory

from heap, which in our case is managed automatically. Therefore pointers to alloca

memory go out of scope when their owner function returns and the heap memory

36 Moreover, until recently, LLVM registers could not hold non-scalar values and those had to be stored in al-

loca or heap memory.
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is freed. Due to the limited scope of alloca memory, the memory is explicitly freed

(and as such, made inaccessible) whenever the owning function returns: this prevents

programs from invoking unde󰅭ined behaviour if a function returns a pointer to a local

variable or stores it in a global variable.

As explained in Section 4.4.1, the LLVM interpreter needs to track which bytes in

memory represent pointers and which do not. Additionally, it is useful to be able to

discern uninitialised memory (memory locations obtained through allocation that have

not yet been written to) from initialised (see also Section 5.1.3). This means that each

memory location could be in one of three states: uninitialised, data or a pointer to a

heap object. This information is stored separately from the actual memory, in bitmaps

at the start or at the end of the corresponding memory or register area (the same

tracking requirements apply to registers, and therefore to stack frames – a register

may contain a pointer to the heap, or it may contain a value that is the result of a load

instruction from an uninitialised memory location).

In addition to those memory state bitmaps (which exist for stack frames and for both

global and heap variables), the heap needs to remember object boundaries. This is

achieved through a “jump table”, a vector of offsets into a contiguous memory area.

Each entry in the jump table corresponds either to a start of a heap object or to the

end of the heap. Size of each heap object is then obtained as a difference between two

consecutive jump offsets. The representation of pointers used by the LLVM interpreter

ensures that access cannot over󰅭low from one object to a one stored in adjacent physical

locations.

4.5.2 System Space

Our LLVM interpreter makes a clean separation between “system space” (the inter-

preter itself and whatever built-in functions – traps – it provides) and “user space” (the

user code to be checked and any libraries it links, some possibly provided by DIVINE

as replacements for system libraries). The separation within user-space is provided

through linking – the implementation details of the DIVINE-provided library substitu-

tions are opaque and they do not leak into user-supplied code.

An ef󰅭icient user/system-space separation is in part facilitated by atomicity control

provided through these three traps: __divine_interrupt_mask, __divine_inter-

rupt_unmask and __divine_interrupt. These traps expose a low-level interface to

atomicity control, making user-space implementation of library functionality much

more feasible. When interrupt masking is in effect, the running thread must not be in-

terrupted by any other thread, until after the masking is lifted. Moreover, the masking is

bound to stack frames, which means that there is no danger of leaking the masking into

user code, since a ret instruction to an originally unmasked function will automatically

cause an unmask.

The advantage of explicit atomicity control is twofold: 󰅭irst, it makes library implemen-

tation much easier by avoiding the usual pitfalls of writing thread-safe code. Second,

it substantially reduces the model checking overhead, since atomicized code is much
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cheaper to execute, as no intermediate states need to be created. This effect is expo-

nential, since every interleaving point in a library function essentially multiplies the

number of states stored during its execution.

Apart from the three traps mentioned above, a small set of traps is provided, roughly

falling into these four categories:

1. memory management:

− __divine_malloc – obtain fresh memory from the heap,

− __divine_free – force invalidation of all pointers to an area of memory,

− __divine_memcpy – atomically copy a block of memory,

2. thread management:

− __divine_new_thread – create a new thread, with a supplied function as an

entry point and a pointer-sized argument

− __divine_get_tid – obtain an identi󰅭ier of the calling thread,

3. property speci󰅭ication:

− __divine_assert – ensure that a value is non-zero

− __divine_ap – insert an atomic proposition for LTL model checking.

4. control 󰅭low:

− __divine_choice – non-deterministic (possibly probabilistic) choice,

− __divine_va_start – obtain a pointer to the vararg block of memory,

− __divine_unwind – unwind the stack

− __divine_landingpad – obtain information about in-stack landing pads

4.5.3 User Space

Everything that is not system space is part of the user space, most importantly the

language runtime, wrappers for DIVINE-speci󰅭ic functionality and the program itself.

Everything that can be reasonably ef󰅭iciently implemented in user space should be:

functionality that the system space runs on behalf of the user space runs natively, as part

of DIVINE itself. Hence, system space code is not subject to the stringent consistency

and correctness checks the LLVM interpreter performs on each instruction executed

in user space. Even if a component shipped with DIVINE is faulty, if it is part of the

user space, any errors in that component will result in counterexamples pointing at

the faulty component. In other words, a faulty user-space component can cause a

spurious counterexample to appear. In contrast, faulty system-space components can

compromise the model checking results entirely – since they have full access to the

entire state vector, they can alter state of the program, and in case of grave bugs, even

corrupt the memory of the model checker. As a result, faulty system-space code could

even cause positive veri󰅭ication results despite presence of actual property violations.

As such, it is desirable to reduce the size and complexity of the system space as much

as possible, in effect reducing the likelihood of such problems.
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ex. 4.5 To illustrate how theDIVINE system interface works, let us have a look at a small support

function from the user-space pthread code.

void _cancel() {

int ltid = __divine_get_tid();

threads[ltid]->sleeping = false;

// call all cleanup handlers

_cleanup();

__divine_unwind( 1, NULL );

}

This function implements cancellation of a running thread, and works in terms of

system-space traps. The code is compiled into LLVM bitcode and linked into the user

program as a library.

The atomicity control builtins outlined in the previous section play a crucial role in

this endeavour. Without these, many low-level routines provided in the user space

would be extremely inef󰅭icient, and in order to make model checking feasible, would

need to be made part of the system space, with all the implied adverse effects. Main

examples of this can be found in the pthread implementation shipped with DIVINE,

which nowadays resides completely in user space, implemented in C++ using only the

builtins enumerated above (a sample function from the pthread implementation is

shown in Example 4.5). The same is true of stack unwinding support code, which is

required for exception handling in many languages (we will discuss exceptions in the

context of LLVM in Section 4.1.4, and in the context of model checking and DIVINE in

Section 4.6).

4.5.4 C and C++ Runtime Support

While veri󰅭ication of LLVM bitcode is in itself an interesting theoretical feature, alone,

it can’t be fully used in practice, as very few programs if any will be written directly

in the LLVM bitcode. If given a pure LLVM bitcode interpreter and a program in C, the

only restriction on the program will be that it must not call any functions not de󰅭ined in

the program itself. In other words, C programs need no runtime support for language

features. They usually do rely on a library of functions, which enable them to interact

with the world. This library is usually called libc and is part of the operating system.

In order to make veri󰅭ication of real-world code easier, DIVINE provides an implemen-

tation of libc, in form of bitcode that can be linked to (incomplete) bitcode produced

by the compiler from the C program itself. While the implementation of libc is mostly

complete, in some respects, it behaves differently from traditional OS-provided ver-

sions. Since the program that is being veri󰅭ied is not allowed to actually interact with
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the world, such function calls are implemented either as “stubs” possibly using non-

deterministic choice, or they interact with DIVINE using the system interface described

in Section 4.5.2.

The case of C++ is slightly more complicated. While many language features require no

special runtime support (i.e. the same as C), there are some that do, most notably Run-

Time Type Identi󰅭ication (RTTI) and exception handling. Besides those areas where

library support code is required for language features, like in C, most C++ programs

make use of a standard C++ library.

Consequently, there are two libraries that are required by virtually all C++ programs:

the runtime support library, and the standard library. Multiple implementations of

both exist37 – DIVINE ships with libc++abi for the runtime portion and libc++ for the

stdlib portion.

As far as RTTI goes, there are no special consideration with regards to model checking.

The upstream libc++abi code can be used verbatim with DIVINE. Exceptions are more

complicated, and are, coincidentally, a feature that is most often neglected in analysis

tools and model checkers that work with C++ programs. Exception handling in C++

consists of three major parts: unwind tables, landing pads and exception handlers

which are all generated by the compiler based on the input code, using special (although

language-neutral) LLVM instructions: invoke and landingpad being the two most

notable. Additionally, the C++ runtime library uses a CPU- and platform-speci󰅭ic stack

unwinder and contains a language-speci󰅭ic personality routine. The personality routine

makes use of the unwind tables generated by the compiler to guide the stack unwinder

during an exception (see Section 4.1.4 for details).

An LLVM interpreter hence needs to provide a stack unwinder and an API to access the

unwind tables, for use by the personality routine. In DIVINE, the unwinder interface

is extremely simple, consisting of a single trap, __divine_unwind. The language run-

time can use __divine_unwind to remove a number of topmost stack frames from the

stack of the current thread, returning control to the topmost remaining frame. If the

active instruction in the target frame is an invoke instruction, control is transferred to

its alternate destination basic block (a landing block), and the value passed to __di-

vine_unwind is passed on to the personality routine of the landing block.38 We will

discuss exception handling in more detail in Section 4.6.

37 The GNU compilers ship with libstdc++, which contains, as a subproject a runtime support library lib-

supc++. Clang ships with libc++. Depending on platform, a choice of either libc++abi or libcxxrt

is available for use with libc++. An independent implementation is available from Apache Software Foun-

dation under the name libcxx. Multiple compilers ship yet different implementations.
38 If the active instruction is, however, call, the value passed to __divine_unwind becomes the return

value of the call instruction. A type mismatch between the value passed and value expected is a fatal error

and will be reported as a goal state by DIVINE. The personality routine however never unwinds to a frame

which does not have an active invoke instruction.
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4.5.5 POSIX Threads

Another area where special attention to user space is needed is in the area of thread

management. Neither C nor C++ offer a native concept of threads in the language

itself, and LLVM follows this trend. In the case of C++11 (and to a lesser degree, C11),

threading primitives have become a standard part of the runtime library. Nevertheless,

a different, language-independent interface for thread support predates both these

by a decade, namely that of POSIX.1-2001, also known as pthreads. In practice, both

C11 and C++11 runtime libraries are often implemented in terms of pthreads, and are

otherwise both platform and CPU independent. Since vast majority of parallel programs

written in C and C++ still uses the classical pthreads interface and since both C11 and

C++11 runtime libraries have implementations in terms of pthreads available, it is

only natural to provide threading primitives in form of pthreads-compatible API.

Hence,DIVINE is shipped with a bitcode implementation of most of the pthreads library,

built on top of the few thread-control and atomicity-control traps. This way, programs

using either the traditional pthreads API, or ones based on C11 or C++11 threading

primitives can be easily veri󰅭ied.39

4.5.6 Other Languages

While DIVINE itself provides runtime support for C and C++ programs in form of bitcode

libraries, this is not the case with runtimes for other languages that can be compiled

into LLVM bitcode. For these languages, in order to verify programs, it may be necessary

to provide bitcode for the language’s runtime, possibly modi󰅭ied in ways similar to our

C and C++ runtimes discussed in previous section. In many cases, the runtime will be

based on the C library and require only minimal modi󰅭ications. The components most

likely to require further attention are IO and exception handling (also depending on

how are exceptions translated by the language’s compiler into LLVM bitcode).

4.6 Exception Handling

We have outlined the mechanisms used by LLVM to implement language-agnostic ex-

ception handling in Section 4.1.4 and Section 4.1.5. There are multiple points where

DIVINE has to hook into those mechanisms in order to support exception handling in a

particular programming language. While a substantial part of that support is language-

agnostic, crucial pieces of infrastructure are part of the language’s standard library: in

case of C++, this is libc++abi as explained in Section 4.5.4.

39 Unfortunately, the C++11 threading API introduces signi󰅭icant overhead, since its verbatim implementation

from libc++ is used in DIVINE, without introducing any atomic sections. Interestingly though, we have

discovered a crash bug in the implementation of std::thread constructor, cf. http://llvm.org

/bugs/show_bug.cgi?id=15638.

http://llvm.org/bugs/show_bug.cgi?id=15638
http://llvm.org/bugs/show_bug.cgi?id=15638
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Source Code Common Components

Execution Verification

User’s C++ Source Code

LLVM IR

unwind tables

exception handlers

landing pads

The Standard C Library

The Standard C++ Library

__cxa_throw

__cxa_begin_catch

__cxa_end_catch

C++ Runtime Support

personality function

stack unwinder

DIVINE C++ Runtime

personality function

__cxa_throw_divine

libunwind Verifiable Bitcode

Binary

DWARF unwind tables

exception handlers

cleanup handlers

System (OS, CPU, ...)

DIVINE LLVM

exception handling

__divine_unwind

__divine_landingpad

memory management

threading &c.

󰅮ig. 4.4 Components involved in exception handling.

In a native code generator in LLVM, the information from landingpad instructions

generated in the frontend is used to construct unwind tables. The format of those

tables is platform- and architecture- speci󰅭ic. To read those tables, libc++abi uses the

libunwind interface (originally speci󰅭ied as part of the IA64 C++ ABI). This interface

is semi-standard, but no actual standardising document exists. Since the libunwind

implementation is tied to the binary format of the executable, via the in-memory image

of the unwind tables, it cannot be directly used in DIVINE. Likewise, it is tied to a speci󰅭ic

architecture/platform via its knowledge of stack and register layout – another disquali-

fying feature. Therefore, libunwind needed to be replaced with a new implementation

for DIVINE.



LLVM Exception Handling

103

ex. 4.6 There is a number of components involved in exception handling (shown in Figure 4.4)

that interact with execution and/or veri󰅭ication. The source code is 󰅭irst compiled using

a suitable C++ frontend (clang or gcc) into LLVM IR. When building a binary for execu-

tion, the IR code is fed to a code generator and combined with common components (the

standard C and C++ libraries), and with execution-speci󰅭ic components: libunwind

and execution-speci󰅭ic parts of the C++ runtime support library (the personality routine

and the libunwind-based stack unwinder). For veri󰅭ication purposes, the LLVM IR is

instead combined with those same common components that have been converted into

intermediate representation, and with veri󰅭ication-speci󰅭ic runtime functions from the

DIVINE C++ runtime. The resulting bitcode 󰅭ile is then fed to DIVINE, using its LLVM

subsystem to generate the state space and execute a suitable veri󰅭ication algorithm on

that state space.

4.6.1 The libunwind interface

There were two basic options: the 󰅭irst was to replicate the portion of the libunwind in-

terface used by libc++abi, making it possible to use unmodi󰅭ied source for libc++abi

– which sits on a higher level than libunwind. Conceptually, this is a tempting solution

– the more of the library code is left intact, the more faithful the veri󰅭ication. There is a

major downside though: the interface between libunwind and libc++abi is complex

and intricate. This is especially true of the interface between the unwinder and the

personality function: the unwinder uses the personality function as a callback, invoking

it once for each active frame on the stack at the moment exception is raised. The per-

sonality function uses a pair of platform-speci󰅭ic registers to pass the handler switch

value and the exception pointer to the exception handler: it cannot invoke the handler

itself, as the stack has not been unwound yet and the handler would end up running in

the wrong context. For this reason, libunwind provides an interface to splice register

values into the context of the exception handler to be invoked.40 It would be in principle

possible to implement this interface in DIVINE system space: each thread would need

two special thread-local variables to hold these values, and the landingpad instruction

would simply read those values and copy them into appropriate LLVM registers. The

downside is extra space overhead – 16 bytes per thread, allocated even if no exceptions

are currently active.41 Another downside is that this limits 󰅭lexibility: while the LLVM

exception mechanism is made to play nice with libunwind, it is 󰅭lexible enough, at

40 This is clearly implemented in a platform-speci󰅭ic fashion. If the registers are always saved on the stack,

their stack images will be rewritten. If they are clobber-type registers, they can be written to directly and

the unwinder will take care not to clobber them before transferring control to the selected exception handler.

Other options may be available depending on platform.
41 Those 16 bytes could be compressed away in most cases to a single bit, at expense of code complexity. How-

ever, system-space complexity is very costly, and complexity involved in addressing the state vector even

more so.
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least in theory, to admit another approach to stack unwinding. Using this approach

would mean changing theDIVINE system space to accommodate a different landingpad

return type.

While this API/ABI issue can be reasonably solved, there is a more important issue at

play. Even though libunwind understands the platform-speci󰅭ic portions of unwind

tables, it provides no support for parsing the language-speci󰅭ic chunks. This means

that libc++abi code itself has ABI-speci󰅭ic knowledge of the unwind table layout,

needed to extract the exception type info and switch values. All libunwind does here

is provide a pointer to the lsda (language-speci󰅭ic data area) portion of the unwind

table for a given stack frame. In order to support this libc++abi code in its literal form,

DIVINE would have to synthesise DWARF-formatted42 lsda areas from landingpad

instructions. This is unpleasant, because it is a complex format designed for space

ef󰅭iciency, and the encoded tables are completely C++ speci󰅭ic, even speci󰅭ic to C++

on a particular platform. The only reasonable way to provide such tables would be to

leverage pieces of the existing x86 (or x86-64) code generator to synthesise the lsda

tables. LLVM, however, does not provide an interface to this functionality.

4.6.2 DIVINE-speci󰅭ic unwinding API

Both these issues in mind, we have chosen a different approach, which requires modi󰅭i-

cations to libc++abi, but can be implemented with just 2 new system-space builtins

– one for querying metadata encoded in landingpad instructions, based on a stack

frame reference (__divine_landingpad) and another for actually unwinding the stack

(__divine_unwind).

ex. 4.7 Let us now consider the exception-handling process as it happens in the DIVINE run-

time (see Example 4.2 for the source code and Figure 4.5 for a graphical depiction).

The situation at the start corresponds to an out-of-memory condition in the program.

Constructor of class RC was trying to obtain dynamic memory (using operator new),

but the allocation request has failed. As a result, operator new is throwing an exception

– the throw statement in the C++ source code of the implementation is translated to

a __cxa_throw call, which uses __cxa_throw_divine to unwind the stack. The un-

winder 󰅭irst uses __divine_landingpad to 󰅭ind an exception handler (which it 󰅭inds

in the call frame of the main() function, and any intervening cleanup handlers (there is

one in the RC constructor itself). The unwinder proceeds to call the personality routine

to obtain a handler switch value and passes the result to __divine_unwind, along with

the address of the 󰅭irst cleanup handler. __divine_unwind removes stack frames up to

the cleanup handler, which takes control and calls a destructor of the locally constructed

R1 instance. Finally, when done, the cleanup handler invokes the resume instruction

42 DWARF is a companion format to encode debug and other metadata in ELF executable images. A backronym

“Debugging With Attributed Record Format” has been invented for it.
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main()

RC::RC()

operator new

__cxa_throw

__divine_landingpad

main()

RC::RC()

operator new

__cxa_throw

__divine_unwind

main()

RC::RC() [cleanup]

(unwound)

main()

RC::RC() [cleanup]

R1:: R1()

main()

RC::RC() [cleanup]

(return)

__divine_landingpad

main()

RC::RC() [cleanup]

main()

RC::RC() [cleanup]

__divine_unwind

main() [catch]

(unwound)

󰅮ig. 4.5 Execution 󰅭low from Example 4.7. Source code in Example 4.2.

which continues the propagation up the stack, to the exception handler (the catch block

in main()).

This clearly requires some changes in libc++abi: one is the personality function, and

the other is the actual __cxa_throw implementation: a call to this function is inserted

by the C++ compiler at the site of a throw statement (along with some support code).

While in the original libc++abi implementation, the personality function bears most

of the burden (since libunwind does the stack search, calling out to the personality

function as needed), this is reversed in theDIVINE implementation. Here, the personality

function merely extracts the correct items from the exception header to pass on to the

exception handler. The __cxa_throw implementation, on the other hand (and unlike in

the libunwind version), unwinds the stack itself, using __divine_landingpad. This

builtin does not change anything, but provides the caller with landingpad metadata,

using a simple integer indexing of stack frames. Negative indices start at the top of

the stack, non-negative at the bottom. This makes it easy for the unwinder to walk
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through the stack one frame at a time, looking for an appropriate handler. When the

handler is found, it can call the personality function (pointer to which is part of the

landingpad metadata) and pass it to __divine_unwind along with the frame address

it obtained from calling __divine_landingpad. The job of __divine_unwind is then

simple enough: destroy all the frames above the one addressed and transfer control

to the landing block associated with the active invoke instruction in the now-topmost

stack frame. __divine_unwind also takes care of copying the value it obtained from

its caller (in this case the return value of the personality function) into the result of the

corresponding landingpad instruction.

The implementation of __divine_landingpad takes advantage of the implicit garbage

collection done by DIVINE, as it allocates the metadata block on heap. Since the block is

neither 󰅭lagged as a result of an alloca instruction, nor as a result of __divine_malloc,

it is transparently retained as long as necessary without being 󰅭lagged by the interpreter

as a memory leak.

4.6.3 setjmp and longjmp

The C functions setjmp and longjmp can be used for non-local transfer of control, in a

way similar to C++ exceptions. In fact, some C programs use those two semi-standard

functions to implement somewhat crude exception handling in C. The purpose of the

setjmp function is to set save enough of the machine state to allow non-local transfer

of control to the point in program where setjmpwas called. The longjmp partner then,

using a context saved by the setjmp call, restores the corresponding machine state.

The state is exactly the same as it was right after setjmp call returned for the 󰅭irst time,

with one exception: the return value of the setjmp call is altered in its second return,

to make it possible to detect whether the return was a “normal” return or a longjmp

return.

Clearly, exception handling based on setjmp/longjmp cannot be “zero-cost” – state has

to be explicitly saved at the start of every try block, and possibly before any resource ac-

quisition. The latter problem can be side-stepped by maintaining a separate “resource”

stack [148], but even then, entering try blocks is fairly expensive. Nevertheless, robust

C programs may choose this style of exception handling, since the runtime overhead

can be outweighed by the programming bene󰅭its – especially due to fewer and simpler

error paths to write, maintain and test. Finally, there are other uses for longjmp in

programs, besides exceptional situations.

While longjmp is not nearly as widely used as C++ exceptions are, the reasons for sup-

porting this primitive are similar, even if somewhat weaker. Fortunately, the primitives

we have designed for C++ exception handling can be easily re-used in implementing

setjmp and longjmp – since __divine_unwind can just as easily stop at a call in-

struction as it can on an invoke instruction, we only need minor extensions to the

__divine_landingpad/__divine_unwind mechanism. The main difference between

exceptions and longjmp is how the control 󰅭low at the point of setjmp is handled. The

DIVINE-speci󰅭ic implementation of setjmp needs to be able to 󰅭ind out the program
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counter value of its enclosing frame, corresponding to the call instruction. This can

be done by slightly extending __divine_landingpad, to provide the program counter

value for call instructions in the stack (this does not alter the semantics of __di-

vine_landingpad for invoke instructions in any way).

Finally, __divine_unwind needs to be extended as well, to allow the caller to specify

where to restart the execution in the target frame – since longjmp is not above the

corresponding setjmp in the call stack, a successful longjmp needs to change the pro-

gram counter in the target frame, in addition to unwinding. Luckily, this is fairly easy,

since the __divine_unwind caller can specify the program counter corresponding to

the callsite to unwind to. For normal C++ exceptions, the caller just puts in a 0, meaning

no program counter adjustment (i.e. the semantics stay exactly the same) and longjmp

passes in the program counter value obtained from a __divine_landingpad call done

by the setjmp function.

4.6.4 Use Cases

Besides the simple fact of making model checking possible on a substantially wider class

of programs, exceptions themselves are an interesting subject for model checkers: error

paths are notoriously hard to test. With a model checker, however, it is easy to insert

non-deterministic failures and check that the program behaves sensibly under all sorts

of error conditions. Resource leaks are among the most common errors encountered in

error paths, which makes the problem even harder to debug – resource leaks, especially

memory leaks, require special tools to diagnose in a test, such as valgrind.

Since DIVINE can already diagnose memory leaks in LLVM inputs, checking error paths

involving exceptions becomes a fairly easy task. However, error paths can contain

more serious errors as well – especially in multi-threaded programs, where threads

are not isolated from the effects of other threads failing to handle an exception, and

the entire program may crash. Among the 󰅭irst issues that we have found using our

new exception support in DIVINE is such a crash, in std::thread implementation in

libc++, under out-of memory conditions.43 When a new thread is created using this

standard C++ interface, most of its state is allocated in the newly-created thread, before

user code is executed. Since this allocation can fail with an exception, and the libc++

implementation fails to install an exception handler in the context of this newly-created

thread, the exception cannot be caught. In such cases, the C++ standard requires the

runtime library to call an “unexpected exception handler”, which, unless overriden by

the user, terminates the application.

In order to 󰅭ix this problem, we have moved the memory allocation code into the calling

thread. To avoid synchronisation problems and possible resource leaks, this happens

before the new thread is created – the calling thread allocates all the dynamic state for

the new thread and passes it down as a parameter. This way, any exceptions related to

43 The proposed patch that 󰅭ixes the problem can be found at http://llvm.org/bugs/show_bug.cgi

?id=15638 and the relevant source code in the 󰅭ile libc++/std/thread.

http://llvm.org/bugs/show_bug.cgi?id=15638
http://llvm.org/bugs/show_bug.cgi?id=15638
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resource exhaustion happen in the calling thread, in a context where users can control

the scope and propagation of exceptions by wrapping the call to the thread constructor

in a suitable catch block.

4.7 Counterexamples

While the main focus of this thesis is model checking, an extremely important and often

underestimated ingredient to its practical usefulness is counterexample presentation.

For the user, the counterexamples comprise the “language” which the model checker

uses to convey new information it has gathered during the process of model checking.

When all properties hold, the output is trivial: “yes”. However, if the answer is “no”,

the bulk of the output describes “what went wrong”. Outside of model checking, an

extremely elaborate set of analysis tools exists to analyse program crashes and mis-

behaviours, usually under an umbrella of so-called “symbolic debuggers”.

These tools provide many ways in which to explore and manipulate traces – stepping

through the program, examining individual variables at a particular point in execution,

altering variables to steer the program into a different code path, among others. Some

of these options could be regarded as a poor man’s substitute for model checking: es-

pecially manipulating scheduler behaviour by hand or tweaking variables in an already

running program could be regarded that way. On the other hand, injecting behaviour

changes into counter-examples and recomputing them could be a tactic useful also in

conjunction with model checking.

In contrast to symbolic debuggers and their rich interface, most model checkers can

only provide a textual trace of the counterexample. One could argue that most of the

work is, in the case of model checking, done “up front”, partly by changes to the program

and partly by the model checker itself. However, part of the reason why debuggers are

so successful is that they allow the user to dynamically focus on a particular aspect of

a problem – show the evolution of a particular variable during a run, for example, or

monitoring one variable and analysing a heap structure when a certain change to the

monitored variable happens. In this sense, debuggers are primarily tools for extracting

useful data about a program run ef󰅭iciently.

If a model checker is limited to a textual trace, a trade-off must be made in which data

about the program to include. If the entire state of the program is dumped after each

instruction (as an extreme example), this easily leads to megabytes of text even for the

most trivial traces. Clearly, such a tool cannot be used directly by a human and would

require another layer of tools to assist with its interpretation. On the other hand, if

some data is permanently elided, no matter how careful the heuristic for doing so, it is

very likely that in some cases, an essential data point will be missing from a trace.

At the moment, DIVINE provides rich interactive simulation for DVE models (i.e. where

the structure of the model – variables and processes – are fully exposed to the user),

but not for LLVM programs. In the latter case, only a textual description of program

states is available, with no further structure. The generic interactive simulator provided

by DIVINE (the simulate subcommand) only works in terms of entire states: this is
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adequate for programs with small and simple states, but as outlined earlier, this is

insuf󰅭icient for analysis of more complex situations.

4.7.1 Machine-Readable Counterexamples

Nevertheless, a full interactive environment for manipulating high-level programs44

is out of scope of DIVINE itself, at least at the time being. However, it would be very

helpful to facilitate development of a stand-alone tool, or alternatively an extension of

an existing LLVM-aware symbolic debugger such as lldb, which could analyse traces

generated by DIVINE.

44 Here we mean programs in C or C++ and possibly other languages. While an LLVM-level system would be

much easier to implement, it would be also only marginally useful to end users, who are generally interested

in verifying C and C++ programs and use LLVM bitcode only as a means to this end. The relationship between

the C source code and the compiler-generated LLVM bitcode is in general too tenuous to analyse by hand.
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5 Property Speci󰅭ication

In order to perform veri󰅭ication, software or otherwise, besides the system to verify

itself, another vital component needs to be provided: the speci󰅭ication. There are many

ways to describe what a program should (or should not) do. Properties most widely

checked on real software are in the form of safety assurances: certain bad things never

happen. An assertion is never violated, the program never deadlocks, the program

never dereferences a NULL pointer, divides by zero or writes into deallocated memory.

Many of these properties are normally checked via testing, sometimes assisted by a

runtime checker like valgrind [123]. In many cases, this is adequate with sequential

programs. However, multi-threaded programs can exhibit non-deterministic behav-

iours, with some of the undesirable execution branches being extremely rare. Likewise,

testing is less suitable for checking temporal liveness properties of reactive programs

– expressing good things which should keep happening. Again, this is an area where

model checking can be helpful.

We will discuss how DIVINE can help programmers establish some of these properties

of their programs, and how to express them in a form suitable for DIVINE.

5.1 Safety

As outlined above, safety is among the most-often checked properties in software. It

only serves as a reinforcement that it is also one of the easiest to check, whether via

testing or with more rigorous methods. Safety of a program can often be demonstrated

by a simple reachability analysis – enumerating all reachable states of the system and

checking that each such state satis󰅭ies the requisite safety speci󰅭ication. This can be

done explicitly, by enumerating the set of reachable states one by one, as in explicit-

state model checkers, approximated by testing where certain key con󰅭igurations of

the system are examined, or symbolically by building appropriate formulas or another

concise description of this set.

5.1.1 Assertion Safety

Many programming languages come with a builtin or a library routine called “assert”.

The use of runtime assertions is multiple: they help programmers document pre- and

post-conditions in their program in a machine-checkable form and they help with

testing because testing builds of software usually include runtime code for checking

such assertions whenever they appear in the source code.

When an assertion is detected to be violated at runtime (in a testing build), the program

is forcibly terminated and the programmer can analyze program state in which the

assertion was violated. Release builds are usually compiled with assertion checking

disabled, and any assertion failures become silent, possibly resulting in later unde󰅭ined

and undesirable behaviour.
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For a sequential program, running the program is often suf󰅭icient to determine whether

all assertions hold up. In programs with race conditions, assertions may only be violated

sometimes. DIVINE, performing reachability analysis on a program with assertions, uses

the same assert(bool) construct as traditionally used in testing. Hence, veri󰅭ication of

assertion safety is a matter of using assert statements of the programming language to

express key pre-/post-conditions.

5.1.2 POSIX Deadlocks

Another common problem with multi-threaded programs is the possibility of a dead-

lock, a situation where all threads wait for each other. In model checking of more

traditional asynchronous models, a deadlock is normally de󰅭ined as a system state with

no successors. However, this de󰅭inition is not very useful for threaded programs if

mutual exclusion, or any other synchronisation primitive is implemented in terms of

spinlocks or some other mechanism which does not entirely block execution. With a

spinlock, the thread waiting for the lock will run in an in󰅭inite loop trying to get the

lock, forming a self-loop (or possibly a longer cycle, depending on the complexity of the

locking protocol). Hence, the traditional approach of detecting successor-free states is

inadequate for deadlock detection in threaded programs.

Instead, the threading runtime can track a list of threads waiting for each particular lock

(or blocking resource in general). With this data, upon each lock request, the runtime

can detect whether a deadlock has formed by examining the dependency structure of

locks. A program is (partially) deadlocked whenever a cycle forms in this dependency

structure: in other words, if thread A tries to obtain a lock L while it already holds

lock M, thread B is waiting for the said lock M and already holds L, a dependency loop

has formed and deadlock should be signalled. A program is fully deadlocked if the

dependency cycle spans all threads.

The detection of these situations is entirely delegated into user space (cf. Section 4.5.3).

This means that in order to take advantage of this deadlock detection scheme, programs

need to use locking interfaces provided by the threading library shipped with DIVINE.

Due to increasing popularity of atomic exchange-swap and read-modify-update instruc-

tions, it would be worthwhile to offer a more general mechanism for detecting non-

progressing cycles in the state space, as these instructions can be easily used to imple-

ment special-purpose spinlocks in user-level code, bypassing the deadlock detection

provided by pthread locks.

5.1.3 Memory Safety

Memory safety is a somewhat fuzzy category, and could be also thought of as pointer

safety. We usually require that the program only reads and writes memory that has

been properly allocated and initialised. The most common memory error is probably

a null pointer dereference: when a pointer in the program takes a special “invalid”

value (called a null pointer and usually implemented as an all-zeroes bit pattern) –
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indicating that the pointer is not in use – but it still tries to access memory via this

pointer. This usually comes about either by errors in program logic (a condition is

thought suf󰅭icient to guarantee a non-null pointer but in fact is not) or by incomplete or

erroneous handling of exceptional situations. The latter is prevalent due to the dif󰅭iculty

of testing just such cases – exceptional situations are, after all, a fairly rare occurrence.

Another common problem is a dereferencing of a non-null but still invalid pointer. This

might be because the pointer was to a dynamically allocated area on the heap which has

been de-allocated in the meantime, but the pointer has failed to be updated, or might

be due to a bound error – the pointer is indexed by a value outside the permissible

range. Both these cases are often very hard to diagnose – unlike in the null pointer case,

the program is not aware that the pointer is invalid at the point of use, and unde󰅭ined

values may be read – or worse yet, unrelated memory may be overwritten, leading to a

crash or other bad behaviour much later in the program.

note A special class of debuggers exists to diagnose this kind of problems. The program is

thoroughly annotated, or even interpreted (as is the case with valgrind, probably the

best-known such debugger). All memory access is checked at runtime for boundary

conditions and memory re-use is limited to facilitate diagnosis of access into freed heap

memory.

In practice, it is very hard to exhaustively check this class of errors, even with rigorous

automated tools. It is very hard to prevent the program from “accidentally” constructing

a valid pointer that nevertheless points to an unexpected memory location. Since

some pointers must be valid, and as long as pointers are expressed as numbers, a

difference between two valid pointers (into unrelated memory areas) will always yield

an out-of-bounds index for one of them that will, upon use, lead to the second valid

pointer. If values are known with certainty, at runtime, to be (or not be) pointers, it is

possible to guard arithmetic operations on those against this particular problem.

note It is, however, not suf󰅭icient to prevent operations that create out-of-bounds pointers

entirely. The program may (and real programs often do) store a pointer just past the

valid region of memory, to serve as an access sentinel. The way this is usually handled

is by creating red zones of addresses on both sides of valid memory objects. Within the

range of the red zone, pointer construction is admitted – but pointer dereference is not.

If an arithmetic instruction was to push a pointer beyond this red zone, over󰅭lowing

into a valid memory location, this would very likely indicate an error (as long as the red

zone is suf󰅭iciently large). In fact, even a “false” positive in such a case may be valuable,

as such behaviour is rarely intended even if technically correct.

5.1.4 Memory Leaks

A distinct memory problem, while technically a safety issue, is closely related to liveness

– it does not directly pose a safety violation, as the program will continue to run as

normal. It does, however, threaten the continued functioning of the program: if memory

is allocated but never freed, it will eventually run out. This can happen independently
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of memory leaks: the program could just accumulate working memory, retaining refer-

ences to all allocated blocks. However, if all references to a particular piece of memory

are lost, the memory cannot be reclaimed anymore. It is this irreversible loss of mem-

ory that is usually called a “memory leak” and is what is diagnosed by most memory

debugging tools.

For detecting most straightforward memory leaks, existing runtime- and testing- based

tools are quite adequate. The area where model checking can substantially contribute

is memory leaks that arise due to exceptional situations in a program. The error paths

in most programs are extremely sparsely tested, since basic testing tools do not offer

ways to synthesise program failures, and they only rarely happen spontaneously. Hence,

it is common for programs to leak memory under various error conditions. In many

programs, this is not a huge problem: since error paths are rarely invoked, the amount

of memory that can be lost is fairly limited. However, the effect is cumulative in a long-

running process, such as a server or a daemon. In an environment with constrained

memory, it could easily become fatal.

Since DIVINE already needs to perform heap canonisation, detecting memory leaks in

the process is quite simple: instead of simply discarding unreferenced memory, it is

instead attached to a problem report, and the state where this has happened is 󰅭lagged

as erroneous.

5.1.5 Points-To Safety

The “safety” of points-to information is a somewhat technical property, mostly useful in

program transformation and not so much of direct bene󰅭it to programming in general.

The idea is that many program analyses need accurate pointer information to function

properly (cf. Section 7.6). While ef󰅭iciently approximating this information is dif󰅭icult,

it is fairly easy to verify – as an aid in implementing algorithms for pointer analysis,

DIVINEprovides means to check that the pointer information embedded in LLVM bitcode

is accurate.

note The implementation of points-to safety in DIVINE requires that the pointer analysis in

question uses a particular persistent way to represent its results. The particular format

for LLVM metadata is described in Section 7.6.3.

5.2 LTL

Normally, an LTL formula in a speci󰅭ication means “all possible runs of the system

satisfy this formula” – the formula itself is interpreted in terms of system runs (cf.

Section 2.8). A run consists of a sequence of states, and in state-based LTL, the atoms

of the formula refer to such individual states of the system. The usual de󰅭inition given

when establishing LTL semantics is to suppose a function 𝐿 : 𝑆 → 2𝐴 where 𝑆 is the set

of system states and 𝐴 is an arbitrary 󰅭inite set of atoms. The LTL formula then simply

refers to elements of 𝐴 and the actual evaluation (or model checking) of the formula

“looks” at the states through an 𝐿-mapping.
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Then, the user is usually allowed to specify 𝐿 using an expression language of arithmetic,

boolean and relational operators (cf. Section 2.8.1). These expressions are evaluated

in a sort of “global scope” of the model – this is facilitated by the simplistic, mostly

󰅭ixed form of a system state in a typical modelling language. Often, there is a simple

addressing mechanism for processes (trivial in case of languages with a 󰅭ixed number

of processes), and each process has a simple 󰅭lat variable scope – in other words, each

process has access to a 󰅭ixed set of variables throughout its lifetime. Usually, individual

“control locations” of a process can be labelled using names and addressed in a similar

fashion. Finally, the shared global variables live in a 󰅭lat namespace available to all

processes in the system, again of 󰅭ixed size and layout.

Clearly, a language with dynamic memory and arbitrary scope nesting makes such

simplistic implementation of 𝐿 quite impossible. No static scope can be de󰅭ined that

would serve for evaluating expressions: values have limited lifetimes and an expression

referring to a currently unde󰅭ined variable would itself become unde󰅭ined. This is a

major problem, even if we ignore the question of a suitable variable addressing scheme.

In theory this could be overcome by introducing a “de󰅭ined?” predicate, and require

each variable use to be guarded. However, this would obviously become extremely

unwieldy and useless to give succinct and clear property de󰅭initions. An intricate and

complex variable addressing scheme would further reduce usability of such a solution.

5.3 Atomic Propositions

Therefore, we need an alternative approach for describing 𝐿 . Since 𝐿 is a function, it is

highly desirable that the language used for its de󰅭inition be referentially transparent.

Implementation of 𝐿 that would fail to meet this requirement would cause LTL model

checking to give incorrect and incoherent results.

Overall, there are two basic approaches that can be taken. We can either make the

language extremely simple, basically just adding a constant-sized block of boolean 󰅭lags

to each state, and allowing only boolean expressions over these 󰅭lags. The 󰅭lags then

need to be manipulated from within the system to facilitate LTL model checking. The

overall expressive power however seems to be rather unsatisfactory. The other option

is to make the language substantially more powerful. A language with access to complex

(recursive) data types and to (at least structural) recursion would be able to process

the heap and stack using graph and list maps and folds. We will present such a language

in following sections.

5.3.1 The SILK Language

We propose a simple, purely functional language for “implementing” 𝐿 . We already

mentioned the requirement for referential transparency in a candidate language for

this role: it is absolutely crucial that 𝐿 is a function in mathematical sense. Any impurity
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in the language used for describing this mapping could compromise this property, even

if unintentionally.45

The evaluation order of SILK is (at least currently) left unspeci󰅭ied: in writing speci󰅭i-

cations, it is best to assume strict evaluation, even though the actual implementation

might be lazy. Because SILK is a Turing-complete language, it is clearly possible to

write non-terminating programs – however, it is also fairly easy to ensure termination.

Most speci󰅭ications will only use structural recursion (whether directly or by using

prede󰅭ined combinators). Since the input data structures are always 󰅭inite (stacks and

heaps of the program being examined), structural recursion will always terminate, re-

gardless of evaluation order. However, in cases where the programmer employs general

recursion, they need to make sure that the speci󰅭ication will terminate under strict

evaluation.

SILK is statically typed, with a simple predicate-based type system. It provides numeric

types (initially only integers, although 󰅭loating-point numbers may be considered as

a future addition), function types, explicit scopes and algebraic data. In the context of

LLVM property speci󰅭ication, it is extended with a few “builtin” types, namely for stack

frames (activation records), stacks, heap objects and the heap. All these builtin types

behave like explicit scopes.

The language itself is not a central topic of this thesis, and as such, we won’t give an

explicit or rigorous speci󰅭ication of the language. Instead, we will give a tutorial-style

introduction and a few examples of use.

The most basic building block of a functional program is a function. Like in many other

languages, SILK provides unnamed functions (lambdas) with named parameters, like

this:

f = |x| x + 2

where |x| creates a formal parameter and binds the name x within the scope of the

lambda. Functions in SILK are curried, i.e. the usual way to write multi-parameter

functions is |x| |y| ...: a function of two parameters is written as a function of a

single parameter whose value is a function of the other parameter. Type signatures can

be given for values in SILK:

f : int → int

this declares f to be a function from integers to integers (and → is the type constructor

of a function type). Function application is written as juxtaposition, i.e. f 3 applies

45 While not identical, we have experienced a closely related problem withCESMI: the implementation language

in this case is usually either C or C++, providing a single pure value, the set of initial states, and a single pure

function, the successor function. In practice, it often happens – due to entirely unintentional side effects in

the implementation of one of those – that the reachable state space differs between invocations of the model

checker.
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function f to the value 3. Blocks of bindings are declared using the def keyword (and

are, by default, recursive):

b = def

g = f ∘ f

f = |x| x * 2

end

Case analysis can be done using the case ... of construct, supplied by a number of

lambda forms, where the parameters of the lambdas are patterns; bare words enclosed

in|-brackets introduce new bindings, quoted names (using a single leading apostrophe)

refer to existing bindings. If cons and nil are list constructors, we could write map as

follows (where case _ of is a shorthand for |x| case x of):

map = |f| case _ of

|'cons x xs| cons (f x) (map f xs)

|'nil | nil

end

When dealing with explicit scopes (recall b above), but also with other types of collec-

tions, we use full stop to “open” the scope or collection, like with C and C++ aggregate

access syntax:

f = |array| (b.f ∘ b.g) array.3

Since bare words on the right of a full stop are interpreted as 󰅭ield names (i.e. they are

quoted by default, as if preceded by a '), indexing collections using variables needs anti-

quotation. While in the context of patterns, we believe a leading underscore is a good

anti-quotation syntax, this does not 󰅭it so well with non-pattern uses. Instead, we treat

comma specially when it is the 󰅭irst letter of a word. Finally, as a syntactic shortcut, we

allow collapsing full stop and a comma into a single comma, giving us the following

syntax:

index = |array| |idx| array,idx

which is equivalent to saying (array . ,idx).46 Also, since literal numbers are their

own quotations (and anti-quotations), it is just as legal to write array,3 (or array,3,5

for multi-dimensional objects) as it is to write array.3.

46 In this regard, besides parenthesis-like characters, . and , are quite special, since they are, unlike other

operator characters, not allowed to occur in identi󰅭ier names. In other words, full stop and a comma are

interpreted as punctuation even when not surrounded by whitespace. To the contrary, when a comma is

followed by a whitespace character, it is interpreted not as anti-quotation but as a delimiter in list syntax.
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5.3.2 Source-Level Variables

One of the main challenges to overcome is that the relationship between various regis-

ters, memory locations and variable names as appearing in the source code is not always

simple, or obvious at 󰅭irst sight. This is a problem that all source-level debuggers need

to address, and there is a number of schemes for tracking the relationship in existence.

Most such schemes are platform- and sometimes even architecture-speci󰅭ic. Fortu-

nately, LLVM provides its own portable mechanism for tracking these relationships,

in form of metadata blocks embedded in LLVM bitcode 󰅭iles (see also Section 4.1.6).

These metadata blocks are readily available via standard LLVM APIs, and can be used

to extract a map of variables provided by the compiler – in this respect, we have to rely

on correctness of the compiler to obtain sensible data.

While it would be much easier and theoretically more robust to use low-level values

in property speci󰅭ication, it would be of little practical use, as there is simply no way

to predict how and where exactly will the compiler store variables at various points

in time. Even if the programmer could determine which memory locations or which

register values are of interest, this would be very compiler-speci󰅭ic, hard to write and

even harder to comprehend.

An additional challenge arises from optimisation passes which may entirely eliminate

source-level variables from the program. While this is not technically a problem for

speci󰅭ication, it could easily lead to unexpected results: properties of the form “in all

frames where variable 𝑥 is de󰅭ined, its value is greater than 5” will trivially hold if the

variable 𝑥 is eliminated and hence is not de󰅭ined in any frame at all. Since pattern

matching in SILK (at least for the purposes of de󰅭ining atomic propositions) is required

to be total, it is practically enforced that all variable access is guarded.

5.3.3 Traversing Stacks

The primary concern in writing expressions for use as atomic propositions is traversing

stacks: for each thread (or a particular thread) look at all (or particular) activation

frames. The top and bottom frames are often of special interest: the former tells us

which function is currently executing and the latter which function is the entry point of

the thread (this may not be the actual bottom-most frame though, as the runtime often

owns the entry point, both for the entire program and for each thread as well). Among

threads, the main thread could be of special interest – this is the thread with index 0.

Now consider the following SILK fragment:

main_running = |s| case s.threads,0 of

|'nothing| false

|'just _ | true

end

this evaluates to true whenever the main thread exists. Likewise, we could say
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any_running = |s| not s.threads.empty

– this predicate is true when any threads at all exist – and demand that𝒢(any running ⇒

main running). This would express the property that when the main thread terminates,

all other threads have terminated as well.

Now consider we had a function in our program (the program which we are verifying),

say lock_resource with a local (implementation) variable called waiting. We could

write this SILK expression:

waiting = |s| let

in_lock = s.threads.filter (|t| t.top.function ≡ 'lock_resource)

in

in_lock.any (|t| t.top.'waiting ≡ integer 1)

Here we 󰅭irst get a list of all threads for which the topmost frame belongs to the function

named lock_resource and then check whether in any such threads, the value of the

variable waiting in that topmost frame is 1. Now we could write an LTL formula that

said 𝒢(waiting ⇒ ℱ¬waiting) – meaning that all waits are eventually resolved.

As an aside: since SILK is statically typed, the result type of keyword-based indexing

(top.'waiting in this case) must be uniform across all keywords, for a particular

object (x.top in this case). Since the type of the LLVM value is not known statically

in the SILK program, runtime values are represented as an algebraic data type with a

number of constructors:

value = type

data integer : int → value

data pointer : pointer? _ → value

data struct : struct? _ → value

data none : value

end

where pointer? and struct? are type predicates: the former declares that the value

can be dereferenced to obtain a value, while the latter holds for types which can be

keyword-indexed to yield a value.

5.3.4 Traversing the Heap

While traversing stacks is fairly easy – they constitute a collection of frames, which are

in turn simple aggregate values (with local variables as constituents), heap is more

tricky. While the heap is a collection of objects, these objects have no meaningful inner

structure. The only structural information that DIVINE can provide about any heap

object is the list of embedded pointers and the objects they point to. The types of the

pointers are however not available. The only way to access heap objects in a manner



Property Specification Atomic Propositions

120

that reveals their inner structure is through typed pointers, which exist in stack frames

as local variables (or if such pointers exist as global variables).

Typed heap objects, like local variables, are represented as a value in the SILK program,

and can be obtained by dereferencing pointers that arise as local variables. Consider

the following snippet, a variation on the waiting predicate from above, but this time

the state of the resource lock is a heap-allocated C structure:

waiting = |s| let

in_lock = s.threads.filter (|t| x.top.function ≡ 'lock_resource)

in in_lock.any $ |t| case t.top.'lock of

|'pointer l₁| case l₁.deref of

|'struct l₂| l₂.'waiting ≡ integer 1

|_ | false

|_ | false

Sometimes, however, untyped access to the heap is desirable: as outlined above, the

only information DIVINE has – besides the size of the object and the actual raw bits

stored there – is the list of pointers that point into the heap. The program state also

contains a list of all heap objects: one obvious property we could express is that all

allocated heap objects are reachable: this is the same as what DIVINE already provides

as a built-in safety property, described in Section 5.1.4.
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6 Reductions

As outlined in Chapter 2, state space reductions are a crucial building block of any

successful explicit-state model checker. Such reductions exploit high-level properties

of state space graphs, where a property can be shown to hold on the entire state space

iff it holds in some particular subset of the entire space, and if such a subset of the state

space can be computed ef󰅭iciently. A successful reduction will save memory (required

for storing the visited and open sets in the model checking algorithm), while also

shortening the time required to explore the graph.

6.1 Partial Order Reduction

As introduced in Section 2.7.1, Partial Order Reduction exploits symmetries arising

from interleaving of multiple execution threads, or multiple processes. Often, a local

portion of the state space exhibits commutative behaviour: multiple interleavings 󰅭irst

diverge due to partial application of effects, and immediately converge into a single

state, as the effects of multiple independent action sequences are completed. In those

cases, as long as the partial effects cannot affect the validity of the property under

scrutiny, an entire region of the state space can be represented by one arbitrary path

through this region. One such scenario is shown in Figure 6.1.

6.1.1 Background

The traditional dynamic partial order reduction is based on an ef󰅭icient heuristic ap-

proximation of the full (theoretical) reduction. In this section, we brie󰅭ly present the

theoretical concept and the usual heuristics.

process 𝐴 × 𝐵 reduced 𝐴 × 𝐵

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

A4 B4 C4 D4

A1 B1 C1 D1

A2 D2

A3 D3

A4 B4 C4 D4

󰅮ig. 6.1 An example of POR – all the uncolored vertices and their edges may be

left out of the explored state space, assuming that the transitions are all invisible

and independent.
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First, we shall give a de󰅭inition of a Kripke structure [104] (as brie󰅭ly introduced in

Section 2.1), extended with atomic propositions:

def. 6.1 A Kripke structure is a tuple (𝑆, 𝑇, 𝑆0, 𝐿) where

• 𝑆 is a set of states,

• 𝑇 is a set of transitions (∀𝛼 ∈ 𝑇 : 𝛼 ⊆ 𝑆𝑥𝑆),

• 𝑆0 ∈ 𝑆 is an initial state,

• 𝐿 : 𝑆 → 2𝒜𝒫 is a labelling function, with 𝒜𝒫 being a set of atomic propositions.

■

For simplicity, we will only consider deterministic 󰅭inite systems. Each 𝛼 ∈ 𝑇 can

therefore be seen as a partial function 𝛼 : 𝑆 → 𝑆 . Practically, the extension to non-

deterministic systems does not affect the results of this thesis.

def. 6.2 A transition 𝛼 is enabled in a state 𝑠 , whenever 𝛼(𝑠) is de󰅭ined. ■

The idea of partial order reduction is to disable some transitions in some of the states,

obtaining a new structure 𝐾′, such that for a 󰅭ixed LTL−x
47 formula 𝜑 , it holds that

𝐾 ⊨ 𝜑 ⇔ 𝐾′ ⊨ 𝜑 . The reduced system 𝐾′ is de󰅭ined through so-called ample sets. For

each state 𝑠 ∈ 𝐾 , we de󰅭ine ample(𝑠) ⊆ enabled(𝑠) to be the set of transitions enabled

in the reduced system.

Apart from requiring correctness (the system de󰅭ined through those ample sets satis󰅭ies

𝜑 iff the original system does), two properties are crucial for successful application of

the reduction:

1. The ample sets need to be ef󰅭iciently obtainable from description of the original

system.

2. The reduction achieved needs to be signi󰅭icant, that is, the reduced system should

be signi󰅭icantly smaller than the original.

In order to formulate a good approximation of the partial order reduction, we need

to de󰅭ine two useful notions. First, we de󰅭ine a dependency relationship between two

transitions:

def. 6.3 Given 𝛼, 𝛽 transitions, we say that 𝛼 is independent of 𝛽 iff:

1. (non-disabling): ∀𝑠 : 𝛼 ∈ enabled(𝑠) ⇒ 𝛼 ∈ enabled(𝛽(𝑠))

2. (commutativity): ∀𝑠 : 𝛼(𝛽(𝑠)) = 𝛽(𝛼(𝑠))

■

47 By LTL−x, we mean Linear Temporal Logic without the X (next) operator. Please refer to Section 2.8 [50]

for de󰅭initions of LTL and LTL−x.
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Finally, we need to be able to distinguish transitions which can be observed by the

property (i.e. they change the set of atomic propositions that hold) and those that are

invisible:

def. 6.4 We say that transition 𝛼 is invisible with respect to 𝒜𝒫′ iff it holds that ∀𝑠 ∈ 𝑆 :

𝐿(𝑠) ∩ 𝒜𝒫′ = 𝐿(𝛼(𝑠)) ∩ 𝒜𝒫′. ■

When we refer to invisibility later in this thesis, we always refer to invisibility with

respect to the alphabet of some formula 𝜑 .

6.1.2 Approximating POR

Traditionally, these four conditions are used to determine a suitable ample set for each

state 𝑠:

C0 ample(𝑠) = ∅ ⇔ enabled(𝑠) = ∅

C1 Along every path in the original structure 𝐾 that starts in 𝑠 , the following condition

holds: a transition that is dependent on a transition in ample(𝑠) cannot be executed

without a transition in ample(𝑠) occurring 󰅭irst.

C2 If 𝑠 is not fully expanded, then every 𝛼 ∈ ample(𝑠) is invisible.

C3 (cycle proviso) A cycle in reduced structure is not allowed if it contains a state in which

some transition is enabled, but is never included in ample(𝑠) for any state 𝑠 on the

cycle.

The conditions C0 through C3 are suf󰅭icient to guarantee obtaining correct ample sets.

(For a proof, please refer to [50]). Conditions C0 and C2 are easily checked locally, and

therefore their execution can be left intact for purposes of a parallel implementation

of partial order reduction. A procedure for checking C1 that is independent of search

order is also available, such that whenever the procedure returns true for a given set of

transitions, it is guaranteed to satisfy C1.

Additionally, we need a search-order-independent implementation of the C3 check,

since parallel model checking algorithms usually cannot guarantee DFS exploration

order which is required by the usual heuristic. A parallel implementation of C3 has

been 󰅭irst proposed in [14]. Assuming C1 holds for all ample sets along a cycle in the

reduced structure, C3 holds for this cycle whenever at least one state 𝑠 on the cycle is

fully expanded (meaning ample(𝑠) = enabled(𝑠)).

Usually some variation of this approximation (a proof that it is sound is again available

in [50]) is used to implement C3 checking in practice, using a depth-󰅭irst search stack.

Whenever a state is encountered that would close a cycle, it is fully expanded. However,

this implementation heavily relies on depth-󰅭irst search. Therefore, we need to replace
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this condition with a different one, that would not rely on presence of a depth-󰅭irst

search stack.

6.1.3 Covering Cycles in Parallel

In this section, we will present an algorithm48 that guarantees that along every cycle

in the reduced structure, there is at least one fully expanded state, effectively imple-

menting the C3 check as described above. The algorithm is based on a variation of

topological sort that can be ef󰅭iciently implemented in parallel – unlike the traditional

check based on DFS, the so-called “in-stack” check [50]. The more traditional DFS-

based proviso is used in DIVINE in conjunction with its Nested DFS implementation.

In addition to checking C3, we require the C3 check to avoid interfering with a desirable

algorithm property called on-the-󰅭ly execution (cf. Section 2.6.7). This means that

if the algorithm is able to produce a counterexample without exploring the full state

space, checking C3 should not prevent such an algorithm from doing so. We will discuss

this property later on.

def. 6.5 A transition graph 𝐺 = (𝑉, 𝐸) induced by a Kripke structure 𝐾 = (𝑆, 𝑇, 𝑆0, 𝐿) is a graph

(𝑉, 𝐸) such that 𝑉 = 𝑆 and (𝑠, 𝑡) ∈ 𝐸 ⟺ ∃𝛼 ∈ 𝑇 : 𝛼(𝑠) = 𝑡 . ■

We assume that the model checking algorithm is not concerned with the transitions of

the Kripke structure and instead explores its induced transition graph.

We also assume that the model checking algorithm is based on accepting cycle detec-

tion and is invariant under exploration order. This means that the algorithm is correct

independently of the order in which it explores new transitions, as long as it eventually

explores each transition reachable in the reduced state space. Moreover, if the algo-

rithm requires revisiting states, we assume that it is possible to defer these revisiting

operations arbitrarily long in the execution of the algorithm. This is not crucial for

correctness, but it is important for the algorithm to keep its asymptotic complexity

under the proposed reduction algorithm.

alg. 6.1 The algorithm for checking C3 is based on a procedure that 󰅭inds a set of states that

covers all cycles. From there, it is easy to build the reduced state space incrementally.

The state of the algorithm is described by s the set of processed states and full, the

set of edges that do not exist in ample but have to be added to the reduced state space

to full󰅭ill C3.

data C = C { _s ∷ [S], _full ∷ [E] }

The main entry point of the algorithm is the function c3 which needs, in addition to

the original problem instance, an alternative de󰅭inition of es, i.e. the set of edges of the

48 The C++ implementation of the cycle proviso algorithm can be found in the 󰅭ile divine/graph/porcp.h

in DIVINE source distribution.


<!-- To load this file into GHCi, you also need the file "Pseudocode.lhs",  --
  -- which is available in the attachment in Section 1.6 and                --
  -- "Reachability.lhs" from Algorithm 2.1.                                 -->

The algorithm for checking **C3** is based on a procedure that finds a set of
states that covers all cycles. From there, it is easy to build the reduced
state space incrementally. The state of the algorithm is described by `s` the
set of processed states and `full`, the set of edges that do not exist in
`ample` but have to be added to the reduced state space to fullfill **C3**.

\starthiding

> {-# LANGUAGE TemplateHaskell, UnicodeSyntax, ScopedTypeVariables #-}
> module C3 where
> import Pseudocode
> import Reachability

\stophiding

> data C = C { _s ∷ [S], _full ∷ [E] }

\starthiding

> mkLabels [ ''C ]

\stophiding

The main entry point of the algorithm is the function `c3` which needs, in
addition to the original problem instance, an alternative definition of `es`,
i.e. the set of edges of the graph, called `ample` -- this, as the name hints,
only contains the edges that are included in the ample sets computed by
applying **C0** through **C2**.

> c3' ∷ M → [E] → Computation ([S], [E]) C
> c3' m@(vs, es, as, is) ample done = forever $ do
>   s₁    ← get s
>   full₁ ← get full
>   let s₂ = reachability (vs, ample ∪ full₁, as, s₁ ∪ is)
>   (expand, _) ←  callCC $ cover_cycles (s₂ \\ s₁) ample []
>   let full₂ = full₁ ∪ [ (u, v) | (u, v) ← es, u ∈ expand ]
>   when (empty expand) $ done (s₂, ample ∪ full₂)
>   full ⇐ full₂
>   s    ⇐ s₂

The helper function to find a set of vertices such that every cycle in a subset
of the state space contains at least one of the included state is then
implemented as follows:

> cover_cycles ∷ ∀s. [S] → [E] → [S] → Computation ([S], [E]) s
> cover_cycles vs es pre done = do
>     when (empty vs) $ done (pre, [])
>     if (empty tail) then recurse (take 1 vs) (pre ∪ take 1 vs)
>                     else recurse tail (pre ∪ pre_tail)
>   where pred v = [ u | u ← vs, (u, v) ∈ es ]
>         succ u = [ v | v ← vs, (u, v) ∈ es ]
>         tail = [ t | t ← vs, empty $ pred t ]
>         pre_tail = cat [ succ x | x ← tail ]
>         recurse rm expand = cover_cycles (vs \\ rm) es expand done

The algorithm starts with both `s` and `full` empty:

> c3 m ample = compute (c3' m ample) $ C [] []


alg/C3.lhs
alg/C3.lhs
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graph, called ample – this, as the name hints, only contains the edges that are included

in the ample sets computed by applying C0 through C2.

c3' ∷ M → [E] → Computation ([S], [E]) C

c3' m@(vs, es, as, is) ample done = forever $ do

s₁ ← get s

full₁ ← get full

let s₂ = reachability (vs, ample ∪ full₁, as, s₁ ∪ is)

(expand, _) ← callCC $ cover_cycles (s₂ \\ s₁) ample []

let full₂ = full₁ ∪ [ (u, v) | (u, v) ← es, u ∈ expand ]

when (empty expand) $ done (s₂, ample ∪ full₂)

full ⇐ full₂

s ⇐ s₂

The helper function to 󰅭ind a set of vertices such that every cycle in a subset of the state

space contains at least one of the included state is then implemented as follows:

cover_cycles ∷ ∀s. [S] → [E] → [S] → Computation ([S], [E]) s

cover_cycles vs es pre done = do

when (empty vs) $ done (pre, [])

if (empty tail) then recurse (take 1 vs) (pre ∪ take 1 vs)

else recurse tail (pre ∪ pre_tail)

where pred v = [ u | u ← vs, (u, v) ∈ es ]

succ u = [ v | v ← vs, (u, v) ∈ es ]

tail = [ t | t ← vs, empty $ pred t ]

pre_tail = cat [ succ x | x ← tail ]

recurse rm expand = cover_cycles (vs \\ rm) es expand done

The algorithm starts with both s and full empty:

c3 m ample = compute (c3' m ample) $ C [] []

stmt. 6.1 The function cover_cycles in Algorithm 6.1, given a set vs of states and a set es

of edges, returns a set pre of states such that for every cycle 𝑐 ⊆ vs, it holds that

𝑐 ∩ pre ≠ ∅.

proof The main recursion invariant is that a cycle 𝑐 ⊆ s is either fully embedded in vs, or

there is a state 𝑣 ∈ 𝑐∩pre. This is clearly true before entering the loop for the 󰅭irst time,

as vs contains all states (vs = s). When the algorithm terminates, vs = ∅, therefore,

for each cycle 𝑐 ⊆ s, it must hold that 𝑐 ∩ pre ≠ ∅.

We now only need to show that this is indeed the loop’s invariant. First, a state 𝑣 is

never removed from vs if it is a part of a cycle fully embedded in vs, because it can

never appear in tail. This however means that such a state might only be removed

when tail becomes empty, which also means that it is added to pre at the same time.

This means that if 𝑣 has been a part of a cycle fully embedded in pre, then 𝑣 ∈ 𝑐 ∩ pre.
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Termination: The algorithm clearly terminates, as in each iteration, at least one state is

removed from vs. □

stmt. 6.2 The time complexity of procedure cover_cycles in Algorithm 6.1 is in 𝒪(|𝑆| + |𝐸 ∩

(𝑆 × 𝑆)|).

proof Each state in 𝑆 (vs) is examined exactly once, when it is being removed from vs. When

a state is being removed, each of its outgoing edges pointing back into vs is examined

exactly once. □

stmt. 6.3 Algorithm 6.1 ensures that on every cycle in the reduced state space, there is at least

one fully expanded state.

proof We show correctness of Algorithm 6.1 by induction. As a base, let us consider that s₁

in c3' is empty. It follows from Statement 6.1, that result of the re-expansion is exactly

the set of edges such that at least one state on every cycle is fully expanded.

We can now assume that before every invocation of re-expansion (the reachability

call in c3'), s₁ already has, on each cycle, at least one fully expanded state (i.e. the

corresponding edges have been added to full). We need to prove that after executing

the following cover_cycles, s₂ in conjunction with expand will retain this property.

Again, from Statement 6.1, we can deduce that every cycle fully embedded in s₂− s₁

will have at least one fully expanded state (that is, there will be at least one state on

every cycle, such that all its enabled edges will be explored).

This covers all cycles that do not cross the s₂ / s₁ boundary. However, when there is an

edge (𝑣, 𝑤) such that 𝑣 ∈ s𝟷 and𝑤 ∈ s𝟸 − s𝟷, we know that 𝑣 has been fully expanded.

Clearly, any cycle crossing the s₂ / s₁ boundary will contain at least one such edge.

When Algorithm 6.1 terminates, s contains all of the reduced state space. □

6.1.4 Time Complexity

Clearly, it is important that a prospectiveC3 check can be performed in linear serial time

– an algorithm with super-linear complexity would clearly impede the performance of

the process of state space exploration, and in turn of model-checking.

stmt. 6.4 Time complexity of Algorithm 6.1 is linear in size of the reduced state space.

proof Every invocation of function cover_cycles in Algorithm 6.1 is linear in its parameter

vs (statement 6.2). We show that any given state is in vs in at most one invocation of

cover_cycles.

When a state occurs in vs, it will be immediately added to s. When a state is already in

s, it will never again occur in vs. Therefore, we conclude that every state occurs in vs

in at most one iteration. □
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Even though the C3 check itself is linear, many of the parallel accepting cycle detection

algorithms are not linear in all cases. There are two requirements for the combined

algorithm for accepting cycle detection in the reduced state space: 󰅭irstly, the combined

algorithm should have time complexity no worse than the original accepting cycle

detection algorithm employed and secondly, it should not be required for the C3 check

to perform a full reachability pass over the state space before starting the cycle detection

itself.

stmt. 6.5 Using Algorithm 6.1 does not affect time complexity of the underlying model checking

algorithm.

proof Any algorithm for accepting cycle detection needs Ω(|𝑉| + |𝐸|) time. Since we require

the model checking algorithm to allow deferring any revisiting operations, we can

assume that the algorithm can be reordered to run in two passes: 󰅭irst, it explores the

state space in Θ(|𝑉|+ |𝐸|) and then it possibly carries out additional computation with

complexity 𝑡 . Clearly, Algorithm 6.1 only interferes with 󰅭irst of these two passes, and

since it runs in 𝒪(|𝑉| + |𝐸|), the overall complexity of the 󰅭irst pass is Θ(|𝑉| + |𝐸|),

making the overall complexity Θ(|𝑉|+ |𝐸|)+ 𝑡 , which is the same as that of the original

model checking algorithm. □

Further, we shall consider the proposed heuristic in terms of on-the-󰅭lyness of the

underlying accepting cycle detection algorithm. It can be seen easily, that for a level 2

on-the-󰅭ly algorithm (see Section 2.6.7) with the required properties, the algorithm

would clearly stay a level 2 on-the-󰅭ly algorithm when combined with the heuristic.

Unfortunately, no such algorithm is currently known.

As for level 1 algorithms, these are not required to terminate early for every input, even

in the cases where there is a counterexample to be found in the state space. Moreover,

since the algorithm is invariant under exploration order, the ability to 󰅭ind a counterex-

ample is largely dependent upon the order in which the state space is explored.

Since level 1 on-the-󰅭lyness is of a relatively heuristic nature, the following is not really

a theorem – strictly speaking, to prove this property, it would be enough to 󰅭ind an input

where the algorithm 󰅭inds such a counterexample, and where ample(𝑠) = enabled(𝑠)

for each state 𝑠 . However, this hardly tells us anything about practical behaviour of the

reduction.

stmt. 6.6 A model checking algorithm that is level 1 on-the-󰅭ly will also be level 1 on-the-󰅭ly if

combined with Algorithm 6.1, while maintaining this property to an useful degree.

stmt. 6.7 If the original algorithm would 󰅭ind a counterexample in a small fraction of the state

space, a relatively small change in exploration order induced by the reduction algorithm

is unlikely to affect size of this fraction signi󰅭icantly.

Moreover, if the probability of discovering a counterexample in a given percentage of

state space is independent of the exploration order, then Algorithm 6.1 will not alter

this probability at all.
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6.1.5 OWCTY with POR

To successfully exploit the partial order reduction algorithm presented, it needs to

be combined with a suitable model checking algorithm. In this section, we show that

OWCTY [42 and 72] ful󰅭ils all the restrictions we have placed on the model checking

algorithm. Moreover, it can be adapted to run on-the-󰅭ly and it is generally suitable for

practical model checking [11].

The algorithm starts out with a single full reachability (and a heuristic may enable it to

uncover a counterexample during this phase, making it on-the-󰅭ly). This reachability

pass is exploration-order-independent. We incorporate the C3 check proposed in pre-

vious chapters into this pass. This also means, that no re-visits are done before the C3

check is complete.

alg. 6.2

From a high-level point of view, the modi󰅭ied OWCTY works by tweaking the instance

of the model checking problem before passing it along to regular OWCTY – all it takes

is to restrict the vertex and edge sets based on the results of the c3 procedure (cf.

Algorithm 6.1).

In a practical implementation, the C3 check would be integrated more tightly into the

initial reachability (initalisation) phase of OWCTY (which also sets up bookkeeping for

a more ef󰅭icient implementation of the OWCTY algorithm itself).

owcty_c3 :: M → [E] → [S]

owcty_c3 m@(_, es, as, is) ample = owcty m'

where m' = (vs', es', as, is)

(vs', es') = c3 m ample

For details about the reachability and elimination procedures, please refer to Sec-

tion 2.6.5. The property important here is that they re-explore the state space already

stored in s. Moreover, it is not necessary to store edges explicitly – we only need a

single bit for each state, remembering if enabled(𝑠) or ample(𝑠) has been used for this

state. The successors are generated from the description of the input and description

of the state being expanded.

6.2 𝜏− and 𝜏+reduction

Both reductions presented in this section are instances of a combined partial-order/

path reduction as introduced in Section 2.7.1. Both are approximations based on spe-

ci󰅭ic properties of LLVM state spaces. A more traditional POR implementation is dif󰅭icult,

because there is no global knowledge about system transitions and speci󰅭ically their

dependencies. The main problem is the availability of unrestricted pointers: globally,

data dependencies in an LLVM program are determined by pointer values possible at

runtime. While a global analysis of dependencies in a program seems conceivable, it


<!-- To load this file into GHCi, you also need the file "Pseudocode.lhs",  --
  -- which is available in the attachment in Section 1.6 and                --
  -- "Reachability.lhs" from Algorithm 2.1.                                 -->

\starthiding

> {-# LANGUAGE TemplateHaskell, UnicodeSyntax, ScopedTypeVariables #-}
> module OWCTYWeak where
> import Pseudocode
> import Reachability
> import OWCTY
> import C3

\stophiding

From a high-level point of view, the modified OWCTY works by tweaking the
instance of the model checking problem before passing it along to regular
OWCTY -- all it takes is to restrict the vertex and edge sets based on the
results of the `c3` procedure (cf. \inalg{c3alg}).

In a practical implementation, the **C3** check would be integrated more tightly
into the initial reachability (initalisation) phase of OWCTY (which also sets
up bookkeeping for a more efficient implementation of the OWCTY algorithm
itself).

> owcty_c3 :: M → [E] → [S]
> owcty_c3 m@(_, es, as, is) ample = owcty m'
>     where m' = (vs', es', as, is)
>           (vs', es') = c3 m ample


alg/OWCTYC3.lhs
alg/OWCTYC3.lhs
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also appears to be a very complex undertaking. While it might offer improvements

over the much simpler approximations described in this section, we do not expect the

bene󰅭it to be large enough to offset the large investment in research and development

and the high expected cost of the required upfront analysis.

6.2.1 𝜏-reduction

This reduction is based on the observation that some transitions in the state space

are invisible for other active threads in the system. We shall call these actions 𝜏; such

actions of a thread or a process can be delayed over other 𝜏 actions of other processes.

In fact, multiple subsequent 𝜏 actions of a single process/thread can be safely collapsed

into a single transition without any effect on other threads or the observed property.

In traditional model-based model checking of asynchronous systems, this reduction

would be quite ineffective, because 𝜏 chains are fairly rare in purpose-built models. On

the other hand, they are extremely ubiquitous in LLVM bitcode. While identifying all 𝜏

actions could be very complex, there is a very simple yet very ef󰅭icient heuristic that

can identify and collapse a majority of safe (i.e. not forming a loop) 𝜏 transitions. All

transitions that:

• do not access memory (they can still read and write registers), and

• are within a single basic block

can be safely treated as 𝜏 transitions. From experience, we know that assembly-level

programs, especially in the RISC style with explicit loads and stores (as is the case of

LLVM), contain a signi󰅭icant share of instructions (actions) that meet both these criteria.

This reduction is closely related to “superstep POR” proposed in [158], although simpler.

One way to improve both these reductions is an algorithm that identi󰅭ies memory writes

that are invisible to other threads (such an algorithm is discussed in more detail below,

in Section 6.2.3). On the other hand, since the LLVM virtual machine has a possibly

in󰅭inite register 󰅭ile, no register spilling happens (register spilling is normally a major

source of invisible memory writes; in LLVM-based compilers, register allocation takes

place in a later phase of code generation). This naturally limits the number of invisible

writes, and in part explains why the reduction is so successful despite its simplicity.

6.2.2 𝜏+reduction

A simple way to approximate both partial order reduction and path compression is

to keep a single thread running as long as cycle and observability criteria are met. In

the instance of 𝜏-reduction described above, the observability criterion states that an

instruction is observable iff it affects the content of shared memory: this approach is

inherited without change by 𝜏+reduction. The difference lies in the cycle check. In

𝜏-reduction, any branching (jumping) instruction is treated as possibly closing a control

󰅭low cycle (since branching instructions always cross basic block boundaries), forcing
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an intermediate state to be generated. However, if we defer the cycle check, we can

do much better. Especially in optimised code, branching easily dominates memory

access, and the static proviso becomes a major source of inef󰅭iciency. In lieu of a simple

static check for a branching instruction, we can dynamically detect control-󰅭low loops

at successor generation time.

The control location of a thread is kept using a “program counter”, a 4-byte integer value

that uniquely identi󰅭ies a speci󰅭ic instruction. Clearly, any actual loop in the program

will traverse a single control location twice – hence, it will also encounter the same

program counter value. With this in mind, we keep a set of program counter values

that we traversed while looking for a successor. Only when an actual control 󰅭low loop

closes, we interrupt the execution and generate a new state. Each time a successor is

generated, the visited set is cleared.

While this is still an approximation, since the (unobservable) loop may 󰅭inish in 󰅭inite

number of iterations, it is very cheap to compute. Keeping track of full system con󰅭igu-

rations – an approach that would achieve a better reduction for data-dependent loops

with no memory access – would be much more computationally expensive. We reckon

that tracking the comparably minuscule program counter value is a viable compromise.

From the model checking perspective, 𝜏+reduction deals with successor states and

state spaces, replacing diamonds and chains with one-step transitions. This view is

useful for arguing correctness and when thinking in terms of systematic exploration,

and corresponds more closely to the language of ample sets as de󰅭ined for traditional

POR (cf. Section 6.1). However, from the point of view of a single execution trace or

from the point of view of the program being executed, this view is less appropriate.

Therefore, we formulate an alternative, equivalent view of the reduction in terms of

interleaving (also called interruption) points.

We de󰅭ine an interleaving point as a place “in-between” two instructions in the program

text, where a context-switch (rescheduling) of threads (from the point of view of the

program) might happen. When building an unreduced state space, an interleaving point

is inserted between each pair of instructions. This intuitively captures what happens in

a real CPU, whether a single core time-sharing multiple threads, or an actual multi-core

unit. However, as outlined above, not all interleavings cause observable differences in

behaviour of the program. 𝜏-reductions then act by removing some of these interleaving

points. 𝜏-reduction simply inserts an interleaving point right before each store and

each branching instruction, statically.

On the other hand, 𝜏+reduction, as a semi-dynamic technique, acts on the program as it

is being executed. First, interleaving points are inserted before all store instructions,

just as with 𝜏-reduction. Then, more are created and removed on the 󰅭ly: whenever

a thread closes a control 󰅭low loop, an interleaving point is inserted just before the

󰅭irst instruction that would have been repeated. After the re-scheduling happens, this

interleaving point is then dropped again, since a non-looping execution might pass

through it at other times. Apart from technical requirement of the model checker that

each step is 󰅭inite, these loop-related interleaving points are intuitively required to

avoid delaying other threads inde󰅭initely.
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6.2.3 Store Visibility

In Section 4.4.2, we have outlined that with exact pointer tracking, it is possible to

decide whether a given area of memory is visible to any given thread. Likewise, it is

possible to decide whether a heap object is private to a particular thread, i.e. for all

other threads it falls outside their area of visibility.

Since writes to such “private” heap objects cannot be observed by other threads, we

can mark the corresponding store instructions as unobservable for the purposes of

𝜏+reduction, again substantially improving its already very good ef󰅭iciency.

In order to effectively identify the relevant store instructions, we trace the root set

excluding the currently executing thread. If the heap object that is being written to

is not encountered in this manner, then the write is invisible, since no other thread

can read the corresponding memory location. Since we use tracing, this remains true

after any combination of loads or pointer manipulation. The only action that would

make the store observable would be a different store in the same thread, writing

a pointer to the relevant object into a pre-existing, already shared memory location.

However, since this must happen in the same thread, the change caused by 󰅭irst in such

a sequence of stores can never be observed, and the later store will properly cause

an interruption point to be inserted.

6.2.4 Evaluation of Ef󰅭iciency

Informally, model checking of multi-threaded C and C++ programs without any sort

of reduction is nearly impossible. On the other hand, with 𝜏+ reduction, we have

successfully veri󰅭ied a number of non-trivial models. To put this into a more formal

perspective, we have compiled a table of state space sizes without reduction (only

models of a size that can be reasonably checked without reductions are included here;

in other words, the models used in this section are comparatively very small). The “full”

reduction is 𝜏+ with memory access visibility enabled (the other reductions disregard

memory visibility).

model unreduced 𝜏 relative 𝜏+ relative full relative

anderson 298 335 32 121 11.0 % 19 482 6.5 % 572 0.19 %

peterson 603 196 77 397 12.8 % 51 807 8.6 % 8 318 1.38 %

ring 4 625 684 461 663 10.0 % 251 599 5.4 % 15 368 0.33 %

szymanski 9 502 590 1 220 399 12.8 % 807 521 8.5 % 4 967 0.05 %

lamport 527 886 892 23 915 110 4.5 % 12 615 138 2.3 % 485 563 0.09 %

global 1 437 528 36.7 % 251 17.5 % 62 4.32 %

From the table, we can see that in general, bigger models exhibit greater savings – in

line with our expectations. Moreover, we can see that each level of reduction yields

substantial returns, justifying the default mode where all reductions are enabled. Finally,

it is entirely possible to verify models with many millions of states after full reduction
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– with a little extrapolation, we can guess that their full state space would be on the

order of billions of states.

6.3 Heap Symmetry Reduction

In Section 4.4, we have introduced the concept of a program heap, or dynamic memory,

treating it like an oriented graph, with objects becoming vertices and pointers in those

objects becoming edges. With regards to program behaviour, the exact layout of a heap

in memory is usually irrelevant (bar pointer manipulation or indexing bugs) – however,

it affects the actual bit-level representation of a program state.

This introduces a degree of symmetry into the state space of the program, where multi-

ple distinct states may only differ in heap layout. Since the behaviour of the program is

not affected by this difference, we obtain multiple mirror copies of a subset of the state

space. This can be extremely wasteful, and is most pronounced when multiple threads

are using the heap (which is a common case). Whenever allocations can become inter-

leaved, two symmetric successor states arise, differing only in the ordering of the two

heap objects in the physical address space. It is very desirable to detect and exploit this

symmetry to reduce the state space.

There are two main ways to implement symmetry reduction. One is based on a modi󰅭ied

state comparison function, which detects symmetric situations and makes any two

symmetric states equal. The major downside of this approach is that it precludes use

of hash tables – the structure of choice in explicit-state model checking. The other

option is canonisation: a technique where each state is transformed to obtain a canonic

representative of each symmetry class. This way, all symmetric states are represented

by the same bit vector, and standard equality and hashing can be used.

On the 󰅭lip side, detecting symmetric heap con󰅭igurations is much easier than construct-

ing a canonic representative. This is especially true for programs with explicit (manual)

memory management. In some programming languages49, the heap is subject to au-

tomatic garbage collection, and while LLVM has optional garbage collection support,

it is not used when compiling C or C++ programs. If exact collection is used [101], all

pointers must be tracked by the runtime, especially if using a copying (or more gener-

ally, moving) collector. If this information is available, it can be used to implement heap

canonisation. In fact, a slightly modi󰅭ied single-generation copying garbage collector

will produce a canonic heap layout after every collection cycle.

Opposite to languages with automatic memory management, languages like C and C++

require memory to be explicitly free-d to allow memory re-use and avoid resource

leaks. However, this also means that the C runtime puts very little constraint on how

pointers can be manipulated, since correct memory management is the responsibility of

the program, not the system. Unfortunately, this makes it impossible to retro󰅭it garbage

collection (and analogically, heap canonisation) to these languages while retaining

49 Or, more exactly, programs, since garbage collection can be implemented for speci󰅭ic programs even in lan-

guages without intrinsic garbage collection support.
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full generality. In theory, it is legal for a C program to save pointers to a 󰅭ile and read

them back later for further use, or to store them bit-󰅭lipped in memory or even xor’d

together as in a xor-linked list. Such obscured pointers are however extremely rare in

actual programs, and we can make them illegal for the purpose of veri󰅭ication. Basically,

addition is the only reasonable operation to do on an (integer-casted) pointer value; an

error can be raised when attempting any other manipulation. In most circumstances, a

non-additive operation on a pointer would indicate a bug in the program.

Finally, in a controlled environment (i.e. when each instruction can be freely instru-

mented), obscured pointers are the only major obstacle in implementing heap canon-

isation. Therefore, restricting those, it becomes possible to fully track heap pointers

throughout the program, as we have discussed in detail in Section 4.4.1, and based

on this information, compute a canonic heap representation, adjusting all pointers

accordingly. The actual layout we chose is based on DFS pre-order, with root pointers

forming the initial search stack, global variables 󰅭irst, then deepest frame of the 󰅭irst

thread and traversing stacks upwards 󰅭irst, then threads from the lowest thread-id to

the highest.
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7 Abstraction & Re󰅭inement

As discussed in Section 2.1.1 and Section 2.4, data processed by a program pose a

signi󰅭icant challenge to explicit-state model checking. In theory, it is perfectly valid

to replace program inputs with explicit non-deterministic choice (in our case, using

the __divine_choice builtin with a suitable parameter corresponding to the size of

the data type in question). However, while this approach is sound and simple, for non-

trivial inputs it becomes quickly intractable in practical terms.

Hence, some sort of symbolic approach is required to overcome this limitation, making

analysis of more-or-less open systems feasible. The symbolic method that is most read-

ily combined with explicit-state exploration of a state space is automated abstraction

and re󰅭inement. The most commonly employed abstractions are based on predicates,

and most common re󰅭inement techniques are based on (spurious) counterexample

analysis. The latter method is generally known as CEGAR, or Counter-Example-Guided

Abstraction Re󰅭inement.

While traditional abstraction engines work as interpreters, abstractions can also be

“compiled” into programs. Instead of (re-)interpreting instructions symbolically, the

abstract, symbolic instructions can be translated into equivalent explicit code which

computes with symbolic values. For example, in the case of predicate abstraction, the re-

sulting bitcode can directly manipulate and use predicate valuations instead of concrete

variables, encoded as bit vectors. An abstracted program after such a transformation

is basically a “normal” computer program, with somewhat unusual properties, but

otherwise very similar to any other concrete program. The main exception is that the

abstracted bitcode needs to make non-deterministic choices – the abstraction will have

removed some information from the program, and as such, lose precision. This loss of

precision directly translates into loss of determinism in program behaviour.

7.1 LART

LART is an acronym, standing for LLVM Abstraction and Re󰅭inement Tool. It is a work

in progress and is primarily a vehicle for implementing abstractions (and their subse-

quent re󰅭inements) as bitcode transformations. Eventually, the goal of this tool is to

make implementation of new abstract domains and new abstraction heuristics both

easy and re-usable. By providing common scaffolding – pointer analysis, variable sub-

stitution, constraint propagation and so on, and also a number of “worked examples” of

abstract domains, we expect that implementing new abstract domains for experimen-

tal evaluations becomes much easier than it is now. Second, by producing standard

LLVM bitcode as its output, the abstracted programs can be readily analysed using pre-

existing tools, including DIVINE and existing symbolic debuggers (possibly by compiling

the abstracted bitcode into a native binary).

Especially the ability to produce runnable binaries makes this approach attractive –

by substituting a suitable function for non-deterministic choice – whether interactive
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asking the user for directions, prepared ahead of time in the form of “test vectors” or

even randomised. Other than non-determinism though, the LLVM bitcode produced

by LART is an ordinary program. Even runtime analysis tools like valgrind could

be reasonably applied to such program – this might be useful on its own, for cutting

away irrelevant details of the program (the same way it is ordinarily used with model

checking), or as a support method for further analysis of counterexamples generated

by a model checker.

7.2 Predicate Abstraction

One of the most successful abstraction techniques is predicate abstraction, where a

number of predicates is established, describing the state of the program in some “useful”

way. This could, for example, describe qualities of single variables, or relationships

between multiple variables, like 𝑎 > 5 or 𝑎 = 𝑏 . The program state is then encoded,

instead as a valuation of variables and memory locations, as the set of predicates that

are satis󰅭ied for a given state. If we understand the program as a state transformer,

where the state is represented as a valuation of variables, we can derive an abstract

program which instead transforms predicate valuations. As an example, take a program

of the form 𝑥 ← 𝑥 + 1 and a predicate 𝑥 < 5. If we represent the abstract program as a

state transition system, we obtain two states: 𝑥 < 5 and 𝑥 ≥ 5, and under 𝑥 ← 𝑥 + 1,

starting in 𝑥 < 5 we can either stay in 𝑥 < 5 or move to 𝑥 ≥ 5, while 𝑥 ≥ 5 is invariant

under this particular program fragment (assuming in󰅭inite integer arithmetic). What

we see is that the program is no longer deterministic: since the exact value of 𝑥 is not

known, we don’t know whether incrementing it will cross the boundary, 5, or not – we

assume that either could happen.

This is clearly a loss of precision, as we would expect – the state of the program is

encoded in a single bit, even though the real state space of the concrete program is

in󰅭inite. Even though most of the information about the program is lost, it is still possible

to prove interesting properties – particularly, formulas that can be expressed in terms

of the available predicates can be, in some cases, shown to be true: as long as the loss of

precision is not too big. For initial states where 𝑥 ≥ 5, for example, we can easily prove

𝒢(𝑥 ≥ 5) for a program that increments 𝑥 in a loop (or, with some minor additional

assumptions, ℱ𝒢(𝑥 ≥ 5) for an arbitrary initial state).

Consequently, due to the loss of precision, it is very likely that “unreal” paths will exist

in the abstract program – those that do not correspond to any actual execution of the

concrete program. As long as all such “unreal” paths satisfy our desirable property, this

is not a problem: we only use abstractions that are “over” with respect to the properties

we are interested in. For properties universally quanti󰅭ied over all executions (the

case of all LTL properties), any approximation that does not remove executions will be

“over”, as long as it preserves truth of path formulae exactly (see also Section 2.4.3).

With those provisions, there are four cases we need to understand with regards to path

formula outcomes vs. path “realness”.
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• 𝑝 ⊭ 𝜑 , 𝑝 is real: the property is violated by this run

• 𝑝 ⊭ 𝜑 , 𝑝 is unreal: the abstraction is too coarse

• 𝑝 ⊨ 𝜑 does not in󰅭luence the outcome, whether 𝑝 is real or not

Predicate abstraction, or in fact any abstraction, can be either relational or non-rela-

tional – the former type is more complex to work with and more precise, while the

latter is a fair bit simpler to implement but also substantially less precise. The loss of

precision arises from necessarily losing relationships between different values that

have interacted. This is best illustrated by value assignments where the assigned value

depends on a different abstracted variable, say 𝑥 ← 𝑦 + 1 – in this case, non-relational

abstraction has no way of remembering the relationship of 𝑥 and 𝑦 , merely copying

the representation of 𝑦 into the value of 𝑥 , suitably adjusted. Consequently, if 𝑥 and 𝑦

are later compared, the information cannot be used anymore: a relational abstraction

might be able to tell that 𝑥 < 𝑦 is true50, but this would be often impossible for a non-

relational abstraction.

Abstraction, and predicate abstraction in particular, is very simple in principle. Pred-

icate valuations are easy to manipulate and the rules for doing so are usually easy to

derive. This still leaves the question of which variables to abstract and which predicates

to use to do so. Clearly, we could pick both these sets randomly – although doing so is

unlikely to give very good results. A common strategy is to start with some maximum

(or coarsest) abstraction – resulting in a program that exhibits all possible behaviours,

maybe constrained by its control 󰅭low graph. Likely, many of the behaviours of such

highly-abstracted program will violate the property of interest. This kickstarts the re-

󰅲inement loop, which is then responsible for picking suitable predicates (or alternatively,

for 󰅭inding other ways to re󰅭ine the current abstraction). We will discuss the re󰅭inement

step in more detail in Section 7.4.

7.3 Counterexample Analysis

The goal of counterexample analysis is to decide whether an abstract counterexample

is real, i.e. that it corresponds to a counterexample in the original, concrete program.

One way to do this is to substitute speci󰅭ic values for each indeterminate value (using

the concretisation function 𝛾) in a way that preserves all constraints on the abstract

values, and simulate the counterexample in the concrete system.

This is in fact the only task where the abstraction engine and the model checker need

to interact in a non-trivial fashion. For this reason, an interface needs to be established

that will facilitate this exchange of information. The 󰅭irst step is to combine the abstract

counterexample with the original program, which can be achieved by synthesising a

new version of the concrete program that takes particular choices deduced from the

abstract counterexample.

50 We have been using classical arithmetic in all examples in this section. In practice, most programs use 󰅭ixed-

width bit vectors for representing integers, sometimes with special rules for over- and under󰅭low. We will

discuss this in later sections.
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To this end, it must be possible to discern such choices from the counterexample, a

process which has two prerequisites: the model checker needs to provide a counterex-

ample in a machine-readable form, and the program must be able to annotate its steps

with extra information, which is then included in these machine-readable counterexam-

ple traces. We have discussed both these aspects of counterexamples DIVINE generates

for LLVM bitcode in Section 4.7.

7.4 Re󰅭inement

The process of re󰅭inement is easily the most complex part of a system based on au-

tomated abstraction. There are multiple reasons for this: 󰅭irst, each abstract domain

has a different re󰅭inement strategy, second, re󰅭inement is largely a heuristic process.

The mechanics of “re󰅭inement proper” are, however, quite simple: it is a matter of

running the abstraction pass on the original (concrete) program again, with a new set

of parameters51. It is the process of 󰅭inding this new set of parameters that we will call

“re󰅭inement” from now on.

With predicate abstraction, the method most commonly used for 󰅭inding suitable new

predicates is interpolation [117], based on an idea from logic. In this context, interpo-

lation is the process of 󰅭inding a formula 𝜌 such that for some 𝜑 ⟹ 𝜓 , the symbols in

𝜌 appear in both 𝜑 and 𝜓 , while 𝜑 ⟹ 𝜌 and 𝜌 ⟹ 𝜓 hold. This formula can then be

turned into a predicate and added to the working set, re󰅭ining the abstraction (adding a

predicate can never coarsen an abstraction, although it might fail to re󰅭ine it). Using in-

terpolation for computing the new predicate gives us an assurance that the re󰅭inement

is “good” in some sense (i.e. it moves the re󰅭inement in a direction that will remove the

spurious counterexample).

For value abstraction, a feasible re󰅭inement is based on adding complementary abstract

domains to the representation of a value. We can imagine combining eg. parity and sign

domains for a single variable, yielding the negative/odd, negative/even, positive/odd

and positive/even abstract values. This can be achieved by simply computing multiple

abstract domains for each concrete variable and for queries on those variables, give the

most precise answer available from any of the domains – i.e. combine answers in a way

that both true and false trump a maybe. I.e. a positive/odd integer 𝑥 will yield, when

computing the predicate 𝑥 ≥ 0, true and maybe for the respective abstract domains,

yielding true in combination.

7.5 Implementation

As mentioned earlier, a good implementation strategy seems to be a LLVM-to-LLVM

transformation, “compiling away” some details in the program, like exact values of

51 Special considerations could make this process more complex – especially a desire to re-use data from a

previous run of the model checker could introduce extra overhead. We defer the question of how to build

an incremental system to future work.
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particular variables. This way, we can reuse the abstraction engine in many existing

tools.

The interesting questions that arise are: what kinds of abstractions to implement and

how to re󰅭ine them. A 󰅭irst and in a way the simplest candidate is to eliminate some

variables entirely, as well as any values that depend on them, and replacing all branches

they affect with non-deterministic choice. The crudest interesting re󰅭inement is then

to put one of the variables back.

When variables associated with a particular loop are abstracted away in this way, the

loop will have no effect and can be optimised away by a (combination of) pre-existing

LLVM pass(es). If some but not all variables affected by a loop are abstracted away, the

loop may stay but become signi󰅭icantly simpler. For choosing a variable to re󰅭ine, a

spurious counterexample could be quite helpful, as it may reveal which (abstracted)

variables participated in the branching it took, although a crude re󰅭inement strategy

could just pick variables at random (of course a decision must be made that a re󰅭ine-

ment is required, which means the abstraction/re󰅭inement driver decided there is

some spurious counterexample, but it may not be available in a form suitable for the

abstraction/re󰅭inement engine).

A more sophisticated abstraction technique is to replace concrete variables with a set

of predicates. This allows for subtler abstractions and also subtler re󰅭inements. In

case the abstraction fails, a counterexample is required to make reasonable re󰅭inement

though. A re󰅭inement may either add more predicates, or possibly un-abstract a variable

entirely (especially if it seems to already have suspiciously many predicates associated).

In order to make better choices about re󰅭inements, the abstraction/re󰅭inement engine

can annotate the LLVM bitcode with extra information, which would then show up

in counterexamples. Of particular interest are annotations about path constraints on

variables: if a spurious error occurs on a path guarded by if (x > 1000), it’s very use-

ful for predicate re󰅭inement to see this in the counterexample. An intrinsic call, eg.

@llvm.dbg.assume with a metadata node as a parameter, could serve that purpose

fairly well. The job of the downstream tool is basically to include these “semantic meta-

data” instructions in their counterexample traces, so that the abstraction/re󰅭inement

engine can pick them up and base its decisions on them. It’s also up to the abstraction

engine to add relevant @llvm.dbg.assume calls to the bitcode (additionally, the meta-

data nodes need to be able to refer to “live” values in LLVM registers, which then need to

be passed as actual parameters to the assume; this is mostly an implementation detail).

7.5.1 Incremental Re󰅭inement

Transforming the LLVM bitcode obscures the relationships between various abstrac-

tions/re󰅭inements of the same concrete program. This is especially true if further

transformation passes are applied after the abstraction. It would be possible for the

re󰅭inement process in the abstraction engine to mark up the code regions it has changed

compared to the abstraction it was re󰅭ining (this would preclude use of standard LLVM

transforms on the abstracted code though, as those would not be able to preserve this
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kind of markup). Additionally, fairly elaborate support would be required on the side

of the model checker to make use of such markup, and it’s not clear if incremental veri-

󰅭ication would out-weigh the bene󰅭it of stacking standard LLVM transforms after the

abstraction. After a non-incremental scheme is implemented, it might be worthwhile

to measure how much work is being re-done by the model checker upon re󰅭inements,

and possibly 󰅭igure out a way to re-use it. This might be easier in a bounded model

checker than in an explicit-state one.

note An option for explicit-state model checker might be to arrange the predicates in a bit-

vector with “free” slots. While the predicate bitvector width does not change, the model

checker can re-use the visited set and start exploring from a subset of already visited

states, using the new program text. The abstraction/re󰅭inement component would

need to keep the bit-to-bit memory layout of the program intact, and we would need to

map program counters.

7.6 Alias Analysis

In simple cases, aliasing information is not necessary for abstraction. However, for

partial abstractions (and especially re󰅭inement), alias analysis is vital for obtaining

ef󰅭icient transformations and 󰅭ine-grained re󰅭inement control. Consider cases where

abstract values are stored by the program in address-taken variables (i.e. in LLVM

memory as opposed to LLVM registers). The addresses of those variables can be passed

around and a code location not obviously def-use related to the origin of the value can

load the value into a register. There are two options to address this issue: if the entire

alias set the particular variable belongs to is abstracted together, loads can be statically

and reliably marked up as abstract or concrete. When the alias data is too coarse though,

and a 󰅭iner abstraction control is required, some loads may become ambiguous.

To correctly transform ambiguous loads, an expensive runtime tracking mechanism is

required to identify abstract values (and possibly their types when different variables

use different abstract domains). This requires additional global storage proportional

in size to the size of an alias set, and insertion of possibly complex branching at the

point of each ambiguous load/store. The cost of implementing these transformations

may be prohibitive: in this case, we may entirely drop support for “mixed” abstraction

(with ambiguous loads), or we may instead produce bitcode with substantially altered

semantics and expect the backend tool to implement runtime value tracking.

7.6.1 Abstract Memory

In a running program, each memory (heap) allocation will result in a concrete memory

location being created in the program’s address space. For the purpose of alias analysis,

we need to abstract those concrete memory locations in some fashion, as it is impossible

to statically compute the set of concrete locations. The common abstraction used for
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this is assigning a single abstract location to every callsite of a memory allocation

routine.

In other words, one abstract location is created for each static call that allocates mem-

ory; however, this is not the only option. A coarser approach could only distinguish

two abstract memory locations: the stack and the heap, or it could consider the heap

as a single location, and each call frame as another. On the other hand, a more 󰅭ine-

grained approach could take context information into account: instructions that allo-

cate memory could be considered separately in different calling contexts, parametrised

by a particular “stack depth” to account for.

7.6.2 Context and Flow Sensitivity

An alias analysis can be global, computing a single conservative “may point to” solution

for the entire program, meaning that for a particular pointer, it will never “fall out” of

its points-to set for the entire lifetime of the program. In many cases, this analysis will

be overly pessimistic. To that end, there are two common ways in which to re󰅭ine this

global view. One computes distinct solutions for each call-site (this is called context

sensitivity), and another for each control-󰅭low location (this is called 󰅭low sensitivity).

These two are somewhat orthogonal: an analysis can be neither, one of them or both.

Note that context sensitivity of the analysis itself, and the context sensitivity of abstract

memory locations are not the same thing, although usefulness of context-sensitive

memory locations is predicated upon a context-sensitive analysis.

7.6.3 Alias Set Representation

As outlined above, the analyses produce a signi󰅭icant quantity of data and could require

fairly long time to do so. Moreover, it is desirable that this data be readily available to

external tools. As such, providing analysis results in a well-de󰅭ined format embedded

inside LLVM bitcode as metadata which standard LLVM libraries and tools can read

seems to be a good compromise.

The structure of the persistent metadata needs to be such that it can easily represent

results of multiple different alias analyses, with various degrees of context and 󰅭low sen-

sitivity. In particular, this means that the metadata needs to be able to attach points-to

sets to particular contexts, whether that context is derived from 󰅭low sensitivity or from

callsite/callgraph sensitivity.

While top-level variables in LLVM are in an SSA form (meaning that they never change

their value during their lifetime), this is not true of allocated memory, whether with

alloca instructions or with malloc (and it wouldn’t be necessary to perform further

alias analysis if it was). As such, the top-level points-to sets (attached to top-level point-

ers) never change during their lifetime – however, the points-to sets available indirectly

through them do. To take advantage of this fact, it is desirable to decouple transitive

points-to relations, so that top-level points-to sets can be attached to de󰅭initions of

top-level values (i.e. to the instruction that de󰅭ines them). As such, they are entirely
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immutable. The points-to sets can only point at abstract memory locations, top-level

variables in LLVM never have their addresses taken and as such no pointers can point

at them.

Apart from top-level points-to sets, the metadata needs to also represent sets that are

attached to abstract memory locations. These sets will be (depending on the type of the

analysis) different at different point in the program, and hence it needs to be possible

to keep multiple such sets for each abstract memory location, distinguished by context.

The representation of the context needs to be such as to be able to ef󰅭iciently decide if

a particular callstack falls under the given context. For 󰅭low-sensitive queries, only the

topmost callframe is relevant, while for context-sensitive queries, all but the topmost

callframe can be potentially relevant.

The contexts form a semi-lattice, and so do the points-to sets associated to those con-

texts. Meets of contexts correspond to joins of points-to sets and vice-versa. Intuitively,

the broader the context the bigger (more over-approximated) the points-to sets it en-

tails. The idea here is that for a particular context, we can obtain over-approximate

points-to set as a union of points-to sets in all contexts that are more speci󰅭ic. Con-

versely, for a more speci󰅭ic context, if exact information for that context is not available,

a points-to set for any enclosing context is a sound over-approximation of the desired

answer. This gives us a good way to represent the context→ points-to set mappings for

abstract memory locations: each abstract memory location has a context tree attached

to it.

There are two types of context tree nodes, internal and leaf nodes. An internal node only

has a single instruction pointer in it, always pointing to a callsite (there is an additional

virtual callsite that represents the entire program, i.e. the root of the static call graph).

Leaf nodes additionally contain an actual points-to set. The points-to set for an internal

node can be computed as an union of all its children’s points-to sets, and as such is not

stored explicitly. The depth of a context tree is entirely the discretion of the analysis in

question, and queries are satis󰅭ied by giving the most-speci󰅭ic points-to set available in

the context tree. (In the degenerate case of a context-insensitive analysis, the context

tree is singleton.)

To represent 󰅭low sensitivity in the data, context-trees are rather cumbersome and

inef󰅭icient, as they would need to allow representing instruction spans, and for context-

insensitive, 󰅭low-sensitive analysis, addition of many redundant internal nodes to the

context tree. Instead, a different representation is used to represent 󰅭low sensitivity,

orthogonal to context sensitivity. Recall that instructions have a static points-to set

attached to them, representing the result of that instruction. Additionally, we can attach

a map from abstract memory locations to context trees to each instruction, containing

all the AMLs that any of the static points-to set in any of its arguments refer to. The

context trees in this map then represent the points-to sets for those memory locations

at the particular spot in the control 󰅭low graph. Again, for context-insensitive, 󰅭low-

sensitive analyses, these context trees will be singleton. Conversely, for 󰅭low-insensitive,

context-sensitive analyses, they will just point to the global context trees for the relevant

memory locations (over-approximating the 󰅭low sensitivity away).
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7.6.4 Mapping Alias Sets to LLVM Metadata

To summarise the discussion above, we will recount the various types that come into

play in representing points-to sets.

AML (abstract memory location) a unique representation for (a set of) memory locations

PTS (points-to set) a set of abstract memory locations

context tree each node points to a particular callsite, representing the static callgraph of the program;

leaf nodes additionally contain a points-to set; representing context trees is particularly

tricky, because it is not possible to directly store references to instructions in global

metadata; instead, context tree nodes are referenced from callsites, and value use-def

chains can be used to look up the callsite for a particular context tree node

AMLmap a function from abstract memory locations to context trees

instruction each instruction has a single points-to set attached, representing the points-to set of the

(top-level) result of this instruction, and a single AML map, which has entries for each

element in all static points-to sets for all operands of the instruction, and transitively

for all AMLs that arise in points-to sets of any already included AMLs

global PTD (points-to data) a single top-level AML map with entries for all AMLs that exist in the

program; can be automatically summarised using results of a 󰅭low-sensitive analysis by

unioning AML maps attached to all instructions, or can be obtained directly as a result

of a 󰅭low-insensitive analysis

Recall that LLVM metadata is structured as a graph with labelled edges and nodes being

tuples of primitive values (cf. Section4.1.6). The basic idea of our format is to represent

the above data types as LLVM metadata nodes. Abstract memory locations are simply

represented by nodes carrying a numeric ID. Points-to sets are represented by a single

node, with outgoing edges for each element of that set. Context trees are mapped

naturally to LLVM metadata trees, AML maps are represented as a list of tuples (AML

pointer, context tree pointer). Instructions get two named metadata slots, !aa_def and

!aa_use, 󰅭irst representing the result points-to set and the other an AML map.

7.7 Per-Value Abstraction

We can view program semantics in terms of a number of concrete domains (each corre-

sponding to a particular data type) and an algebra for each such domain, encompassing

the operations of the data type available in the programming language. In cases where

different concrete domains interact, special care needs to be taken though. There are a

few examples of such inter-domain interactions:
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• most programming languages contain some sort of boolean concrete domain and

a number of predicates over other domains that produce results in the boolean

domain

• array dimensions are usually speci󰅭ied using a scalar from some particular concrete

domain

• various casting operators: bitcasting, width extension, truncation, etc.

Such interactions cannot be easily captured in isolation for each domain separately.

Apart from those limitations though, an abstraction is, in many cases, essentially a

homomorphism from the concrete domain’s algebra to the abstract domain’s. We would

like to be able to implement abstractions primarily in terms of such homomorphisms

(these correspond to 𝛼 , the abstraction function, from Section 2.4.3). Some attention

to inter-domain interaction is unavoidable, but should be kept to a minimum – at least

as far as correctness is concerned. It is, however, acceptable for special cases where

ef󰅭iciency or precision improvements are desired.

For the boolean domain, the easiest approach is to 󰅭ix a true/false/maybe (tri-state

logic) “abstract” domain: all abstractions are then expected to map abstract boolean

predicates onto either the tri-state abstract domain or the concrete boolean domain of

the program (the latter only being possible in fairly special cases).

Casting is more tricky: combinatorial amount of code is required for translating be-

tween abstract domains. The simplest approach is to treat bit-casts as a type of aliasing

and force both variables to be abstracted into the same abstract domain. This requires

that an abstraction for a particular abstract domain can handle all concrete domains

in a casting-alias set. We do not expect this to be a problem in practice. Inter-abstract-

domain translation code then only needs to be provided in cases where extending the

alias sets through casting would lead to unacceptable coarsening of re󰅭inement con-

trol, or where an abstraction is unable to handle all types (concrete domains) that can

appear in a casting-alias set.

7.7.1 Implementing Per-Value Abstraction

The primary use case is producing LLVM bitcode which is as close to the usual LLVM

semantics as reasonably possible. In particular, stock LLVM tools should be directly

usable with the transformed bitcode. Provided a suitable implementation of non-de-

terministic choice (random, external test vectors, ...) it should be possible to generate

native code of the abstracted program and directly execute it.

With suitable support code, an abstraction can be implemented in terms of a relatively

straightforward “lowering function”: code that, given a single LLVM instruction with

concrete parameters and results, produces equivalent code (not necessarily a single

instruction, intermediate values and even non-trivial control 󰅭low is permissible) over

the abstract domain: the code obtains names of registers that contain the abstract

parameters and a register where the abstract result is expected in subsequent code.

Such a lowering function is substantially easier to implement than a full transformation
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pass. Based on this lowering function, we can then construct a full transformation by

supplying code to decide which registers and memory locations hold abstract values in

a particular abstract domain and to adjust control 󰅭low to re󰅭lect the tri-state results of

some abstracted operations.

The main limitation of this approach is that the abstract values must have run-time

representation that can be implemented using scalar values in some concrete domain

available in LLVM. For many abstract domains, this is not a problem but e.g. set-based

abstract values cannot easily do this. In cases where a more complex representation for

abstract values is required, the desired result can still be achieved using lowering alone,

but a small concession in the semantics of the abstract code must be made: the lowered

code can use pointers to represent the abstract values, which are then stored in the

malloc heap. A compromise needs to be made between allowing to introduce leaks into

the bitcode, or having to dutifully allocate and copy abstract values on (nearly) every

instruction. We believe that “leaking” the memory of abstract values is acceptable, as it

can be done in such a way that downstream tools will be able to easily distinguish such

intentional leaks from genuine errors.

7.7.2 Encoding Abstract Values in LLVM

In order to encode abstract values as LLVM scalars, we can leverage the existing type

system of LLVM, particularly its ability to create cartesian (or aggregate) types. First,

this allows us to easily identify and distinguish abstract values: they will always be of

particular specially designated types, say:

%lart.interval.i32 = type { i32, i32 }

The above LLVM fragment de󰅭ines a new type, named%lart.interval.i32, as a pair of

32-bit integer values. We will use the %lart pre󰅭ix for all types that represent abstract

domains. Next, the middle part of the name, interval designates which abstract

domain this is in particular, and the 󰅭inal component relates the original LLVM type to

which this abstract type corresponds. Since aggregate types are distinct from other

types of the same bit-width, we can use the builtin LLVM type-checker as an additional

layer ensuring the consistency of the abstraction. This prevents mistakes where we

would accidentally use an abstract value as concrete or vice-versa: the type system

requires explicit conversions to be inserted, and it is easy to ensure that bitcasting to

or from abstract types never happens.

7.7.3 Branching and Value Restriction

When a branch is taken due to a maybe result of a boolean expression, the effect of the

branch can be, in addition to its usual concrete semantics, to restrict the values of some

abstracted variables (namely those appearing in the boolean expression that caused
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the branch to be taken). Abstract interpreters naturally take advantage of this fact, by

building up path conditions.

A static abstraction engine can take advantage of the same principle, by restricting

values based on which branch has been taken after an indeterminate comparison result.

Consider that we have an abstract value 𝑥 and a conditional branch is taken, based on

the comparison 𝑥 < 5. Now if we don’t know anything at all about 𝑥 at the point of

comparison, it is clear that if the conditional branch has been (non-deterministically)

taken, the value of 𝑥 must have been less than 5. Likewise, when the branch was not

taken, the value must be 5 or greater. We can take advantage of this fact by adjusting the

abstract value right after entering the relevant basic block (this may require tweaking

the relevant 𝜑 nodes as well). This basically means intersecting the relevant value with

the constraint which enabled the current branch to be taken. Clearly, not all abstract

domains can leverage all such data, but the effect can be very useful when they do.

The value restrictions inferred from control 󰅭low can be computed independently of

particular abstract domains, as long as each abstract domain provides the right set

of primitive operations. Namely, it must be possible to compute a new abstract value

from an abstract value and a reference to an instruction implementing a predicate in

LLVM, such as icmp, along with the actual result of that instruction (i.e. true or false).

In previous section, we have established a naming convention for types that represent

abstract values in LLVM bitcode. We will use a similar scheme for naming operations on

these types, which are implemented as function calls (similar to LLVM-native “intrinsic”

operations like smul.with.overflow52 We will call the particular operation used in

value restriction assume:

%x = call %lart.interval

@lart.interval.assume(%lart.tristate %cond,

%lart.tristate { i2 0 },

%lart.interval.i32 %a)

meaning that value %x encodes a value %a restricted to the inverse of the condition

encoded in the icmp instruction referred to via %cond (it is inverse because we are

assuming that the actual value of %cond is 0, i.e. false). We expect that %cond is de󰅭ined

like this:

%cond = call %lart.tristate

@lart.interval.icmp.sgt(%lart.interval.i32 %a,

%lart.interval.i32 { 0, 0 })

(recall that LLVM bitcode is in a single-static-assignment form, i.e. the result of this

icmp-like intrinsic call is the 󰅭inal value of %cond in this particular context). The assume

call from earlier then statically asserts that the value of %cond is, at this point, 0. A later

52 See section “Arithmetic with Over󰅭low” in [115], also available online at http://llvm.org/docs

/LangRef.html#arithmetic-with-overflow-intrinsics.

http://llvm.org/docs/LangRef.html#arithmetic-with-overflow-intrinsics
http://llvm.org/docs/LangRef.html#arithmetic-with-overflow-intrinsics
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transformation of the bitcode, speci󰅭ic to a particular abstract domain (the interval

domain in this case) will then translate this assumption into code that computes the

restricted value (by taking the intersection of the interval %a and the interval (−231, 0)).

While at 󰅭irst glance it seems that extending this scheme to jumps farther in the history

of the computation may be a good idea, all the values that could bene󰅭it from such an

increase in the depth of the restriction have already been dynamically constrained by

that path condition. Hence, this would only help if it wasn’t the case that (𝑎 ∧ 𝑏) ∧ 𝑐 =

𝑎 ∧ (𝑏 ∧ 𝑐) – a property we would rather like to avoid with our abstract domains.

7.8 Relational Abstractions

In previous sections, we have discussed an entirely non-relational approach to abstrac-

tion – each value has been considered in isolation. While this is a simple and robust

technique, we would like to be able to do better, especially in terms of precision. In Sec-

tion 7.7.3, we have established a way to leverage control-󰅭low decisions in improving

precision of per-value abstractions. A similar approach can be used to restore a limited

amount of relationality into the abstraction, taking advantage of relationships between

different abstract values. Speci󰅭ically, code like 𝑥 ← 𝑦 establishes that 𝑥 = 𝑦 , from

that point on, until something happens to one or the other. Now if it so happens that

either of those values is constrained through a control-󰅭low decision, we might be able

to derive knowledge about the other as well – and not only in the case that 𝑥 = 𝑦 but

also in more complex cases, like 𝑥 = 𝑦 + 𝑘 and so on. Hence, even though the fact that

𝑥 = 𝑦 is not encoded in the program state as such, in the window where we statically

know that this is the case, we can propagate constraints applied to one also to the other

(possibly after a suitable adjustment, in more complex cases).

While this does not replace fully relational abstractions – i.e. where a predicate of

the form 𝑥 = 𝑦 is part of the program state – it constitutes a viable compromise in

between. The constraint propagation scheme does not add too much complexity to

the implementation and it retains part of the precision bene󰅭its of a fully relational

abstraction. Since it is computed statically, it also avoids the overhead of introducing

relational predicates into the encoding of program states. Finally, even though static

constraint propagation approximates relational abstractions, it does not in any way

preclude their use: the same program could use constraint propagation for some values

(which use strictly non-relational abstract domains) but also use relational domains

for a different set of values.

7.8.1 Implementing Constraint Propagation

Besides value abstraction, which can be implemented as an LLVM-to-LLVM transfor-

mation pass (or as a sequence of such transformations), another such transformation

can be implemented for constraint propagation. The job of constraint propagation, as

detailed above, is to insert additional calls to relevant assume intrinsics, based not only
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directly on the path condition, but also for values with more complicated data-󰅭low

relationship to the values restricted by the “vanilla” path condition.

Since, like with all other techniques discussed in this chapter, the changes to be done

to the program need to be computed statically, there are some limitations: most im-

portantly, it is not clear how far back to look for instructions to use for generating and

propagating constraints. Conceivably, a heuristic would compute the limit based on the

actual program text, although we can just as well make the depth a parameter of the

transformation. The other limitation is that, clearly, the transformation can only reach

within the current static scope: the parameters passed to the function and any global

state of the program are entirely unknown and as such cannot be leveraged to create

additional constraints. The constraint propagation pass may be, however, combined

with an inliner to expand its reach – when a function is inlined, replacing the callsite

with the body of the function, its enclosing scope becomes statically available in that

instance, and the constraint analysis (and in turn, the 󰅭inal abstraction) can become

more precise.

In implementing the propagation pass, there is a trade-off to be made between shifting

large part of the work on to the implementation of a particular abstract domain and

making the generic part of the transform rather simple, or making the generic code

more elaborate (and complicated) and retaining simplicity in the abstract domain. The

trade-off centres around how to generate the assume calls and their signature. If we

re-use the same signature that we have used in “plain” value restriction:

%x = call %lart.interval

@lart.interval.assume(%lart.tristate %cond,

%lart.tristate { i2 0 },

%lart.interval.i32 %b)

then the lowering function for this assume call will need to work out the data-󰅭low

implications of%condon its own, based entirely on the origin of%b. An alternative would

be for the generic pass to encode the relationship of %b to the immediate parameters

of %cond into the call itself. However, since LLVM makes use-def information readily

available, following the use-def chains of parameters of the instruction which computed

%cond is not very hard. Eventually, the use-def tree will reach the de󰅭inition of %b.

Consequently, the correct spot to draw the line appears to be ensuring that the value

of %cond only depends on the value of %b “straightforwardly“ – in other words, that

it is not a result of a dynamic construct (loops and function calls, including recursion,

would make the requisite data-󰅭low analysis too complicated). As long as the lowering

function for assume can rely on the data 󰅭low between %b and %cond being simple, this

does not constitute a substantial problem for its implementation.

7.8.2 Abstract Memory

An important challenge in abstraction is the abstract memory model to use. The prob-

lem statement is similar as in pointer analysis: we need to compute a static approxima-
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tion of dynamic memory that is safe (i.e. any behaviour admitted in the actual execution

with real dynamic memory is admissible in the abstracted program with approximate

static memory). The simplest and most straightforward (non-trivial) model used in

pointer analysis can be adapted for use in program abstraction. This model assigns a

unique static location to every instruction in the program that can allocate dynamic

memory. If the dynamic behaviour of the program creates multiple instances of a par-

ticular static memory location, the values stored at those locations must be joins of the

individual abstract values. This also means that when memory allocation is abstracted

using this technique, the value stored at the dynamic location needs to be in an abstract

domain with a join operation available.

This is clearly an over-approximation, and a fairly coarse one. It is, however, easy to

implement and it allows us to abstract away loops that allocate memory. A straightfor-

ward extension is to create a 󰅭ixed-size “buffer”, with new allocations getting join-ed into

a slot corresponding to the index of the allocation modulo the size of the buffer. This is

clearly a re󰅭inement, but it still admits 󰅭inite-state (with a known bound) approximation

of loops. Again, the values must reside in a suitable abstract domain.





151

8 Conclusions

In this thesis, we have explored a section of the large and diverse landscape of formal

veri󰅭ication. Our main focus was on exploiting the form in which most programs exist:

source code, which is automatically translated into machine code. For many programs,

their source code is their only description that remotely approaches completeness, and

in 99 % of cases, it is their only formal description. We expect that this will remain

to be the case well into the future. This fact is what justi󰅭ies the effort funnelled into

research around veri󰅭ication of software in its, may we say natural, form. The goal of

the programmer is to strike a balance in their program between talking to the machine

and talking to other humans. Many new programming languages strive to improve

this balance on both sides simultaneously. As time goes on, source code is becoming

both a better communication medium and a better substrate for automated veri󰅭ication.

We can but hope that our work has contributed usefully to this wider stream within

computer science research.

Accordingly, the main body of this thesis comes in the form of source code. As it is

appropriate for technical papers to be available for consultation to the broadest possible

audience, the same holds for program source code. It is, after all, (in some sense) the

most faithful way to express ideas. Hence, we have chosen to licence the source code in

a way that allows it to be read, quoted and re-used in the efforts of others.53 Of course,

the code can be easily obtained on the Internet, from http://divine.fi.muni.cz.

8.1 Contribution

We believe that this thesis has contributed important and useful knowledge to the

state of the art in software veri󰅭ication (and, just as importantly, error discovery). The

contributions can be broken down into a few areas, roughly corresponding to the

chapters 2-7 of the thesis. Additionally, we believe our summary of the state of the art

in Chapter 2 is valuable in itself, drawing upon multiple areas of computer science that

are not always considered together in the context of model checking.

Code First and foremost, we would like to re-iterate that our most important contribution

comes in the form of code, which cannot reasonably be printed or otherwise published

in the traditional sense. The source code of DIVINE represents a formal, mechanised

description of all the topics discussed in this thesis. Moreover, while DIVINE is a high-

performance tool and it has to make concessions to the hardware platform, we believe

that it is concise and comprehensible to humans just as well. You could treat the text of

this thesis as the “Cliff ’s Notes” version of DIVINE.

Parallelism We have introduced, veri󰅭ied correctness and quanti󰅭ied the performance of a number

of crucial building blocks: algorithms and data structures. These building blocks allow

53 Most of the code comes under a 2-clause Berkeley Software Distribution licence. The full text of the licence

is available alongside the source code itself.

http://divine.fi.muni.cz
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us to retain a high level of abstraction in the description of model checking algorithms

in DIVINE, while at the same time offering superior performance. The building blocks

also provide great potential for re-use in other endeavours, outside of model checking.

LLVM We have shown how to build an explicit-state model checker for LLVM. We have consid-

ered how to represent memory and how to treat pointers, how to deal with exception

mechanisms often used in higher-level programming languages. We have also exten-

sively dealt with the support code needed by real-world programs: language runtimes

and system and standard libraries; and with the interface between the model checker

and the program being model-checked (analogous to the interface that the operating

system provides to system libraries).

Properties We have classi󰅭ied the properties commonly sought in programs and looked at how

these map to model checking as provided by DIVINE and especially its LLVM support.

We explored the combination of LTL properties with software (as opposed to models),

a topic largely ignored in the literature. We introduce a novel approach to specifying

such properties succinctly and intuitively.

Reductions We have introduced a new reduction (𝜏+) tailored to explicit-state model checking of

LLVM bitcode with parallelism. We have also described an implementation of heap

symmetry reduction in an environment with unrestricted, untagged pointers. Moreover,

we have presented an improvement of the pre-existing partial order reduction, suitable

for parallel search algorithms.

Abstraction Finally, we have proposed a novel approach to abstraction in the context of LLVM, as

a composable program transformation. This provides us with a framework to easily

implement and evaluate various abstractions in a real-world context. Our approach,

just as importantly, closes the gap between the way we think about abstractions and

the way they are implemented in practice in model checkers.

8.2 Future Work

Most software projects that are in active use are also in active development. In this

regard, DIVINE is no exception: it could hardly be considered complete. There are

many ideas on how to extend and improve its functionality – some are a “simple matter

of coding” while others need some theoretical groundwork. In either case, the list

provided here is far from exhaustive, it merely lists the ideas that we would like to see

implemented over the next few years.

Search While search algorithms have been the “founding topic” of DIVINE many years ago, the

space of possibilities is far from exhausted. Heuristic and bounded searches could im-

prove bug discovery rate for large inputs, and bounded searches could provide weaker

guarantees about some properties even in cases where a full search cannot be done. A

prime candidate is the number of context switches that happened in the system, as the

majority of counterexamples have fairly few. Another application would be to speed
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up abstraction/re󰅭inement loops by using the spurious counterexample from previous

iteration as a guide.

For systems where computing the transition function is fast (this is not the case for

most LLVM inputs, but in many other applications of DIVINE it is), trading reductions in

memory use for extra computations may be a worthwhile goal.

While the compression scheme currently implemented in DIVINE is certainly quite

effective (and ef󰅭icient), it barely scratches the surface of the possibilities to be explored.

Likewise, “lossy” compression (hash compaction and the like) has a lot more potential

than the current implementation in DIVINE taps.

LLVM Without doubt, the LLVM interpreter in DIVINE is the most complete in any currently

available model checker. Nevertheless, there is still room for improvement. One sorely

missing piece is a register allocator: the current code allocates a distinct slot for each

LLVM register, which is, in some cases, extremely wasteful. Even if tree compression

can somewhat offset the problem, it is still a major issue. Moreover, state canonisation

takes time linear in the size of a state, which means reducing state size will dramatically

improve performance.

There are a few minor features missing, although now that exception handling is fully

functional, these all fall into the “simple matter of code” category. Nevertheless, the

code eventually needs to be written.

Finally, one major feature is missing in our implementation: memory models other than

sequential consistency. Unfortunately, even implementations based on store buffers

with a small bound on their size cause a substantial state space blowup. Therefore, a

practical implementation will likely need some research into how to offset this blowup.

Abstraction In the context of DIVINE and its ecosystem, abstraction is the area with most work left.

The ideas presented in this thesis undoubtedly constitute a very promising direction.

Nonetheless, we do not know for certain, and there is only one way to 󰅭ind out.
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A C++ Bricks

In this technical appendix, we will describe some of the reusable C++ code that has

accumulated over the course of development of DIVINE. While a high-level overview of

some of the code was given in Chapter 3, many aspects were not covered there.

The bricksC++ library was designed to make code re-use as easy as possible. Since C++

lacks a formal package system, this puts considerable constraints on how to technically

achieve code sharing. On one hand, external packaged libraries are the usual way

to redistribute code for re-use in multiple programs. This comes with considerable

downsides though: for a C++ project, each external dependency, especially a hard

dependency, constitutes an extra hurdle for the end-user who would wish to compile

the program from source. Just as importantly, it is inconvenient for developers – they

need to install the library and keep it up to date. Things become even more problematic

when a change in the library is required for the application to work correctly. If the

library is in a separate package from the program, this causes a lengthy release process

for the library and a dependency change for the program. All downstream users and

developers then need to update the library to a correct version. When adding code to the

library, even when the changes are temporarily con󰅭ined to the development machine

of a single person, the edit-build-run cycle becomes needlessly more complicated when

multiple packages become involved.

All in all, the approach with a fully external library is only suitable in cases where the

code-base is very mature and stable and where there is no tight integration of the

library code with the program. Another approach is embedding the shared source code

in multiple projects. This clearly has downsides as well: multiple projects will contain

multiple copies of the shared code. In the conventional world of libraries that more

often get transparent bug󰅭ixes, this is the worst possible solution: each program that

uses the library needs special attention every time a problem arises in the library. This

is especially important in security-sensitive applications.

Nevertheless, there is a narrow area of applications where embedding is, despite its

shortcomings, the superior alternative. The possibly most important aspect of a setup

where such a con󰅭iguration can work is rigorous version control: in practice, the differ-

ent copies of the shared code become version control branches. This allows changes

to be moved from one such branch to another with ease, even if the branches have

divergent sets of changes. The other aspect is the nature of the library code in question:

in our case, it is mainly utility code – data structures, algorithms and so on.54

With those limitations in mind, we have chosen to package up the bricks as C++ head-

ers, single header per a logical unit. Each unit comes with its own unit tests which

are part of the unit header and some also come with performance benchmarks; the

54 As hinted above, cryptographic algorithms and primitives constitute a special category. Any security-sensi-

tive code shared among multiple packages should be well separated from all of them and maintained as a

distinct package. None of this applies to code in the bricks repository.
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results of some of these are presented in Appendix B. Most of those units (or bricks)

are C++11 code and cannot be compiled with older (C++98) compilers.

A.1 Heterogeneous Lists

While in dynamically typed languages, the list type is usually heterogeneous by default,

in statically typed languages, collections normally have uniform types, and lists are

not an exception. Nevertheless, it is often very useful to be able to build a collection of

entities of distinct types. Other times, it is useful to be able to build a collection of types

themselves, without any data – this is especially true for type-level metaprogramming.

In DIVINE, for example, the template instantiations for a particular combinations of

an input language, an algorithm and other components involved in graph exploration

are built using a metaprogramming framework. The bricks repository contains two

distinct heterogeneous list implementations, one is for purely type-level programming

and represents no runtime values; this is available asbrick::hlist::TypeList. Usual

list operations are available at compile-time, including list concatenation, map, 󰅭ilter

and so on.

The other heterogeneous list implemented is a runtime data structure, where both the

size and the type of each element is known statically (at compile time). The elements are

compactly represented in memory as a contiguous block. This data structure is available

as brick::hlist::Cons (after the LISP operator cons for making a list cell). The main

use-case for Cons is type-level recursion, as used in, for example, the implementation of

the LLVM interpreter’s instruction dispatch routine (in divine/llvm/execution.h).

A.2 Remote Procedure Calls

When implementing distributed software, there are many options how to implement

communication between the various processes. At the lowest level, there is always some

sort of a message-passing interface. The standard way to implement message passing

in a cluster is through the MPI speci󰅭ication [118]. However, MPI is data-oriented, and

does not allow for control constructs to be distributed across multiple nodes. In DIVINE,

parallel control is achieved through a few simple primitives: distribute, collect and

parallel – 󰅭irst distributes a value by issuing a method call with a parameter in each

thread, the second collects return values from a method invoked in a similar way and

󰅭inally parallel just runs a method in each thread. Additionally, in the distributed-

memory mode, a ring method of execution is required: a method is executed in each

thread sequentially, passing an accumulator from one to the next. This is required when

the method in question needs to access data that is only available locally to each thread

(which can be the case when different threads run on different machines in a cluster,

eg.).

Implementing these primitives is simple in a threaded model, with shared memory: the

parameters, threads, etc. share program text and all data – pointers, including function

pointers and member-function pointers, are equally valid across all threads. Hence, all
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of the primitives can be implemented in terms of passing a member-function pointer to

each thread and letting it execute it. In a distributed system, however, function pointers

from one node are not necessarily valid on another node – heterogeneous clusters,

address space layout randomisation, slightly different library or program versions or

builds running on different nodes could all cause function pointers to become invalid

when copied from one node to another.

For this reason, passing control over MPI messages needs to be implemented using a

dispatch mechanism. Function pointers need to be translated to portable integral iden-

ti󰅭iers and function call parameters need to be packed into platform-independent bit

vectors. While implementing such a dispatch mechanism manually is straightforward,

it is extremely tedious and somewhat error-prone. Message IDs need to be carefully

allocated and the native mechanisms for control 󰅭low (most importantly function calls)

cannot be directly used for invoking code on remote nodes.

The brick::rpc unit contains code to automate the translation of method calls to

portable identi󰅭iers and back again to function pointers on the remote end. The only

requirement is that each class participating in remote procedure calls enumerates the

methods that need to be available for remote calls using a special BRICK_RPC macro

in its class de󰅭inition. This is necessary so that method identi󰅭iers can be allocated.

The available methods for each class are accumulated at compile time in a heteroge-

neous list (see Section A.1), also across class inheritance hierarchies. An identi󰅭ier↔

function pointer mapping is established at compile time and the rpc::marshall and

rpc::demarshall methods can be used to translate a method invocation, along with

parameters, to a bit vector that can be sent across to another machine using MPI or any

other message-passing mechanism. The rpc calls are further abstracted in DIVINE to

make the remote calls entirely transparent in algorithm implementation.

A.3 Tagged Unions and Algebraic Data

In functional programming languages, algebraic data types (ADTs) are the norm. In

C++, product types are readily available in the form of the struct construct, or even

in form of classes (also known as record types). Unfortunately, sum types (tagged,

or discriminated unions) are not available as part of the language and consequently,

neither is pattern matching on those. In C++11, though, it is possible to implement a

tagged union with a limited form of pattern matching using the C++11 lambdas. The

bricks repository contains such an implementation, along with simple pattern matching.

The bricks implementation could be more appropriately called a type-tagged union,

since the tags of the different data constructors correspond 1:1 with the types of the

󰅭ields. A simple algebraic data type implemented using our type-tagged unions might

look like this:

struct A { int x; };

struct B { int x, y; };

type::Union< A, B > AorB;
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The de󰅭inition above is roughly equivalent to the Haskell de󰅭inition below. The disad-

vantage of the C++ version is that it is more verbose, but it has advantages too, in that

the product types can be more readily accessed outside of pattern match context.

data AorB = A Int | B Int Int

We can then assign either A or B values to variables of type AorB:

AorB x;

x = A{ 0 }; ASSERT( x.is< A >() );

x = B{ 1, 2 }; ASSERT( x.is< B >() );

and more interestingly, we can write simple pattern matches on them:

x.match( []( A a ) { std::cout << "A: " << a.x; },

[]( B b ) { std::cout << "B: " << b.x << ", " << b.y; } );

There are many use-cases for algebraic data, the most common is probably for a concise

representation of abstract syntax trees. In DIVINE, ADTs are used in the implementation

of the SILK language parser, see also Section 5.3.1.

A.4 Recursive-Descent Parsing

Parsing is a very common task in computer programming: more complex program

inputs are usually structured and conform to particular format rules. Such rules are

often described using context-free grammars, and the procedure for matching text

against the rules of a grammar and constructing a derivation tree (or more usefully,

an abstract syntax tree) corresponding to the input is called a parser. Clearly, it is

possible to write a parser for a particular language by hand, as a program. However,

writing a grammar is usually easier than writing an unstructured program to construct

a syntax tree. Therefore, it is customary to implement parsers that are structured

around context-free grammars of their corresponding input languages.

Tools such as yacc and bison help with construction of such parsers, using the concept

of attribute grammars – a grammar annotated with program fragments to construct ap-

propriate outputs. In early days of computing, it was often desirable to produce output

“on the 󰅭ly”, in step with processing the input, to conserve memory. Attribute grammars

have been an useful tool in this regard, making it possible to automatically derive an

entire compiler from the attribute grammar, with some clever use of backpatching to

“󰅭ix up” code generated earlier based on data coming in late in the process (the address

of the “else” branch, forward goto,, etc.). Nevertheless, apart from very specialised

applications, computer memory has been comparatively cheap and memory is many

time larger than a typical source text. Contemporary parsers therefore construct an

abstract representation of the source code in memory, using an abstract syntax tree,
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and the later phases of processing manipulate this abstract syntax tree. This approach

is much more convenient from the point of view of the programmer.

Clearly, attribute grammars can be still used to write parsers which in turn construct

abstract syntax trees. There is however another limitation: the grammar needs to be

context-free, and to be able to automatically derive an ef󰅭icient parser, it often needs

to be in a particular restrictive form, such as LL(k) or LR(k) for some small value of

𝑘 . An alternative is to construct parsers using the recursive descent approach, where

the grammar is not written out as such, but is encoded in the structure of the parser.

Non-terminals of the grammar correspond to procedures which read from input and

produce a node in the abstract syntax tree as their result. The rules for a particular non-

terminal are encoded in the procedure body, reading terminals from the input stream

and/or calling other procedures that correspond to other non-terminals. The parser

that corresponds to this implementation style is in an LL form in some sense, but is not

restricted to context-free parsing. Since the parser is directly written in a Turing-equiv-

alent language, deviations from context-freedom are easily encoded, especially since

the previous context is often available in the form of a (partially constructed) abstract

syntax tree. Arbitrary look-ahead is clearly possible, even if it is often inef󰅭icient.

The bricks repository contains helper classes to make implementation of recursive-

descent parsing as simple and convenient as possible. To a certain degree, the primi-

tives provided by the parsing library are inspired by the combinator parsing approach,

which is the functional variant of recursive-descent parsing. The parse::Lexer class

provides a simple lexer55 which can be optionally used to process the input stream. The

brick::Parser class then serves as a base class for non-terminals: while in procedural

languages like C, recursive descent parsers usually use procedures for non-terminals,

in C++ it is more convenient to use a class in their place. This arrangement also makes

it possible for the classes that represent non-terminals to also double as AST (abstract

syntax tree) nodes. Compared to an approach with attribute grammars, this gives a

much more streamlined design, since the grammar only exists in one copy – the parser

and the AST are derived from the same source. In a conventional yacc-style parser,

a design with AST would require the AST to be de󰅭ined separately from the attribute

grammar, essentially requiring the programmer to manually keep these two parallel

grammar de󰅭initions synchronised.

A.5 Bit-Level Operations

SinceDIVINE is often extremely memory-constrained, it makes perfect sense to optimise

data layout down to smallest details. This often requires bit-level memory access for

tightest possible packing of information. Unfortunately, even though C++ provides

bit 󰅭ields, the exact layout of those is unspeci󰅭ied and left for the compiler to decide,

55 Customarily, the terminals of the language which a parser processes are not letters and symbols of the Eng-

lish alphabet. Instead, a simpler, regular language pre-processor is used to extract meaningful symbol com-

binations from the input stream, corresponding to keywords, operators, constants and so on. This pre-

processor is known either as a tokenizer or a lexer.
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possibly on a platform-by-platform basis. This means that bit 󰅭ields are not suitable in

the cases where exact control over the layout of the bits in memory is required. To this

end, the bricks repository provides class templates for fully custom and fully speci󰅭ied

bit-level tuples. This allows for construction of data types like the following:

bitlevel::BitTuple<

BitField< std::pair< uint64_t, uint64_t >, 120 >,

BitField< uint64_t, 40 > > x;

In this example, the bit vector contains a pair of 64-bit numbers shortened to 120 bits

and a single 64 bit numbers shortened to 40 bits, for a total of 160 bits or 5 32-bit

words. The product types constructed this way admit an indexing operation (using

numeric offsets) which provides a proxy value that behaves like a reference for easy

manipulation. The implementation of the BitTuple type ensures that all access to a

given 󰅭ield uses correct shifting and masking to map to the correct bits in memory.

In addition to tightly packing data, the exact layout of BitTuples allows for a straightfor-

ward implementation of single-bit spinlocks on data exceeding the length of a machine

word. This means that data structures with a single spare bit (this is often the case

whenever they contain an integer value which does not need full 32 or 64 bits, or a

pointer with certain known minimal alignment) can be locked cheaply by leveraging

the BitLock class (which can be used as a 󰅭ield in a BitTuple and occupies a single

bit). In DIVINE, per-state algorithm data is protected by such a single-bit lock when a

single shared hash table is in use (and hence multiple threads can attempt to access

the same state at the same time).

A.6 Command Line Parsing

Programs with a command-line interface often need to provide complex command and

switch combinations. The command invocation needs to be validated and parsed by the

program to decide which actions to take. The command interface of DIVINE is relatively

complex (see also the documentation in the DIVINE manual [32]), and as such can

bene󰅭it from code that automates the common tasks of command-line processing. The

code in brick-commandline.h provides a simple declarative interface for describing

command line structure: which sub-commands are available, which command-line

switches are allowed for which sub-commands, whether a particular switch takes a

parameter and if so, of what data type. It also automates the generation of online help

(the divine help sub-command) and parameter validation.

A.7 Unit Testing

Unit testing is an important tool for ensuring correctness of interfaces at the appropriate

abstraction level. Clearly, unit testing is not very rigorous, but is nevertheless very

important in practice. While testing the entire program (functional testing) makes it
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possible to uncover unwanted unit interactions, it is usually ill-suited for discovering

problems in individual units. The main advantage of unit testing is that the tests are

tightly integrated with the code at a relatively low abstraction level – units should

come with an interface speci󰅭ication in some form. The role of the unit tests is to

check that this speci󰅭ication is actually met by the implementation. In fact, writing

an (informal) speci󰅭ication for a unit is often much easier than doing so for the entire

program. Moreover, the unit normally only interacts with other parts of the program

and only in limited ways (at least in a good system design which obeys the loose coupling

principle).

There are two main areas where support code is useful in unit testing: 󰅭irst is organising

and registering test cases and providing the framework for running the tests, the other is

providing a comfortable way to express assertions that give informative error messages.

The approach bricks takes for registering unit tests is to provide a special macro TEST,

which is used to de󰅭ine methods that become unit tests:

struct TestMyUnit {

TEST(assertions) {

ASSERT( 1 == 1 );

ASSERT_LEQ( 1, 2 );

}

the TEST macro expands to code that takes care of registering the unit test in a cen-

tral test database. When a test runner is built using classes provided by the bricks

unit-testing framework and is compiled with -DBRICK_UNITTEST_REG, the test run-

ner will automatically turn all classes which contain tests into suites and make them

available for execution. The test runner also ensures proper test separation: each test

is started in a fresh process to avoid lingering effects from previous tests (especially

undetected heap corruption) and to properly deal with fatal 󰅭laws in individual test

cases (like a segmentation fault). Typical output of running the unit test suite looks like

the following:

[ 0%] brick_test::unittest::SelfTest ... 3 ok

[ 5%] types::Mixins . 1 ok

[ 10%] UnionTest .... 4 ok

[... shortened...]

[ 95%] rpc::Bitstream ... 3 ok

# summary: 87 ok
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When we introduce a test failure, the output would look like this:

[... shortened...]

[ 95%] rpc::Bitstream ..

# case brick_test::rpc::Bitstream::_bitstream_64 failed:

bricks/brick-rpc.h: 380: assertion `x == 2ull' failed;

got [3] != [2] instead

brick_test::rpc::Bitstream 2 ok, 1 failed

# summary: 86 ok, 1 failed

A.8 Functional Testing

While unit testing provides assurances about small components of the system and

correctness of their interfaces, functional testing is just as important to ensure proper

working of the system as a whole. Moreover, the whole often has functionality that does

not come from one particular unit, but is a result of non-trivial cooperation of many

different units. In DIVINE, a typical model checking run employs a model interpreter,

queues, hash tables, the model checking algorithm itself, possibly a compression or a

hash compaction algorithm and so on. The proper interoperation of those components

needs to be checked, ideally every time the code changes. The functional test suite of

DIVINE is written in bash (Bourne Again SHell) and consists of executing the divine

binary with varying combinations of inputs and parameters, using selected models in

various formats with small state spaces.

The tests themselves use bash features to detect command failures and a few simple

functions to analyse the machine-readable report DIVINE produces after each run. The

bricks repository then provides code to run those functional tests in a controlled manner

and under proper supervision. Since the functional tests forDIVINE are relatively simple

and undemanding, most of the features available in the functional test supervision code

available in brick-shelltest.h are not used in this particular case. It is, however,

used in other projects which require full machine access, gathering of kernel logs, log

progress journalling and other such advanced features.

A.9 Benchmarks

Unit benchmarks is another area where registration and running of individual bench-

marks can bene󰅭it from shared support code. However, while for unit tests the su-

pervision code is quite simple and the most important role of the shared code is to

handle test case registration, the supervision of benchmark execution is much more

complex. The code in the bricks repository contains code for benchmark registration

analogous to unit test registration. More importantly though, it provides benchmark

supervision code closely aligned with the requirements and design that were discussed

in Section 3.1.2, ensuring robust benchmark execution and evaluation.
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The code, in addition to reporting benchmark results online as they are executed, pro-

vides automated result plotting through gnuplot. In addition to standard gnuplot fea-

tures, the plotting code in brick-gnuplot.h produces plots using optimised colour

palettes based on CIElab colour relationships and consistent key/axis colouring across

multiple benchmarks (i.e. different quantities use different colour palettes, while the

same quantity measured in multiple different benchmarks will always use the same

palette). Moreover, it can also provide cubic interpolation to better 󰅭it incomplete data

(since it is usually not feasible to measure all possible parameter combinations sepa-

rately). Finally, it produces standalone gnuplot input 󰅭iles, which contain all the data

points inline and are therefore easily portable and convenient to work with.

A.10 Others

The bricks repository also contains a hash table implementation which we discussed

in detail in Section 3.5, a shared queue implementation discussed in Section 3.4, IPC

queue implementation that was detailed in Section 3.2. Since all of these have been

discussed in detail in the relevant sections, we do not repeat a discussion of those units

here.
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B Measurement Data

This appendix contains some of the measurement data obtained in various benchmarks.

The methodology of obtaining the data was described in Section 3.1.2. All plots in

this appendix have been produced by the benchmarking subsystem of C++ bricks, cf.

Section A.9.

B.1 IPC Queues

For IPC queues, there is only a limited number of options when it comes to benchmark-

ing. The performance of all implementations is basically invariant under both queue

size and the parameters of the queue (within some reasonable limits). Hence, we only

include a comparison of the different implementations in a producer/consumer sce-

nario, shifting a million items of a given type, for 3 different types, namely a single byte

(Figure B.1), a single pointer (Figure B.2) and a 64-byte block of data (Figure B.3).

The mutex and spin variants are simply a std::deque protected by a mutex and a

spinlock respectively, the linked variant is a lock-free linked list (it is, interestingly,

slower than a spinlock-protected deque, presumably for two reasons: its memory

locality is very poor, and the emptiness check causes contention on shared variables),

ring is a ring-buffer (󰅭ixed-length) implementation and 󰅭inally hybrid is the design used

in DIVINE.
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B.2 Shared Queues

In comparison to IPC queues, the use cases for shared queues are somewhat more

varied: most importantly, the number of threads is not 󰅭ixed, since individual threads

access both ends of the queue and a single queue is used by many threads. Our main

benchmark scenario then is a single queue shared by 𝑛 worker threads, each thread

adding and removing items from the queue, in a fashion similar to how graph explo-

ration works. Again, we used a few different item sizes, and looked at the scalability

(with number of threads) of each implementation. The plot for pointer-sized items can

be found in Figure 3.3.
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B.3 Hash Tables

This data supplements Section 3.5.8. The data is split into a few categories, depending

on what is being measured.

B.3.1 Parallel Access and Reserve, Integer Keys

We have measured the effect of creating hash tables with a size that matches the size of

the expected data set, as opposed to creating them with a small default size and letting

them grow as needed. We have measured the time for inserting elements (no repeats),

scaling with hash table size, and with different number of threads. The following two

plots are for one and two threads respectively, illustrating that the effect of reserving

space 󰅭lattens out as the hash table becomes bigger, and that for multi-threaded access,

the effect of a pre-sized hash table is less pronounced. The “waves” in the plots, on

the other hand, illustrate the cost of resizing the table: the highest points of the plot

coincide with con󰅭igurations where a resize is required just before inserting the last

few items (and thus the 󰅭inal resize fails to amortise over subsequent insertions).
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B.3.2 Scalability of Parallel Access, Integer Keys

Here we have measured multiple implementations against the number of threads ac-

cessing the table at once. As always, all times are scaled both to number of items and

number of threads. These tests used 1 million and 16 million items respectively. The

types of hash tables are following: ccs = “concurrent compact set” (the implementation

used in DIVINE), cfs = “concurrent fast set” (less compact, mainly useful with variable-

length keys), cus = “concurrent unsorted set” an implementation provided by Intel

TBB [96] and chm = “concurrent hash map” (another data structure provided by Intel

TBB). We can see that at 1M items, the implementations are about break-even. At 16M

items, the more cache-ef󰅭icient implementations in DIVINE show a pronounced advan-

tage up until the number of physical cores is reached – 12 in this case. The plot for 1M

items, 50 % of duplicate keys can be found in Figure 3.4.

insert once

1M items

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2 4 6 8 10 12 14 16

time [μs]

threads

category:hashset items:1024k reserve:50 test:insert_int_1x

type

ccs

cfs
cus

chm

B.8



Measurement Data Hash Tables

171

insert 4×

1M items

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2 4 6 8 10 12 14 16

time [μs]

threads

category:hashset items:1024k reserve:50 test:insert_int_4x

type

ccs

cfs
cus

chm

B.9

lookup, 1/1 hits
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B.3.3 Scalability of Parallel Access, Long Keys
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lookup, 1/2 hits

16M items

0

1

2

3

4

5

6

7

2 4 6 8 10 12 14 16

time [μs]

threads

category:hashset items:16384k reserve:50 test:lookup_blob_50

type

ccs

cfs
cus

chm

B.17

B.3.4 Scalability with Size
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C Related Papers

The author of this thesis has co-authored the following conference & journal papers.

All publication venues are international unless noted otherwise.

2006 DiVinE – A Tool for Distributed Veri󰅲ication [7] is a CAV tool paper based on an old imple-

mentation of DiVinE targeted at MPI clusters; contribution: user interface, execution

and supervision of veri󰅭ication jobs in a cluster, copy-editing, overall about 15 %

2007 Scalable Multi-core LTL Model-Checking [10], presented at the SPIN workshop on model

checking software with focus on adapting distributed-memory algorithms to execute

ef󰅭iciently in shared memory; contribution: theoretical background, implementation,

benchmarking, writing and copy-editing, overall ca. 50 %

Shared Hash Tables in Parallel Model Checking [22], a paper presented at PDMC, explor-

ing the use of shared hash tables to improve performance of model checking in shared

memory; contribution: idea, theoretical background, implementation, benchmarking,

writing and copy-editing, ca. 66 % in total

2008 DiVinE Multi-Core – A Parallel LTL Model-Checker [11], an ATVA tool paper, presenting

the 󰅭irst shared-memory version of DIVINE, based on the theoretical and prototyping

work described in the 2 previous papers; contribution: implementation, release engi-

neering, writing, copy-editing, about 50 %

2009 An Optimal On-the-󰅲ly Parallel Algorithm for Model Checking of Weak LTL Properties [12],

an ICFEM presentation of a new combined algorithm for distributed- and shared-mem-

ory accepting cycle detection; contribution: collaboration on algorithm design, imple-

mentation, benchmarking, writing & copy-editing, ca. 45 % overall

DiVinE 2.0: High-Performance Model Checking [13], a HiBi tool paper on a version

of DIVINE with improved performance and the ability to use clusters of multi-core

machines ef󰅭iciently; contribution: idea, implementation, release engineering, writing,

about 66 % overall

2010 Parallel Partial Order Reduction with Topological Sort Proviso [14], a SEFM presentation

of a new C3 check for use with parallel LTL model checking algorithms; contribution:

idea, algorithm, implementation, benchmarking, proofs, writing & copy-editing, ca.

80 %

Scalable Shared Memory LTL Model Checking [9], a paper published in the Internatio-

nal Journal on Software Tools for Technology Transfer, elaborating the techniques for

ef󰅭icient shared memory parallelism in graph exploration, as applied to accepting cy-

cle detection and LTL model checking; contribution: theoretical background, writing,

implementation, benchmarking, copy-editing, about 50 % overall



Related Papers

178

DiVinE: Parallel Distributed Model Checker [18], a HiBi/PDMC tool paper on a substan-

tially improved release of DIVINE, with hybrid distributed- and shared-memory capa-

bilities, parallel partial order reduction and other improvements; contribution: imple-

mentation, release engineering, testing, writing, copy-editing, about 66 % in total

2012 Towards LTL Model Checking of Unmodi󰅲ied Thread-Based C & C++ Programs [16], a

NFM presentation of the new LLVM interpreter for DIVINE; contribution: idea, design,

implementation, theoretical background, writing, ca. 75 %

On-the-󰅲ly Parallel Model Checking Algorithm that is Optimal for Veri󰅲ication of Weak

LTL Properties [15], a journal presentation of the algorithm designed in [12] and its

combination with parallel partial order reduction for Science of Computer Program-

ming; contribution: idea, algorithm design, implementation, benchmarking, theoretical

background, writing, overall about 55 %

Tool Chain to Support Automated Formal Veri󰅲ication of Avionics Simulink Designs [6],

an FMICS presentation of applying model checking to industrial avionics designs using

DIVINE; contribution: part of the implementation, copy-editing, theoretical background,

about 25 % total

2013 Improved State Space Reductions for LTL Model Checking of C & C++ Programs [133],

a NFM presentation of the 𝜏+reduction together with heap symmetry reduction and

other ef󰅭iciency improvements in the LLVM interpreter in DIVINE; contribution: idea,

theoretical background, implementation, writing, ca. 85 %

Distributed LTL Model Checking with Hash Compaction [21], a PDMC presentation that

revisited the idea of using hash compaction to reduce memory requirements of LTL

model checking in distributed memory using the OWCTY algorithm; contribution: idea,

writing, correctness proof, part of the implementation, approx. 33 % in total

DiVinE 3.0 – An Explicit-State Model Checker for Multithreaded C & C++ Programs [8], a

CAV tool paper reporting on the LLVM model checking capability of DIVINE and numer-

ous other improvements; contribution: theoretical background, writing, implementa-

tion, release management, providing guidance to junior co-authors, coordination; ca.

40 % total

2014 Model Checking C++with Exceptions [134], an AVoCS presentation of the extensions toDI-

VINE’s LLVM interpreter required for model checking of C++ programs with exceptions;

contribution: idea, design, implementation, writing; overall about 85 %

Context-Switch-Directed Veri󰅲ication in DIVINE [154], a presentation at a local workshop

(MEMICS) about leveraging directed search for counterexample discovery in LLVM

programs using DIVINE; contribution: idea, copy-editing, guidance, overall 33 %
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