
Faculty of Informatics, Masaryk University

Partial Order Reduction
in Parallel Model Checking

Master’s Thesis

Petr Ročkai

Brno, autumn 2009

Declaration

Thereby I declare that this thesis is my original work, which I have created on my
own. All sources and literature used in writing the thesis, as well as any quoted
material, are properly cited, including full reference.

Advisor: RNDr. Jǐŕı Barnat, PhD.

Abstract

The main focus of this thesis is a partial order reduction technique for parallel LTL
model checking. The novelty of our technique lies in its parallel implementation,
and in providing truly dynamic heuristic with serial time complexity in O(n). In
contrast, the traditional DFS-based techniques cannot be used with parallel al-
gorithms. Moreover, the existing heuristics amenable to parallel execution either
require super-linear time or otherwise are too strict compared to sequential imple-
mentations.

Additionally, we frame the mentioned technique in a broad overview of technol-
ogy and algorithms for high-performance parallel enumerative LTL model checking.
We give both theoretical background and technical details, and provide source code
of the system described (comprising a complete model checker suitable for general
use).

To augment the partial order reduction technique, an improved on-the-fly al-
gorithm for parallel cycle detection is given, again furthering the state of the art.
Importantly, the improved algorithm fits extremely well with the proposed reduc-
tion technique.

Keywords

Model Checking, Parallel Algorithms, Implementation, Multi-Threading, Multi-
Core, Shared Memory, Symmetric Multiprocessing, Distributed Memory, Clusters,
State Space Reductions, Partial Order Reduction

Acknowledgements

Many people have contributed to making this thesis possible. I would like to thank
the whole Parallel and Distributed Systems Laboratory – this has been a great place
to learn and work. Namely, I would like to thank to RNDr. Jǐŕı Barnat, PhD. (who
has also served as an advisor on this thesis) and prof. RNDr. Luboš Brim, CSc. who
jointly provided excellent guidance throughout my first encounters with research
and also co-authored papers which led to this thesis.

I would also like to thank prof. RNDr. Ivana Černá for both her research work
(especially her joint paper with Mgr. Radek Pelánek, PhD. on OWCTY, which this
thesis builds on) and her great lectures (especially the complexity course) which
had been both a source of knowledge and motivation for me.

Further thanks go to Red Hat, Inc. and namely Tom Coughlan, for making
it possible to allocate part of my working hours for my research activities, which
directly contributed to this thesis.

I would also like to thank my family, my friends and all the good people around
me who helped me in keeping my sanity and focus, and made the time generally
enjoyable. Finally, I would like to thank Lucy – I know it has been hard at times,
for both of us.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Model Checking . 2
1.3 Automata-based Approach . 2
1.4 Parallelisation . 3
1.5 DiVinE . 4
1.6 Experiments . 5

2 Algorithms 7
2.1 OWCTY . 8
2.2 MAP . 9
2.3 On The Fly Execution . 11
2.4 OWCTY On The Fly . 13
2.5 Experiments . 14

3 Parallel Architectures 17
3.1 Shared Memory Platform . 18
3.2 MPI . 19
3.3 Implementing Algorithms . 19
3.4 Communication . 20

3.4.1 Distributed Memory . 22
3.5 Memory Allocation . 22
3.6 Termination Detection . 24
3.7 Experiments . 25

4 Partial Order Reduction 29
4.1 Background . 29
4.2 Related Work . 31

4.2.1 Static Partial Order Reduction 32
4.2.2 Dynamic Partial Order Reduction 32
4.2.3 Parallel reductions . 33

4.3 Cycle Detection . 33
4.4 Correctness . 35
4.5 Time complexity . 36

ix

x CONTENTS

4.6 Using with OWCTY . 38
4.7 Using with MAP . 38
4.8 Experiments . 39

5 Conclusion 43
5.1 Future Work . 43

Bibliography 45

Chapter 1

Introduction

The focus of this thesis is parallel, explicit-state model checking of LTL properties.
We will first introduce the concept of model checking, LTL and the surrounding
theory. Then, we will discuss why and how is parallelisation important for success
of model-checking and what can and cannot be done on parallel machines.

Model checking is an important branch of a bigger family of formal methods.
Model checking itself then has a number of finer branches. The most general notion
of model checking is that of a model and a property. These two form input to an
automated tool, a model checker, which then decides whether the model satisfies the
property given. The form of the property and the representation of the model are
the basic differences among various model checking approaches. The main concern
of this thesis is model checking of Linear Temporal Logic properties on models with
explicitly represented states.

We will define these notions, and their alternatives, later in this chapter.

1.1 Motivation

Let us look briefly at general usefulness of model checking, and even the whole
branch of formal methods. The systems we design are increasing in complexity,
and it is beyond human capacity to verify their correctness. Formal methods exist
to augment the human verifier with automated tools that can help them ensure
correctness of a system that is far beyond their capabilities to check manually. Of
course, various systems need to be “correct” to a different degree. Often, it is
acceptable for a machine to fail unexpectedly, and it is enough to do some amount
of testing to ensure it works “well enough”. However, there are systems where
a chance of failure must be minimised at all costs: most notably systems, where
failure would put lives at risk.

However, formally speaking, it is not clear what “correct” actually means. In
model-checking, this correctness is expressed as a set of properties the system must
satisfy. These usually originate in a less formal set of requirements about safety and
behaviour of the device or system in question. In other branches of formal methods,

1

2 CHAPTER 1. INTRODUCTION

a similar formal notion of “correct” exists. It is (a very important) part of the work
of the human verifier to ensure that the informal notion of correctness corresponds
to the formal properties used in automated verification.

Nevertheless, formal methods are vastly more expensive to implement than test-
ing. The existing tool support is still mostly academic, and adoption of formal
methods in industry is lagging behind other approaches. Despite these issues, for-
mal methods are gaining acceptance and are increasingly relied on for real-world
systems. For a recent example, let us just mention [30], a report about replacement
of testing with symbolic model checking in the Intel Core i7 processor design.

1.2 Model Checking

In full generality, the term model checking describes simply an automated process
of verifying (or falsifying) the fact that a given structure (a model) satisfies a given
logical formula. The formula only needs to be specified in a suitable logic: this could
be as simple as propositonal logic, although most often, some kind of temporal
logic [21] is used in conjunction with model checking. Temporal logics allow to
describe behaviour of a system in time – which allows useful statements to be made
about hardware or software systems. Indeed, proving (or disproving) properties of
software or hardware systems is currently the most common application of model
checking.

Of course, there are certain limitations that need to be imposed on the models for
the model checking to be practically useful. It is needed that the model is finite, as
to be fully constructible by a computer: this may be especially problematic in case
of software. Nevertheless, there are important classes of software systems that are
finite, and therefore where fully automatic model checking is applicable. Moreover,
there are even approaches for model-checking infinite-state systems, but these are
out of scope of this thesis – we will only discuss finite models in the following.

Even more specifically, we will concern ourselves with model checking of prop-
erties given as Linear Temporal Logic (or LTL, for short) formulae. This is one of
the temporal logics that are in current widespread use in model checking: the other
being CTL – Computation Tree Logic and CTL∗ and various subsets of either (in
fact, LTL is itself a subset of the latter).

1.3 Automata-based Approach

The contemporary explicit-state LTL model checkers are largely based on a scheme
proposed in [47]. The basic idea is to translate negation of the LTL property into
a Büchi automaton (which is called a negative claim automaton in this context).
This automaton then accepts a language that corresponds to the runs violating
the original LTL property. In itself, this automaton will accept many words –
however, when a synchronous product is done with the modelled system, we obtain
an automaton accepting an intersection of two languages: the one containing all
the runs in the original modelled system, and those that violate the desired LTL

1.4. PARALLELISATION 3

property. The model checking problem then reduces to verifying that the product
automaton accepts exactly the empty language; moreover, if the language accepted
is non-empty, the (infinite) accepted words represent the undesirable behaviours
(according to the LTL property used), i.e. a set of counterexamples. Finally, the
problem of language emptiness for Büchi automata is a relatively easy problem: the
language is non-empty iff there is a reachable accepting cycle in the graph of the
automaton.

Moreover, the model specification is usually not given as an explicit state graph
of the whole system: this would be rather impractical. The preferred form is a set
of generally small extended automata with communication – the full state space is
then constructed on-the-fly from this compact description.

Now we can identify the two most resource-demanding portions of the actual
LTL model checking: the construction of the full state space from the model, and
the search for reachable accepting cycles. In practice, these two processes are often
interleaved – the construction of the state space is driven by the demands of the
accepting cycle detection algorithm: only the parts that the cycle detection explores
are computed, and only when they are needed.

1.4 Parallelisation

Demand for parallel model checkers has been growing steadily ever since it became
apparent that parallel computing is the path to further advances in hardware perfor-
mance. Individual core clock speed has been stagnating and the only segment where
significant performance growth is currently happening is by increasing number of
compute cores per system.

The state space generation itself is easy to run in parallel: what is usually done
is that a set of immediate successors of a given state (a vertex of the state graph) is
computed – and it is straightforward to construct any number of these sets at any
given time in parallel. However, to exploit this parallelism, we need a accepting cycle
detection algorithm that can actually make use of these successor sets in parallel.

Unfortunately, the staple LTL model checking algorithm, Nested DFS [16, 25]
is hard, or even impossible, to paralellise efficiently. The algorithm relies on depth-
first postorder, which is a P-complete problem [41]. In itself, this problem is being
addressed by recent implementations of alternative algorithms [3]. In Chapter 2 we
discuss parallel LTL checking algorithms, as well as describe the state of the art
algorithm [5] as employed by DiVinE 2 [4, 6].

In distributed memory, there has been a single traditional way of implement-
ing parallel algorithms for explicit-state system model checking. The vertices of
the state-space graph, i.e. the individual system states, are partitioned among the
available compute nodes statically [12, 14]– often using a hash function on the con-
tent of the state vector. This approach yields fair work distribution and relatively
predictable overhead, with little variance with shape of the state graph. This is
also the basic approach used in shared-memory parallel setting, although more al-
ternatives exist in this design space. The paper [7] examines the effects of using
a shared hash table for storing the already-explored part of the state graph, while

4 CHAPTER 1. INTRODUCTION

employing a dynamic work assignment scheme. The results have been, however,
largely disappointing, with static partitioning coming out as a more scalable and
more flexible approach.

In Chapter 4, we give a partial order reduction [38, 39, 40, 46] heuristic, suitable
for use with these parallel algorithms. The p. o. r. is often used in conjunction with
Nested DFS to reduce the amount of time and memory required.

For algorithms that use static partitioning and a large number of partitions
(threads, or workstations), existing approaches that treat cross-transitions specially
are generally impractical – all transitions are “cross” in these cases. Absence of
successful widespread use of this technique so far is in part due to an inherent
difficulty in adapting partial order reduction to parallel algorithms: the heuristic
used for approximating the partial order reduction is tied to depth-first search order.

In this thesis, we present a new heuristic, allowing p. o. r. to be used with
existing parallel LTL model checking algorithms, that is fully independent of the
partitioning employed.

1.5 DiVinE

DiVinE is a parallel model checking tool created in the Parallel and Distributed
Systems laboratory, Faculty of Informatics in Brno. The original DiVinE [1] was
conceived as a tool for clusters of workstations (i.e. a distributed memory system)
and was implemented using the Message Passing Interface, a library for distributed
memory computations. In 2007, a shared memory branch of DiVinE, under the
name DiVinE Multi-Core was created and implemented basically from scratch,
using the same modelling language and based on the same model-checking algo-
rithms. This new branch has been more geared towards high performance and
speedup on parallel hardware – the primary motivation of original DiVinE has
been memory aggregation across a number of low-cost workstations.

In late 2008, it has been decided that a future version of DiVinE (dubbed
DiVinE 2) would combine both shared and distributed capabilities, and work has
started on a hybrid shared/distributed memory model checker. The project built
upon the relatively fresh codebase of DiVinE Multi-Core, although a number
of simplifications has been done in the groundwork, since the performance impact
of various optimisations was better understood by then. Since the shared memory
computation model DiVinE Multi-Core used was based on message passing (with
a custom implementation of message queues), it was relatively straightforward to
add a thin MPI layer for distributed capabilities.

Besides being a tool intended for production environments, DiVinE 2 has served
as a research vehicle for work on efficient implementation of parallel algorithms and
various shared-memory-specific techniques.

1.6. EXPERIMENTS 5

1.6 Experiments

In Chapters 2, 3 and 4, we include sections with experimental evaluation of the
described techniques. In these experiments, we have used a selection of models
from BEEM [37], and a selection of example models as shipped with the DiVinE

Cluster distribution. All these models are implemented in the DVE [43] language,
as used in DiVinE.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Algorithms

An efficient parallel solution of many problems often requires approaches radically
different from those used to solve the same problems sequentially. Among classical
examples are list rankings, connected components, and depth-first search in planar
graphs.

In the area of LTL model checking the best known enumerative sequential al-
gorithms based on accepting cycle detection are the Nested DFS algorithm [16, 25]
(implemented, e.g., in the model checker SPIN [23]) and SCC-based algorithms orig-
inating in Tarjan’s algorithm for the decomposition of the graph into strongly con-
nected components (SCCs) [45]. However, both algorithm types rely on inherently
sequential depth-first search postorder. This property of the algorithms makes
them difficult to adapt to parallel architectures. The SPIN dual-core algorithm is
a special case, where the nested (second) search is independent of the outer (first)
search. Nevertheless, each of the searches is, in itself, executed serially – therefore,
the algorithm cannot be generalised to more than 2 cores. Consequently, different
techniques and algorithms are needed.

However, unlike LTL model checking, reachability analysis is a verification prob-
lem for which an efficient parallel solution is available. The reason is that the
exploration of the state space is independent of the search order. This makes the
algorithm easy to implement on parallel architectures with relatively good efficiency
out of the box (assuming that efficient parallel primitives for given architecture are
correctly employed – we will discuss these in more detail in Chapter 3).

We will discuss the two most successful parallel LTL algorithms available: MAP
and OWCTY. First however, we need to introduce more basic notions and algo-
rithms. First, let us define a concise way to describe the input and output of an
accepting cycle detection algorithm.

Definition 2.1. The accepting cycle problem instance M is a tuple (V,E,A, I)
where V is a set of vertices (states), E ⊆ V × V is a set of edges (transitions),
A ⊆ V is a set of accepting states and I ⊆ V is a set of initial states.

7

8 CHAPTER 2. ALGORITHMS

Algorithm 2.2. Reachability.

Input: M = (V,E,A, I) a problem instance from Definition 2.1.
Output: V ′ ⊆ V set of states reachable from I

1. open← I
2. V ′ ← I
3. While open 6= ∅ do 4–5
4. open← {o | ∀o ∈ V. x ∈ open ∧ (x, o) ∈ E ∧ o 6∈ V ′}
5. V ′ ← V ′ ∪ open
6. Return V ′

We will discuss efficient parallel implementation of this simple basic algorithm
in later chapters.

2.1 OWCTY

The full algorithm name is One-Way Catch Them Young – we write OWCTY
for brevity. This algorithm has been introduced for explicit-state model checking
in [13]. The algorithm is executed in passes, each of them consisting of a number
of steps. The main algorithm loop is as is as follows:

Algorithm 2.3. OWCTY.

Input: M = (V,E,A, I) a problem instance from Definition 2.1.
Output: True if no accepting cycles were detected.

1. S ← Algorithm 2.2 (reachability from I)
2. Repeat 3–4
3. R← Algorithm 2.2 (reachability from S)
4. S ← Algorithm 2.4 (elimination on R)
5. While R 6= S ∧ S 6= ∅
6. Return S = ∅

The above scheme basically describes how to convert any simple cycle detection
algorithm into an accepting cycle detection one. The usual simple cycle detection
algorithm employed here is based on topological sort. The elimination step uses
this algorithm to remove all nodes that do not lie on cycles. Of course, the cycle
detection algorithm does not discriminate accepting and non-accepting cycles, which
is why we need to also exclude states that are not reachable from an accepting state:
these clearly cannot lie on an accepting cycle.

The elimination algorithm (implemented using topological sort, as mentioned
above) is as follows:

Algorithm 2.4. OWCTY Elimination.

Input: S a set of states and T a set of transitions.
Output: A set S′ of states that are guaranteed to not lie on cycles in S.

2.2. MAP 9

1. S′ ← S
2. Repeat 3–4
3. tail← {t | ∀t ∈ S′.¬(∃s ∈ S′.(s, t) ∈ T)}
4. S′ ← S′ − tail
5. While tail 6= ∅

It can be seen that there is a reasonable amount of available parallel work: each
state in tail can be processed independently of all the others in each iteration. Un-
fortunately, there is only limited parallelism available across the iteration boundary
– we have to wait till all predecessors of a state are processed before we can process
the given state.

Looking at serial complexity of the algorithm, we should discuss two cases: a
weak graph, and an arbitrary graph. For the weak case, we ought to use a different
main loop. In a weak graph, there are no cycles that would contain both accepting
and non-accepting states – therefore, non-accepting states can be automatically
discarded from cycle detection: only a single pass of reachability needs to be done
through non-accepting components (to detect the possible neighbouring accepting
components). For the accepting components, we first do a single reachability pass
to discover all the vertices belonging to the given component and when this is done,
execute a single elimination pass on that component. The component contains an
accepting cycle iff the elimination pass returns a set of vertices that is a proper
subset of the component’s vertex set.

Algorithm 2.5. OWCTY for Weak Graphs.

Input: M = (V,E,A, I) a problem instance from Definition 2.1.
Output: True if no accepting cycles were detected.

1. SCC-decompose the negative claim automaton
2. R← Algorithm 2.2 (reachability from I)
3. For each C ⊆ V such that C is an accepting SCC do 4–5
4. S′ ← Algorithm 2.4 (elimination) for C
5. If S′ 6= ∅ then Return False
6. Return True

2.2 MAP

The name of this algorithm is an acronym for Maximal Accepting Predeces-
sors. It has been initially designed for distributed memory systems, in [9, 10]. The
algorithm is based on the fact that every accepting vertex lying on a cycle is its
own predecessor (and this cycle, containing an accepting vertex, is an accepting
cycle). An algorithm that is directly derived from this idea would require expen-
sive computation as well as space to store all proper accepting predecessors of all
(accepting) vertices. An improvement over that, the MAP algorithm stores only a
single representative of all proper accepting predecessor for every vertex, chosen to
be maximal accordingly to a presupposed linear ordering ≺ of vertices (given, for

10 CHAPTER 2. ALGORITHMS

example, by their memory representation). Clearly, if an accepting vertex is its own
maximal accepting predecessor, it lies on an accepting cycle. On the other hand, it
can, unfortunately, happen, that all the maximal accepting predecessors lie outside
accepting cycles. In that case, the algorithm removes all accepting vertices that
were the maximal accepting predecessors of any vertices in the previous pass and
recomputes the maximal accepting predecessors. This is repeated until an accepting
cycle is found or there are no more accepting vertices in the graph.

Algorithm 2.6. Single MAP pass.

Input: M = (V,E,A, I) a problem instance from Definition 2.1.
Output: True an accepting cycles has been detected, shrink ⊆ A.

1. For each v ∈ V do map(v)← 0
2. push(waiting , I)
3. While waiting 6= ∅ do 4–18
4. u← pop(waiting)
5. If u ∈ A then
6. If map(u) < u then
7. propagate ← u
8. shrink ← shrink ∪ {u}
9. Else

10. propagate ← map(u)
11. shrink ← shrink − {u}
12. Else
13. propagate ← map(u)
14. For each (u, v) ∈ E do 15–18
15. If propagate = v then Return True
16. If propagate > map(v) then
17. map(v)← propagate
18. push(waiting , v)
19. Return False

A single pass may, as outlined above, fail to find an accepting cycle, due to all
maximal accepting predecessors lying outside of accepting cycles. To this end, the
shrink set is maintained throughout the computation. After a given pass, the set
contains all maximal accepting predecessors that were found in that pass, and the
main algorithm can remove these from the accepting set and start a new pass.

Algorithm 2.7. MAP.

Input: M = (V,E,A, I) a problem instance from Definition 2.1.
Output: True if no accepting cycles were detected.

1. A′ ← A
2. While A′ 6= ∅ do 3–4
3. If Algorithm 2.6 on M ′ = (V,E,A′, I) then Return False
4. A′ ← A′ − shrink
5. Return True

2.3. ON THE FLY EXECUTION 11

The overall time complexity of the algorithm is in O(a2 · m), where a is the
number of accepting vertices and m is the number of edges. The m factor comes
from the relaxation along edges, while one of the a factors comes from the inner
pass and the second a comes from the number of outer iterations of the algorithm.

One of the key aspects influencing the overall performance of the algorithm is
the underlying ordering of vertices used by the algorithm. Computing the optimal
ordering is however difficult to parallelise, hence heuristics for computing a suitable
vertex ordering are used.

2.3 On The Fly Execution

In automated verification, parallel techniques both for symbolic and explicit state
approaches have been considered. While the symbolic set representations, which
often employ canonical normal forms for propositional logic (BDDs, for example),
have been a breakthrough in the last decade (with the capacity to handle spaces of
the size 1020 and beyond), they often turned out to not scale well with the problem
sizes. Moreover, the success of their application to a given verification problem
cannot be estimated in advance, since no known metrics for the system size have
proved to be useful for such estimates. Moreover, the use of BDDs is often sensitive
to the used variable ordering, which is sometimes difficult to determine.

For this reason, SAT-based model checking, in particular in the forms of bounded
model checking and equivalence checking have recently become very popular. They
still benefit from the use of symbolic methods, but tend to be more scalable as they
no longer rely on canonical normal forms.

An alternative is the use of explicit state set representations. Clearly, for most
real world systems, the state spaces are far too big for a simple explicit representa-
tion.

Apart from partial order reduction, another important method for coping with
the state explosion problem in explicit state model checking, is the so called on-the-
fly verification. The idea of the on-the-fly verification builds upon an observation
that in many cases, especially when a system does not satisfy its specification, only
a subset of the system states need to be analysed in order to determine whether the
system satisfies a given property or not. On-the-fly approaches to model checking
(also referred to as local algorithmic approaches) attempt to take advantage of this
observation and construct new parts of the state space only if these parts are needed
to answer the model checking question.

As mentioned in Section 1.3, explicit-state automata-theoretic LTL model check-
ing relies on three procedures: the construction of an automaton that represents the
negation of the LTL property (negative claim automaton), the construction of the
state space, i.e. the product automaton of system and negative claim automata,
and the check for the non-emptiness of the language recognised by the product
automaton.

An interesting observation is that only those behaviours of the examined system
are present in the product automaton graph that are possible in the negative-claim
automaton. In other words, by constructing the product automaton graph the

12 CHAPTER 2. ALGORITHMS

system behaviours that are not relevant to the validity of the verified LTL formula
are pruned. As a result, any LTL model checking algorithm that builds upon
exploration of the product automaton graph may be considered on-the-fly. We will
denote such an algorithm as Level 0 on-the-fly algorithm in the classification below.

When the product automaton graph is constructed, an accepting cycle detection
algorithm is employed for detection of accepting cycles in the product automaton
graph. However, it is not necessary for the algorithm to have the product automaton
constructed before it is executed. On the contrary, the execution of the algorithm
and the construction of the underlying product automaton graph may interleave in
such a way that new states of the product automaton are constructed on-the-fly,
i.e. when they are needed by the algorithm. If this is the case, the algorithm may
terminate due to the detection of an accepting cycle before the product automaton
graph is fully constructed and all of its states are visited.

Those LTL model checking algorithms that may terminate before the state space
is fully constructed are generally considered on-the-fly. If there is an error in the
state space (an accepting cycle), an on-the-fly algorithm may terminate in two
possible phases: either an error is found before the interleaved generation of the
product automaton graph is complete (i.e. before the algorithm detects that there
are no new states to be explored), or an error is found after all states of the product
automaton have been generated and the algorithm is aware of it. The first type of
the termination is henceforward referred to as early termination (ET). Note that
the awareness of completion of the product automaton construction procedure is
important. If the algorithm detects the error by exploring the last state of the
product automaton graph before it detects that it was actually the last unexplored
state of the graph, we consider this to be an early termination.

We classify “on-the-flyness” of accepting cycle detection algorithms according
to the capability of early termination as follows. An algorithm is

• level 0 on-the-fly algorithm, if there is a product automaton graph containing
an error for which the algorithm will never early terminate.

• level 1 on-the-fly algorithm, if for all product automaton graphs containing an
error the algorithm may terminate early, but it is not guaranteed to do so.

• level 2 on-the-fly algorithm, if for all product automaton graphs containing an
error the algorithm is guaranteed to early terminate.

Note that level 0 algorithms are sometimes considered on-the-fly and sometimes
not, depending on research community. Since a level 0 algorithm explores full state
space of the product automaton graph it may be viewed as if it does not work on-the-
fly. However, as explained above, just the fact that the algorithm employs product
automaton construction is a good reason for considering the whole procedure of
LTL model checking with a level 0 algorithm as an on-the-fly verification process.

To give examples of algorithms with appropriate classification we consider algo-
rithms OWCTY, MAP, and Nested DFS. OWCTY algorithm is level 0 algorithm,
MAP algorithm is level 1 algorithm and Nested DFS is level 2 algorithm.

As for the state space exploration algorithms, the efficiency of the on-the-flyness
of the algorithm may also be improved by other techniques. It might be the case

2.4. OWCTY ON THE FLY 13

(a) (b) (c)

A

B

C D

A > B > C

A

A

B

C D

C A>D>

C

A

B

C D

B> > AC

C

Figure 2.1: Three scenarios where no accepting cycle will be discovered using ac-
cepting state propagation. a) Maximal accepting predecessor is out of the cycle.
b) There is no fresh path back to the maximal accepting state. c) Wrong order of
propagation, C → D is explored before B → D, hence, C is propagated from D.

that even the level 2 on-the-fly algorithm fails to discover an error, if the examined
state space is large enough to exhaust system memory before an error is found. This
issue has been addressed by methods of directed model checking [18, 19, 20], which
combines model-checking with heuristic search. The heuristic guides the search
process to quickly find a property violation so that the number of explored states is
small. It is worthy to note that our approach can be extended with directed search
as well.

2.4 OWCTY On The Fly

The idea of propagating one accepting predecessor along all newly discovered edges
is at heart of a heuristic extension of OWCTY [5]. If the propagated accepting
state is propagated into itself, an accepting cycle is discovered and the computation
is terminated. Like with the MAP algorithm, an accepting state to be propagated
is selected as a maximal accepting state among all accepting states visited by the
traversal algorithm on a path from the initial state of the graph to the currently
expanded state. Since the Initialise phase of OWCTY needs to explore full state
space, we can employ it to perform limited accepting cycle detection using maximal
accepting state propagation. Unlike the MAP algorithm, we however avoid any re-
propagation to keep the Initialise phase complexity linear in the size of the graph.
This means that some accepting cycles that would otherwise be discovered (i.e. with
relaxation, or re-propagation, enabled) may be now missed. In particular, there
are three general reasons for not discovering an accepting cycle with the proposed
heuristic. First, the maximum accepting predecessor of the cycle may not lie on
the cycle itself, see Figure 2.1(a). Second, the maximum accepting predecessor

14 CHAPTER 2. ALGORITHMS

value does not reach the originating state due to the absence of a fresh path (path
made of yet unvisited states), see Figure 2.1(b). And third, the maximum accepting
predecessor value does not reach the originating state due to a wrong propagation
order, see Figure 2.1(c).

When the algorithm encounters an accepting state that is being propagated, it
terminates early, producing a counter-example. On the other hand, if the Initialise
phase (i.e. the first reachability) of OWCTY fails to notice an accepting cycle, the
rest of the original OWCTY algorithm is executed. Either the algorithm finds an
accepting cycle (and again, produce a counter-example) or, it proves that there are
no accepting cycles in the graph.

2.5 Experiments

We have picked 90 models with invalid properties to assess the success rate of
the on-the-fly heuristic. We only present a simple overview of the results, for full
evaluation, please refer to [5]. We present the results in this chapter, since these
are more pertinent to the on-the-fly heuristic itself. For experimental evaluation of
parallel implementations of the algorithms themselves, please refer to Section 3.7.
We have measured the number of visited states, amount of memory used and time
required for verification. The ET ratio represents the number of models where early
termination has happened (out of all models).

As with parallelism for the case of valid properties, we can see that the on-the-
fly heuristic can save significant amount of time when the properties do not hold.
Unfortunately, it is still not on par with the sequential Nested DFS algorithm and
it is not clear whether the situation can be improved further.

2.5. EXPERIMENTS 15

Algorithm Visited states Memory Time ET ratio

BFS, full 52 047 342 6 712 MB 760 s 0/90

BFS, on-the-fly 23 157 474 4 858 MB 295 s 66/90

DFS, full 52 047 342 6 716 MB 760 s 0/90

DFS, on-the-fly 19 849 655 4 583 MB 272 s 56/90

Nested DFS 622 984 1 736 MB 7 s 90/90

Figure 2.2: Single core experiments.

Algorithm Visited states Memory Time ET ratio

BFS 6 820 499 2 829 MB 40 s 66/66

DFS 3 930 520 2 257 MB 23 s 56/56

Nested DFS 622 984 1 736 MB 7 s 90/90

Figure 2.3: Single core experiments restricted to runs with early termination.

Algorithm Visited states Memory Time ET ratio

BFS, 1 thread 23 157 474 4 858 MB 295 s 66/90

BFS, 2 threads 17 203 306 5 748 MB 130 s 74/90

BFS, 3 threads 20 244 429 6 955 MB 122 s 74/90

BFS, 4 threads 18 632 114 7 576 MB 102 s 72/90

DFS, 1 thread 19 849 655 4 583 MB 272 s 56/90

DFS, 2 threads 18 996 947 5 890 MB 136 s 77/90

DFS, 3 threads 22 826 318 7 037 MB 138 s 73/90

DFS, 4 threads 18 833 201 7 685 MB 100 s 72/90

Figure 2.4: Experiments involving various configurations of the algorithm and var-
ious number of CPU cores.

16 CHAPTER 2. ALGORITHMS

Chapter 3

Parallel Architectures

In this chapter, we will describe the hardware systems which our parallel algorithms
and techniques target. Parallel hardware, as is nowadays widely known, brings a
completely new set of problems to tackle. Many of the existing algorithms are un-
suitable for parallel execution, and the traditional implementation techniques are
often inappropriate and inadequate. Even though steady advances in understand-
ing and efficiently leveraging parallelism are being made, there is still a large set
problems that are notoriously difficult to implement efficiently. These problems are
characterised by high number of dependencies in their data flows: which is, e.g. the
case of exploring arbitrary graphs.

To further complicate the situation, the optimal solution to the LTL model
checking problem relies on depth-first search [25], for which the data flow depen-
dencies form a linear chain, leaving no room for parallelisation at all. We have
discussed alternative algorithms for this problem in the previous chapter: neverthe-
less, none of them is fully optimal and, obviously, all of them have at least as many
data-flow dependencies as has plain state space exploration.

On the other hand, even though the nature of the data flows in the algorithms
employed, there is enough independence to carry out a high number of parallel
tasks. Unfortunately, the dependencies – whenever they cross a boundary of a single
thread of execution – translate into communication, which comes at an expense in
parallel performance, due to synchronisation delays and also due to inter-thread or
inter-process communication simply being more laborious than intra-thread data
flow.

In the following text, we will focus on two kinds of parallel architectures. One
of those are shared memory systems, either the currently ubiquitous multi-cores
or the more traditional multi-CPU machines in an SMP configuration. The other
are distributed-memory systems, i.e. clusters of conventional uniprocessor or SMP
machines, or even more complicated NUMA systems – as long as they support
MPI [32], a standard for message passing.

On the level of symmetric multiprocessor systems, we employ a threading model
– one where threads share all memory, possessing separate stacks in the shared ad-
dress space and a special thread-local storage to store thread-private data. Specifi-

17

18 CHAPTER 3. PARALLEL ARCHITECTURES

cally, we use the threading model as specified by the POSIX Threads standard [28].

Contrast this with SPIN 5.1, which is based on multi-processing and inter-process
shared memory (and which has no distributed memory capabilities).

3.1 Shared Memory Platform

Critical Sections, Locking and Lock Contention. In a shared memory setting,
access to memory, that may be used for writing by more than a single thread, has to
be controlled through use of mutual exclusion, otherwise, race conditions will occur.
This is generally achieved using a “mutual exclusion device”, so-called mutex. A
thread wishing to enter a critical section has to lock the associated mutex, which
may block the calling thread if the mutex is locked already by some other thread.
An effect called resource or lock contention is associated with this behaviour. This
occurs, when two or more threads happen to need to enter the same critical section
(and therefore lock the same mutex), at the same time. If critical sections are long
or they are entered very often, contention starts to cause observable performance
degradation, as more and more time is spent waiting for mutexes.

Processor Cache: Locality and Coherence. There are currently two main
architectures in use for Level 2 cache. One is that each processing unit has its
completely private Level 2 cache (for the Symmetric Multiprocessing case) or there
is a shared Level 2 cache for a package of 2 cores. In bigger shared memory computer
systems, it is usual to encounter split cache, since they often contain on the order
of 8-64 cores attached to a single memory block. In recent hardware, the basic
building units are dual-core CPUs with shared cache, but among the different units,
the caches are still separate.

Due to coherence requirements, read from thread B subsequent to write from
thread A may (and usually does) incur a significant penalty. Since the cache often
works with smallest units of 128 or more bytes long (called cache lines), various
pieces of data may share a single cache line, if they are adjacent in memory. If
different threads access a single cache line often (even though the variables they use
may be disjoint – and in this case, we speak of false sharing), the performance of
the computation may suffer dramatically.

Of course in multiprocessors, it is the case – like in uniprocessors – that access
to data in L1 or L2 cache is many times faster than access to the main RAM.
Therefore, it is important that the programs are written in such a way that the data
they access is kept closely together in the main memory, so that memory prefetch
can work efficiently to hide the very high RAM latencies. In multiprocessors, this
is further complicated by the above-mentioned coherence issues: while data for any
given thread should be as localised as possible, the data in use by different threads
should be far apart in the address space.

A more detailed study of these phenomena in the context of shared-memory
multiprocessors may be found in e.g. [44].

3.2. MPI 19

3.2 MPI

We employ MPI-based message passing for communicating in distributed memory
environment. The MPI standard defines a number of modes of communication
for groups of processes distributed over a cluster. Unfortunately, the architec-
ture of MPI favours distributed applications with limited task interdependence and
therefore with limited communication. The problems that have known divide-and-
conquer solutions are therefore well-suited for MPI – which is however not the case
of model checking, nor accepting cycle detection.

For parallel state space exploration and accepting cycle detection, the most im-
portant primitive is point-to-point messages. Even though MPI provides a number
of collective communication primitives, the ones that we needed are either out of
scope for MPI (distributed termination detection) or are trivially implemented in
terms of point-to-point messaging (broadcast). Therefore, only a very small subset
of MPI is used in our tool: initialisation and point-to-point messaging (send, receive
and probe – the latter being a nonblocking check for incoming messages).

The main problem with näıve use of MPI is that sending individual messages
is prohibitively expensive in MPI: nevertheless, the parallel state space exploration
techniques usually rely (and this is also the case of our tool) on sending a vast
number of messages: each transition among vertices belonging to a different workers
(a so-called cross transition) produces a message: usually with higher numbers of
workstations, all of the transitions in the system are cross. This amounts to millions
of messages for models of even moderate size. Fortunately, these messages are all
asynchronous, which allows certain optimisations that make it possible to use MPI
more efficiently. It is important to combine many consecutive messages into a single
MPI message is in obtaining good performance for this kind of workload.

3.3 Implementing Algorithms

The considerations laid out in previous paragraphs bring us to the actual algorithm
implementation and the associated techniques we came up with. The presented
shared-memory technology is designed to reduce communication overhead, exploit-
ing traits of shared memory systems that are not available in distributed memory
environments. Consequently, the main goal is to improve scalability of the im-
plementation, which is inversely proportional to communication overhead and its
growth with increasing number of threads. However, it was one of our goals to keep
the overall architecture of the shared memory subsystem similar to the distributed
memory model – which turned out to be instrumental in a successful extension of
the system to a cluster of multiprocessors (i.e. a hybrid shared/distributed memory
architecture).

Were we to venture into a strictly shared memory implementation, one may
pose a question, whether a different approach of using a standard serial algorithm
modified to allow parallelisation at lower levels of abstraction would give a scal-
able, efficient program for multi-CPU and/or multi-core systems. Our efforts at
extracting such a micro-parallelism in our codebase have been largely fruitless, due

20 CHAPTER 3. PARALLEL ARCHITECTURES

to high synchronisation cost relative to the amount of work we were able to perform
in parallel. An example of such micro-parallel approach would be to implement a
parallel successor generator, where there is certain independence of the sub-tasks
per a single processed state involved, but these sub-tasks are very small and on
current hardware, it is faster to perform them in sequence than it is in parallel.

As mentioned in 1.4, an approach with dynamic state space partitioning, which
would be available to a purely shared memory implementation, does not bring
convincing advantages over the static partitioning model – a topic more thoroughly
covered in [7].

In the following sections, we explore the possibilities to build on the existing
distributed memory approaches, in the vein of statically partitioned graphs, for the
cases where memory locality can be leveraged.

3.4 Communication

Generally, in a distributed computation, all communication is accomplished by pass-
ing messages – e.g. using a library like MPI for cluster message passing. However,
in communication-intensive programs, or those sensitive to communication delay
(latency), using general-purpose message passing näıvely may be quite inefficient.

In shared memory, most of the communication overhead can be eliminated by
using more appropriate communication primitives. We have opted for a high-
performance, contention- and lock- free FIFOs (First In, First Out queues). We
have adopted a variant of the two-lock algorithm1 – a compromise between perfor-
mance on one hand and simplicity and portability on the other – presented in [34].
Our modifications involve improved cache-efficiency and only using a single write-
lock, instead of a pair of locks, one for reading and one for writing, since there is
ever only one thread reading, while there may be several trying to write.

Definition 3.1. A FIFO of T is an aggregate data type with following items:

• buffer : array of T

• next : pointer to Node

• read ,write: integer

• nodeSize: integer (size of buffer)

• head , tail : pointer to Node

• writeLock : mutex

Algorithm 3.2.

Input: f is a FIFO of T instance, x of type T is an element to enqueue
Output: Modified FIFO f , which contains x as its last element

1. lock(f.writeLock)

1The C++ implementation of Algorithm 3.2 and Algorithm 3.3 can be found in the file
divine/fifo.h in a DiVinE 2 source distribution.

3.4. COMMUNICATION 21

2. If f.tail .write = f.nodeSize then
3. t← newly allocated Node, all fields 0
4. Else
5. t← f.tail
6. t.buffer [t.write]← x
7. t.write ← t.write + 1
8. If f.tail 6= t then
9. f.tail .next = t

10. f.tail = t
11. unlock(f.writeLock)

Algorithm 3.3.

Input: f , a non-empty FIFO instance
Output: Modified FIFO f , with its first element dequeued and the formerly first

element of f .

1. If f.head .read = f.nodeSize then
2. f.head ← f.head .next
3. f.head .read ← f.head .read + 1
4. Return f.head .buffer [f.head .read − 1]

Originally, every thread involved in the computation owned a single instance of
the FIFO and all messages for this thread are pushed onto this single queue (there
comes the need for the write lock). However, in communication-intensive workloads
(like our parallel model checking algorithms), the write lock has been observed to
be a point of contention, creating a bottleneck even when only 4 CPU cores were
involved.

Although there is also a completely lock-free design described in [34]), we have
opted for a matrix-style communication primitive, with a private FIFO for each
pair of communicating threads. This is partially motivated by the use of atomic
compare and swap instructions in the lock-free queue design, which are relatively
expensive compared to regular memory access. Moreover, even when lock contention
is removed, the lower level contention for a single memory location on the CPU level
is likely to be a reason of concern. Moreover, for our use-case, all of the mentioned
issues can be addressed by using a larger number of queues without incurring any
significant penalties.

The correctness, linearizability (atomicity) and liveness proofs as given in [34]
are straightforwardly adapted to our implementation and thus left out.

Alternatives to our implementation, which may be more appropriate in different
settings, include a ring-buffer FIFO implementation (if there is a bound on the
amount of in-flight data known beforehand, the ring-buffer implementation may be
more efficient) and possibly an algorithm based on swapping incoming and outgoing
queues (which could be easily implemented as a pointer swap). The latter gives
results comparable to the described FIFO method, although the code and locking
behaviour is much more complex and error-prone, which made us opt for the simpler
FIFO implementation.

22 CHAPTER 3. PARALLEL ARCHITECTURES

3.4.1 Distributed Memory

In distributed memory, as previously mentioned, MPI is employed for message
passing. To simplify the system, the communication interface only exposes shared-
memory FIFO queues even for pairs of threads executing across different MPI nodes,
in both directions. A dedicated MPI thread then bridges those queues, by moving
messages from outgoing queues on a node to incoming queues on remote nodes,
using MPI messages. As outlined, to make the usage of MPI more efficient, queued
messages are combined before being passed to MPI. When a given queue is about
to be transferred, a linear buffer is allocated and all messages available in the queue
at this time are copied to this linear buffer and dispatched as a single MPI message.
The MPI control thread on the receiving side is then responsible for dismantling
this large message into its individual components before filling in the respective
incoming queue on that node.

Even though this technique in no way reduces the amount of data transferred, it
reduces the overhead incurred per MPI message (i.e. the number of MPI messages
sent by the system) by as much as a factor of 1000 (due to limited throughput of
MPI-related processing and due to round-robin handling of the individual queues,
it is common that thousands of messages accumulate in a queue before MPI control
passes over it a second time). The runtime costs, as opposed to savings, seem to
be very modest, although these could be possibly further reduced by using scatter-
gather IO2 instead of a linear buffer and an explicit copy. This is unfortunately not
supported by MPI as of this writing.

3.5 Memory Allocation

In a distributed computation, every process has simply its own memory which it
fully manages. In a shared memory, however, we prefer to manage the memory as
a single shared area, since an equal partitioning of available memory and separate
management may fall short of efficient resource usage. Even more importantly,
managing large amount of interprocess shared memory comes with technical limi-
tations and provides only very minor advantages. However, thread-based approach
also poses some challenges, especially in allocation-intensive environment like ours.

Efficient allocation and deallocation routines. Since the workload we are
facing facilitates large amounts of fixed-size allocations and deallocations, it appears
natural, to implement tailored allocation and deallocation routines.

A very simple O(1) memory pool has been devised3, optimised for many allo-
cations of a limited set of sizes. Of course, from time to time it needs to obtain
memory from the system and this operation is not constant-time, however it is at
most linear in the block size and therefore amortises over the individual allocations
as well (given a fixed allocation size).

2As defined by POSIX.1-2001 [29], functions writev and readv.
3The implementation of the memory pool structure and allocation and deallocation primitives,

together with the memory stealing routine, may be found in the file divine/pool.h of the DiVinE 2
source distribution.

3.5. MEMORY ALLOCATION 23

Each thread has its own private pool and therefore the implementation is lock-
free. This is possible since most operations are thread-local: the remaining case of
cross-thread deallocation is discussed below.

Concurrent allocation and deallocation. First, a näıve approach of pro-
tecting the allocation routines with a simple critical section is highly prone to re-
source contention. Fortunately, modern general-purpose allocator implementations
refrain from this idea and have a generally non-contending behaviour on allocation.
However, releasing memory back for reuse is more complex to achieve without in-
troducing contention, in a setting where it is often the case that thread other than
the one allocating the chunk needs to release it.

There are known general-purpose solutions to the problem of concurrent deallo-
cation, e.g. [33], however they are currently not in widespread use in general-purpose
allocators. Therefore, whenever relying on the system allocator, we have to refrain
from the above-mentioned pattern of releasing memory from different than allocat-
ing thread, in order to avoid contention and the accompanying slowdown.

The message-passing implementation we employ is pointer-based – in other
words, the message sent is only a pointer and the payload (actual interesting mes-
sage content) is allocated on the shared heap, and it may be either reused or released
by the receiving thread. Observe however, that releasing the associated memory
in the receiving thread will lead to the above-mentioned undesirable deallocation
pattern.

Therefore, the allocation routines handle these cases differently. Instead of ma-
nipulating the memory pool of a different thread, the memory (allocated in a differ-
ent thread) is appended to the freelist of the current thread. Thanks to the workload
distribution scheme employed, this approach is quite feasible and does not introduce
significant memory overhead. Moreover, it is correct, since the memory handed over
to the new thread is never again examined by the original thread. We have dubbed
the technique “memory stealing”, since the releasing thread “steals” (without com-
municating this fact to the original thread in any fashion) the memory from its
previous owner.

General purpose memory allocation. Since apart from the state allocation
and deallocation, there are several important memory-intensive routines (one ex-
ample being the FIFOs, another is the model parser and interpreter) in the model
checker, which do not exhibit the behaviour described above, we also need a high-
performance, general-purpose memory allocator. Moreover, the pool allocator de-
scribed needs to obtain memory blocks somewhere as well.

We have opted for Emery Berger’s excellent HOARD multi-threaded memory al-
locator [8]. Apart from having very good performance and scalability properties,
HOARD strives to avoid heap layouts leading to false sharing, further improving per-
formance.

24 CHAPTER 3. PARALLEL ARCHITECTURES

3.6 Termination Detection

Compared to our earlier work [3, 42], a new termination detection algorithm4 has
been designed and implemented for DiVinE 2. The algorithm is based on a similar
concept as the previous design, using mutual exclusion provided by the low-level
threading library as the basic implementation block. The importance of using this
mechanism lies in the resource usage: an idle thread under this scheme, thanks to the
implementation of mutual exclusion, does not consume computational resources of
the system. This makes over-committing on the number of threads (versus physical
processors) possible. Additionally, this makes resource sharing with other tasks on
a given multiprocessor system more practical.

The idleness requirement is even more important in DiVinE 2 than it was pre-
viously, since MPI communication is handled by a separate thread, which does not
require a dedicated CPU core, but should instead take advantage of any idle cores
in the system, or otherwise time-slice with the remaining (worker) threads.

Algorithm 3.4. Idleness Check.

Input: The thread X that became idle, S set of all threads.
Output: True iff the system has terminated.

1. lock global mutex
2. R← ∅
3. done ← true
4. For each thread T ∈ S do 5–8
5. If T 6= X∧ non-blockingly acquired per-thread mutex of T then
6. R← R ∪ {T}
7. Else
8. done ← false
9. if any thread in R has work waiting, set done to false

10. unlock all per-thread mutexes for S
11. If done then
12. alldone ← true
13. wake up all threads
14. Else
15. wake up all threads with work waiting
16. go to sleep, releasing both per-thread mutex for X and the global mutex
17. upon wakeup, reclaim the per-thread mutex atomically
18. reclaim the global mutex
19. release global mutex
20. Return alldone

On the level of distributed computation, i.e. MPI, another layer of termination
detection has to happen. Since a separate thread exists for handling MPI, this
thread is added to the termination detection group. The MPI thread then uses

4The C++ implementation of the termination detection algorithm can be found in the file
divine/barrier.h in DiVinE 2 source distribution.

3.7. EXPERIMENTS 25

a modified version of the Algorithm 3.4 to check that it is the only active thread
on a given MPI node. When this is true, the MPI thread executes a distributed
termination detection using a straightforward modification of Safra’s algorithm [17].
Whenever an MPI node is active, the termination fails. When all nodes are passive
(their local termination detection has finished), the MPI queues are all empty and
the message counts in the system are stable, the system is terminated after a second
round of the distributed algorithm is done successfully.

Algorithm 3.5. Distributed Idleness Check.

Input: The MPI node that has become idle (all local threads).
Output: True iff the system has terminated.

1. one ← accumulate message counts in the system, setting (0, 1) in case any MPI
node is found to be busy

2. Return false If fst(one) 6= snd(one)
3. two ← accumulate message counts in the system
4. If fst(one) = fst(two) ∧ fst(two) = snd(two) then
5. notify all nodes of termination
6. Return result of Algorithm 3.4
7. Return false

3.7 Experiments

We have performed a number of experiments, aimed at assessing scalability and
performance of our model checker. Moreover, we have evaluated the impact of
some of the individual techniques presented above.

In first set of experiments, we have used a number of blades, with 4 Intel Xeon
5130 cores, each running at 2 GHz, with 16 GB of RAM per blade, interconnected
using switched gigabit ethernet. The models come from BEEM. The results are
available in Tables 3.1 and 3.2 and Figures 3.1 and 3.2. From comparing the two
models, it can be clearly seen that scalability depends on the model chosen.

On the leader model, it can be seen that in shared memory, the scalability is
superior when compared with MPI: for this model, in shared-memory setting, we
get fair speedup of almost 3 or 36 % – using 4 CPU cores. However, using 1 core
per machine on 4 machines, we only get only speedup of about 1.26, i.e. 79 % –
with 3 machines, which seems to be the local optimum, we get 1.45 or 68 % – feeble,
compared to shared memory.

Nevertheless, with the anderson model, the difference is far from this dramatic:
again for the 4 core case, we get speedup of 2.9, or 35 % but with MPI, this time
(1 core per machine) we achieve quite reasonable 2.5 or 40 %.

Another set of experiments was done on a modern shared-memory machine,
sporting 16 Intel Xeon E5520 cores, each running at 2.27 GHz, with 24 GB of RAM.
The results are displayed in Table 3.3. We can see that there’s again certain vari-
ation depending on the model. We can also see that scalability is better in shared
memory even with larger number of cores than 4 – despite the individual core being

26 CHAPTER 3. PARALLEL ARCHITECTURES

faster, we get better speedup with 16 cores fully sharing memory than we get with
21 cores distributed among 7 machines.

In part, the disparity between distributed and shared memory performance is
certainly due to more mature and better optimised implementation of the queues
used for shared-memory communication – the MPI-based communication implemen-
tation is much newer and therefore has seen much less fine-tuning. Nevertheless,
the overhead is clearly higher in the MPI case (and there are, of course, good rea-
sons for this). We believe that this further validates the appropriateness of treating
shared memory specially and not simply running a number of MPI processes per
node.

Interestingly enough, running with MPI processes instead of shared memory
queues and using the anderson model, there were only minor differences, and some-
times the fully-MPI version came out better – however, it is hard to interpret these
results, since the fully-MPI-based version, when using 2 worker threads per ma-
chine loads all the 4 cores of the machine fully, due to the MPI handler running in
a separate thread, which means it actually fully employs 4 cores per machine even
though only 2 of the cores are executing the state space exploration algorithm.

Again, only a general survey of the overall performance is given in this the-
sis. For a more complete evaluation, including measurements of contributions of
individual mentioned shared-memory techniques may be found in [2]. A detailed
study of performance impact of various implementation approaches for MPI-based
distributed model checking has not been published so far, to our knowledge.

3.7. EXPERIMENTS 27

N 1 thread 2 threads 3 threads 4 threads
1 141.6 s 100 % 85.2 s 60 % 61.3 s 43 % 49.2 s 35 %
2 94.7 s 67 % 54.3 s 38 % 46.0 s 32 % 58.3 s 41 %
3 70.0 s 49 % 40.4 s 29 % 41.8 s 30 % 46.3 s 33 %
4 56.4 s 40 % 37.8 s 27 % 38.4 s 27 % 42.2 s 30 %
5 44.9 s 32 % 35.2 s 25 % 34.8 s 25 % 35.0 s 25 %
6 37.2 s 26 % 32.1 s 23 % 30.7 s 22 % 32.8 s 23 %
7 31.9 s 23 % 27.6 s 19 % 30.1 s 21 % 32.0 s 23 %

Table 3.1: Reachability, anderson.6, 32-bit, cluster.

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 3 4 5 6 7

ti
m

e
 (

s
)

machines

1 thread
2 threads
3 threads

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 1 2 3 4 5 6 7

s
p

e
e

d
u

p

machines

1 thread
2 threads
3 threads

Figure 3.1: Reachability, anderson.6, 32-bit, cluster.

N 1 thread 2 threads 3 threads 4 threads
1 91.9 s 100.0 % 57.8 s 62.9 % 43.7 s 47.6 % 33.8 s 36.8 %
2 66.3 s 72.1 % 52.6 s 57.2 % 52.0 s 56.6 % 64.9 s 70.6 %
3 62.5 s 68.0 % 64.6 s 70.3 % 68.8 s 74.9 % 79.1 s 86.1 %
4 72.2 s 78.6 % 63.0 s 68.6 % 61.2 s 66.6 % 72.9 s 79.3 %

Table 3.2: Reachability, leader election.5, 32-bit, cluster.

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 1 1.5 2 2.5 3 3.5 4

ti
m

e
 (

s
)

machines

1 thread
2 threads
3 threads

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1 1.5 2 2.5 3 3.5 4

s
p
e
e
d
u
p

machines

Figure 3.2: Reachability, leader election.5, 32-bit, cluster.

28 CHAPTER 3. PARALLEL ARCHITECTURES

N peterson leader anderson
1 702.5 s 100 % 66.5 s 100 % 91.6 s 100 %
2 438.9 s 62 % 42.8 s 64 % 56.9 s 62 %
4 260.0 s 37 % 31.6 s 37 % 34.2 s 37 %
8 148.7 s 21 % 14.5 s 22 % 18.5 s 20 %

16 116.7 s 17 % 13.0 s 20 % 14.1 s 15 %

Table 3.3: Reachability, various models, 64-bit, shared memory.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 2 4 6 8 10 12 14 16

ti
m

e
 (

s
)

machines

peterson
leader

anderson

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10 12 14 16

s
p

e
e

d
u

p

machines

peterson
leader

anderson

Figure 3.3: Reachability, various models, 64-bit, shared memory.

N lamport leader anderson
1 868.0 s 100 % 221.0 s 100 % 431.0 s 100 %
2 534.9 s 62 % 137.1 s 62 % 268.5 s 62 %
4 321.1 s 37 % 78.0 s 35 % 159.3 s 38 %
8 180.8 s 21 % 61.2 s 28 % 88.9 s 21 %

16 138.3 s 16 % 45.2 s 20 % 69.3 s 16 %

Table 3.4: OWCTY, various models, 64-bit, shared memory.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 2 4 6 8 10 12 14 16

ti
m

e
 (

s
)

machines

peterson
leader

anderson

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10 12 14 16

s
p
e
e
d
u
p

machines

peterson
leader

anderson

Figure 3.4: OWCTY, various models, 64-bit, shared memory.

Chapter 4

Partial Order Reduction

4.1 Background

The traditional dynamic partial order reduction is based on an efficient heuristic
approximation of the full (theoretical) reduction. In this section, we shortly present
the theoretical concept and the usual heuristics.

Definition 4.1. A Kripke structure is a tuple (S, T, S0, L) where

• S is a set of states,

• T is a set of transitions (∀α ∈ T : α ⊆ SxS),

• S0 ∈ S is an initial state,

• L : S → 2AP is a labelling function, with AP being a set of atomic proposi-
tions.

For simplicity, we will only consider deterministic finite systems. Each α ∈ T
can therefore be seen as a partial function α : S → S. Practically, the extension to
non-deterministic systems does not affect the results of this thesis.

Definition 4.2 (Enabledness). A transition α is enabled in a state s, whenever
α(s) is defined.

The idea of partial order reduction is to disable some transitions in some of the
states, obtaining a new structure K ′, such that for a fixed LTL−x

1 formula ϕ, it
holds that K |= ϕ ⇐⇒ K ′ |= ϕ. The reduced system K ′ is defined through
so-called ample sets. For each state s ∈ K, we define ample(s) ⊆ enabled(s) to be
the set of transitions enabled in the reduced system.

Apart from requiring correctness (the system defined through those ample sets
satisfies ϕ iff the original system does), two properties are crucial for successful
application of the reduction:

1By LTL−x, we mean Linear Temporal Logic without the X (next) operator. Please refer to
[15] for full definition of LTL and LTL−x.

29

30 CHAPTER 4. PARTIAL ORDER REDUCTION

000

001

010

100

011

101 111

110

Figure 4.1: An example of p. o. r. – all the dashed vertices and edges may be left
out of the explored state space, assuming that the transitions are all invisible and
independent.

1. The ample sets need to be efficiently obtainable from description of the original
system.

2. The reduction achieved needs to be significant, that is, the reduced system
should be significantly smaller than the original.

Definition 4.3 (Independence). Let α, β transitions, we say that α is independent
of β iff:

(i) ∀s : α ∈ enabled(s) =⇒ α ∈ enabled(β(s))

(ii) ∀s : α(β(s)) = β(α(s))

Definition 4.4 (Invisibility). We say that transition α is invisible with respect to
AP ′ iff it holds that ∀s ∈ S : L(s) ∩ AP ′ = L(α(s)) ∩ AP ′.

When we refer to invisibility later in this thesis, we always refer to invisibility
with respect to the alphabet of formula ϕ.

Traditionally, these four conditions are used to determine a suitable ample set
for each state s:

C0 ample(s) = ∅ ⇐⇒ enabled(s) = ∅

C1 Along every path in the original structure K that starts in s, the following
condition holds: a transition that is dependent on a transition in ample(s)
cannot be executed without a transition in ample(s) occuring first.

C2 If s is not fully expanded, then every α ∈ ample(s) is invisible.

4.2. RELATED WORK 31

C3 (cycle proviso) A cycle in reduced structure is not allowed if it contains a
state in which some transition is enabled, but is never included in ample(s)
for any state s on the cycle.

Lemma 4.5. The conditions C0 through C3 are sufficient to guarantee obtaining
correct ample sets.

Proof. For a complete proof, please refer to [15]. �

Conditions C0 and C2 are easily checked locally, and therefore their execution
can be left intact for purposes of a parallel implementation of partial order reduction.
A procedure for checking C1 that is independent of search order is also available,
such that whenever the procedure returns true for a given set of transitions, it is
guaranteed to satisfy C1. This means we are in a position where only C3 needs to
be checked to obtain a working, search-order independent implementation of p. o. r.

Lemma 4.6. Assuming C1 holds for all ample sets along a cycle in the reduced
structure, C3 holds for this cycle whenever at least one state s on the cycle is fully
expanded (meaning ample(s) = enabled(s)).

Proof. Again, for a complete proof, please refer to [15]. �

Traditionally, (some variation of) Lemma 4.6 is used to implement C3 checking
in practice, using a depth-first search stack. Whenever a state is encountered that
would close a cycle, it is fully expanded. However, this implementation heavily relies
on depth-first search. Therefore, we need to replace this condition with a different
one, that would not rely on presence of a depth-first search stack.

4.2 Related Work

The Partial Order Reduction technique has been intensively studied as a leading
technique to fight the state explosion problem in explicit model checking. As a
result, a number of improvements and variants of the technique has been developed
and successfully integrated in verification tools. These results are mutually exclu-
sive in many cases and their usability depends on the target domain of application.
In particular, there are subclasses of properties to be verified for the system un-
der consideration, for which the formal requirements on ample sets may be safely
weakened, hence different reduction algorithms applied. For example, to prove a
deadlock freedom, the reduced structure does not have to fulfill the C3 property
at all. Similarly, if we check the system for a safety property, such as assertion
violation, it is satisfactory for the states on a cycle in the reduced structure to
be able to reach at least one fully expanded (not necessarily immediate) successor
state. In the following we will focus on various strategies to deal with C3 proviso
that have been introduced in the literature so far. We will particularly discuss their
applicability to the distributed-memory computing.

32 CHAPTER 4. PARTIAL ORDER REDUCTION

4.2.1 Static Partial Order Reduction

Static Partial Order Reduction [31] builds upon the fact that the system under
consideration is an asynchronous product of individual system components. Since
every cycle in the system graph projects to cycles of the components, it is possible
to a priori construct a set of states that cover every possible cycle in the system
graph. Whenever a state of the reduced structure is a member of such a covering
set, it is fully expanded. Static partial order reduction technique is compatible
with distributed memory computing, however, it is generally considered to be less
effective than dynamic approaches listed below.

4.2.2 Dynamic Partial Order Reduction

In the dynamic Partial Order Reduction approach, the decision about the full ex-
pansion of a state is done for the state when it is processed by the exploration
algorithm. There are several nuances of the cycle proviso (condition C3) that de-
pend on whether the reduced structure is used for verification of safety or liveness
properties, or whether the exploration algorithm follows a particular search order
(depth-first, breadth-first, etc.).

The classical, stack-based cycle detection proviso is connected with depth-first
traversal algorithm. The depth-first search algorithm maintains a stack of states on
the path from the initial state of the graph to the state currently being processed.
If the currently processed state has a direct successor that is on the stack, there is a
cycle in the reduced structure. In case of verification of liveness properties, such a
situation requires that the currently processed state must be fully expanded. How-
ever, this is not the case when verifying safety properties, where the full expansion
of the currently processed state may be safely avoided if there is at least one direct
successor of the state that is outside the stack [24]. In other words, a state is fully
expanded if all its successors are in the stack.

If for whatever reason the algorithm for exploration of the reduced structure does
not follow a depth-first visiting strategy, it cannot maintain the search stack, hence,
cannot apply the stack proviso. In general, whenever a graph traversal algorithm
discovers a transition leading to an already visited state, there is a potential risk
that this transition closes a cycle in the reduced structure. A conservative approach
therefore is to fully expand all states that have successors lying in the visited portion
of the graph.

Unfortunately, even this conservative check is not free of issues in distributed
memory setting – checking whether a state is visited will cost two messages and,
what is worse, the successor generation will need to wait for the answer, introducing
extra synchronisation (and therefore delays) into the system. In shared-memory
setting, the problem is easier to resolve (the visited check can be implemented more
efficiently).

4.3. CYCLE DETECTION 33

4.2.3 Parallel reductions

A comprehensive survey of existing techniques for parallel p. o. r. and an exhaustive
experimental evaluation is available in [35]. The work also introduces a number of
novel techniques for distributed-memory reductions, although they are often rather
difficult to implement and often rely on successor locality to a workstation. The lat-
ter requirement, that is, a special treatment of so-called “cross” transitions, proves
to be increasingly problematic with higher numbers of parallel workers – quickly,
all transitions become cross and the often more complicated and suboptimal treat-
ment is required for all transitions of the system. In contrast, our proposed C3
check is independent of state space distribution and therefore a highly scattered
state distribution (which is common in hash-based state distribution) does not pose
a problem for the check. In a similar fashion, the check proposed in [11] relies on
the ability to do a local depth-first search, which in turn relies on availability of
local (i.e. non-cross) transitions. Additional heuristic is proposed, that improves
handling of cross transitions at the cost of visiting any given state multiple times
(at most once for each worker involved in the computation). This unfortunately
still translates to a high penalty for cross transitions.

A different approach to p. o. r. has been proposed in [36] – an algorithm that
does not rely on C3 at all, and instead relies on following singleton ample sets while
this is possible and fully expanding otherwise. The algorithm shows promise, al-
though it introduces complications into generation of successors and for distributed
computation. It is also less general than the usual p. o. r. approach which is not
restricted to singleton ample sets, even though authors claim it often outperforms
the traditional approach in practice. The ramifications of a parallel, distributed im-
plementation of this algorithm are currently not known and are a subject of future
work.

For the case of reachability (i.e. restricted to safety properties) on shared-
memory systems, a heuristic has been proposed [27] that is usable with a multi-core
extension of the SPIN model checker. The check assumes usage of a so-called
stack-slicing algorithm (this is the reason the heuristic requires a shared memory
environment), proposed in [26]. The heuristic itself, similar to the above-mentioned
distributed algorithms, treats cross transitions (as represented by boundary states,
in SPIN terminology) specially – in this case, however, this is less problematic, since
the partitioning of the state space using the stack-slicing algorithm is not static and
therefore the proportion of border states in the state space is easier to control.

4.3 Cycle Detection

In this section, we will present an algorithm2 that guarantees that along every cycle
in the reduced structure, there is at least one fully expanded state. The algorithm
is based on a variation of topological sort that can be efficiently implemented in
parallel – unlike the traditional check based on DFS, the so-called “in-stack” check.

2The C++ implementation of the cycle proviso algorithm can be found in the file divine/porcp.h

in DiVinE 2 source distribution.

34 CHAPTER 4. PARTIAL ORDER REDUCTION

In addition to checking C3, we require the C3 check to avoid interfering with
a desirable algorithm property called on-the-fly execution (cf. Chapter 2). This
means that if the algorithm is able to produce a counterexample without exploring
the full state space, checking C3 should not prevent such an algorithm from doing
so. We will discuss this property later on.

Definition 4.7. A transition graph G = (V,E) induced by a Kripke structure
K = (S, T, S0, L) is a graph (V,E) such that V = S and (s, t) ∈ E ⇐⇒ ∃α ∈ T :
α(s) = t.

We assume that the model checking algorithm is not concerned with the transi-
tions of the Kripke structure and instead explores its induced transition graph.

We also assume that the model checking algorithm is based on accepting cycle
detection and is invariant under exploration order. This means that the algorithm is
correct independently of the order in which it explores new transitions, as long as it
eventually explores each transition reachable in the reduced state space. Moreover,
if the algorithm requires revisiting states, we assume that it is possible to defer these
revisiting operations arbitrarily long in the execution of the algorithm. This is not
crucial for correctness, but it is important for the algorithm to keep its asymptotic
complexity under the proposed reduction algorithm.

Algorithm 4.8. Check C3.

Input: D denotes the set of states and T the set of edges of a transition graph
already explored by the model checking algorithm

Output: The result of the model checking algorithm.

1. Execute the model checking algorithm on a reduced system K ′′, where for each
state s, ample(s) – satisfying C0 through C2 – is used as the set of outgoing
transitions for s. Defer any revisiting operations.

2. Repeat 3–4
3. new ← Algorithm 4.9 (re-expansion).
4. Resume the model checking algorithm, adding new to its set of unexplored

edges of the transition graph.
5. Until A fixed point is reached – that is, Algorithm 4.9 produces an empty set.
6. Continue with all deferred revisiting operations of the model checking algorithm.

Algorithm 4.9. Re-expand.

Input: D denotes the set of states and T the set of transitions explored by the model
checking algorithm. D′ is initially empty, but is retained over executions of
the algorithm.

Output: The set of edges that still needs to be explored.

1. R← Algorithm 4.10 with S = (D −D′), E = (D −D′)2 ∩ T
2. D′ ← D
3. Return enabled(R)− T

4.4. CORRECTNESS 35

Algorithm 4.10. Cover cycles.

Input: S, a set of states and E ⊆ S × S, a set of transitions
Output: R a set of states covering all cycles induced by S

1. X ← S
2. Repeat 3–9
3. While there is a state s in X such that ∀(t, s) ∈ E : t 6∈ X do 4–5
4. X ← X − {s}
5. Y ← Y ∪ {t | (s, t) ∈ E} ∩ S
6. If Y = ∅ then
7. add an arbitrary state from X to Y
8. R← R ∪ (Y ∩X)
9. X ← X − Y

10. Until X = ∅
11. Return R

Lemma 4.11. Algorithm 4.10, given a set S of states and a set E of edges, returns
a set R of states such that for every cycle c ⊆ S, it holds that c ∩R 6= ∅.

Proof. The main loop invariant is that a cycle c ⊆ S is either fully embedded in
X, or there is a state s ∈ c∩R. This is clearly true before entering the loop for the
first time, as X = S. When the algorithm terminates, X = ∅, therefore, for each
cycle c ⊆ S, it must hold that c ∩R 6= ∅.

We now only need to show that this is indeed the loop’s invariant. First, a
state s is never removed from X in the inner loop if it is a part of a cycle fully
embedded in X. This however means that such a state might only be removed in
the X ← X − Y assignment – but every such state is also added to the set R,
meaning that if s has been a part of a cycle fully embedded in X, that s ∈ c ∩R.

Termination: The algorithm clearly terminates, as in each iteration, at least one
state is removed from X. �

Lemma 4.12. The time complexity of Algorithm 4.10 is in O(|S|+ |E ∩ (S × S)|).

Proof. Each state in S is examined exactly once, when it is being removed from
X. When a state is being removed, each of its outgoing edges pointing back into S
is examined exactly once. �

4.4 Correctness

Theorem 4.13. Algorithm 4.8 ensures that on every cycle in the reduced state
space, there is at least one fully expanded state.

Proof. We show correctness of Algorithm 4.8 by induction.

36 CHAPTER 4. PARTIAL ORDER REDUCTION

As a base, let us consider that E′ in Algorithm 4.9 (re-expand) is empty. It
follows from Lemma 4.11, that result of the re-expansion is exactly the set of edges
such that (by Lemma 4.11) at least one state on every cycle is fully expanded.

We can now assume that before every invocation of re-expansion, E′ already
has, on each cycle, at least one fully expanded state. We need to prove that after
executing Algorithm 4.9, E′ will keep this property.

Again, from Lemma 4.11, we can deduce that every cycle fully embedded in
E−E′ will have at least one fully expanded state (that is, there will be at least one
state on every cycle, such that all its enabled edges will be explored).

This covers all cycles that do not cross the E/E′ boundary. However, when
there is an edge (s, t) such that s ∈ E′ and t ∈ E is present in E ∪ E′, we know
that s has been fully expanded. Clearly, any cycle crossing the E/E′ boundary will
contain at least one such edge.

When Algorithm 4.8 terminates, E′ contains all of the reduced state space. �

Lemma 4.14. Algorithm 4.8 ensures that C3 holds.

Proof. Follows immediately from Theorem 4.13, using Lemma 4.6. �

Theorem 4.15. The reduced system satisfies a given LTL−x formula ϕ iff the orig-
inal system satisfies ϕ.

Proof. Follows from Lemma 4.5 and Lemma 4.14. �

4.5 Time complexity

Clearly, it is important that a prospective C3 check can be performed in linear
serial time – an algorithm with super-linear complexity would clearly impede the
performance of the process of state space exploration, and in turn of model-checking.

Lemma 4.16. Time complexity of Algorithm 4.8 is linear in size of the reduced
state space.

Proof. Every invocation of Algorithm 4.10 is linear in its parameter S
(Lemma 4.12). We show that any given state is in S in at most one invocation
of Algorithm 4.10.

When a state occurs in S, it will be immediately added to E′. When a state
is already in E′, it will never again occur in S. Therefore, we conclude that every
state occurs in S in at most one iteration. �

Even though the C3 check itself is linear, many of the parallel accepting cycle
detection algorithms are not linear in all cases. There are two requirements for
the combined algorithm for accepting cycle detection in the reduced state space:
firstly, the combined algorithm should have time complexity no worse than the

4.5. TIME COMPLEXITY 37

original accepting cycle detection algorithm employed and secondly, it should not
be required for the C3 check to perform a full reachability pass over the state space
before starting the cycle detection itself.

Theorem 4.17. Using Algorithm 4.8 does not affect time complexity of the under-
lying model checking algorithm.

Proof. Any accepting cycle detection lies in Ω(|V | + |E|). Since we require
the model checking algorithm to allow deferring any revisiting operations, we can
assume that the algorithm can be reordered to run in two passes: first, it explores the
state space in Θ(|V |+ |E|) and then it possibly carries out additional computation
with complexity t. Clearly, Algorithm 4.8 only interferes with first of these two
passes, and since it runs in O(|V |+ |E|), the overall complexity of the first pass is
Θ(|V |+ |E|), making the overall complexity Θ(|V |+ |E|) + t, which is the same as
that of the original model checking algorithm. �

Further, we shall consider the proposed heuristic in terms of on-the-flyness of the
underlying accepting cycle detection algorithm. It can be seen easily, that for a level
2 on-the-fly algorithm with the required properties, the algorithm would clearly stay
a level 2 on-the-fly algorithm when combined with the heuristic. Unfortunately, no
such algorithm is currently known.

As for level 1 algorithms, these are not required to terminate early for every
input, even in the cases there is an counterexample to be found in the state space.
Moreover, since the algorithm is invariant under exploration order, the ability to
find a counterexample is largely dependent upon the order in which the state space
is explored.

Since level 1 on-the-flyness is of a relatively heuristic nature, the following is not
really a theorem – strictly speaking, to prove this property, it would be enough
to find an input where the algorithm finds such a counterexample, and where
ample(s) = enabled(s) for each state s. However, this hardly tells us anything
about practical behaviour of the reduction.

Conjecture 4.18. A model checking algorithm that is level 1 on-the-fly will also
be level 1 on-the-fly if combined with Algorithm 4.8, while maintaining this property
to an useful degree.

Claim 4.19. If the original algorithm would find a counterexample in a small frac-
tion of the state space, a relatively small change in exploration order induced by
the reduction algorithm is unlikely to affect size of this fraction significantly.

Moreover, if the probability of discovering a counterexample in a given percent-
age of state space is independent of the exploration order, then Algorithm 4.8 will
not alter this probability at all.

38 CHAPTER 4. PARTIAL ORDER REDUCTION

4.6 Using with OWCTY

To successfully exploit partial order reduction algorithm presented, it needs to be
combined with a suitable model checking algorithm. In this section, we show that
OWCTY [13, 22] fulfils all the restrictions we have placed on the model checking
algorithm. Moreover, it can be adapted to run on-the-fly and it is generally suitable
for practical model checking [4].

The algorithm starts out with a single full reachability (and a heuristic may
enable it to uncover a counterexample during this phase, making it on-the-fly). This
reachability pass is exploration-order independent. We incorporate the C3 check
proposed in previous chapters into this pass. This also means, that no re-visits are
done before the C3 check is complete.

Algorithm 4.20. Owcty + C3.

Input: M = (V,E,A, I) a problem instance from Definition 2.1.
Output: True if no accepting cycles were detected.

1. S ← Algorithm 2.2 (reachability) from I, on C0-C2-reduced M .
2. Repeat 3–4
3. new ← Algorithm 4.9 (re-expansion).
4. Resume reachability, exploring edges in new

Add any newly explored vertices to S
5. Until new = ∅
6. Repeat 7–8
7. R← Algorithm 2.2 (reachability from S)
8. S ← Algorithm 2.4 (elimination on R)
9. While R 6= S ∧ S 6= ∅

10. Return S = ∅

For details about the reachability and elimination procedures, please refer to
Section 2.1. The property important here is that they re-explore the state space
already stored in S. Moreover, it is not necessary to store edges explicitly – we only
need a single bit for each state, remembering if enabled(s) or ample(s) has been
used for this state. The successors are generated from the description of the input
and description of the state being expanded.

4.7 Using with MAP

Another algorithm that is suitable for parallel model checking and provides different
trade-offs than OWCTY is MAP [9, 10]. Again, it can be combined with our
proposed C3-checking algorithm quite naturally.

The algorithm issues repeated propagation of maximum accepting predecessors
of all accepting vertices. When it discovers a vertex that is its own accepting
predecessor, it concludes it has found an accepting cycle. In MAP, there are two
kinds of revisits: as part of the propagation, and due to additional passes of the

4.8. EXPERIMENTS 39

algorithm. It is easily seen that the latter kind can be easily deferred, like it was
the case with OWCTY. The first kind is however somewhat more tricky.

There are two options, either ignore this problem, or try reordering the algo-
rithm. The first will, in the worst case, add a factor of n to complexity of the first
pass, where n is the number of re-expansions issued by the C3 check. Needless to
say, the actual increase on realistic inputs is likely to be much lower, on the order
of a small constant increase.

However, it is still possible to defer the re-expansions, at the cost of possibly
increasing memory use, for storing the queue until all the C3-induced re-expansions
are done. The practical consequences would have to be measured in actual imple-
mentation, as it is hard to assess theoretically.

4.8 Experiments

To evaluate the usefulness of the proposed p. o. r. technique, we have experimentally
evaluated the new reduction against the traditional approach based on DFS. In each
case, we have performed state-space exploration of the model (with and without
properties), either in full, or using one or the other partial order reduction. The
results can be seen in a number of tables. The Tables 4.1, 4.2 and 4.3 present the
results on the parametrised models available in mdve format in the DiVinE Cluster

distribution. Table 4.4 summarises results from a number of models from the BEEM

database. The first column always has the size of the full state space, whereas the
other two show the number of states under each of the evaluated reductions, and
the percentage of the full state space that has been explored.

Due to the limitations of the C0 – C2 implementation available for DVE models,
and the unoptimised nature of our C3 implementation, we omit timings of these
experiments, as they cannot be meaningfully compared. It should be also noted
that our implementation of C3 is not deterministic in parallel setting – we have
executed the experiments with a single thread to retain determinism: in parallel
executions, the variations in exploration order can influence the choice of vertices
for expansion and therefore the overall result.

40 CHAPTER 4. PARTIAL ORDER REDUCTION

N Full DFS-POR Par-POR

No property.
2 63 55 87.3 % 52 82.5 %
3 2376 1823 76.7 % 1775 74.7 %
4 131301 104756 79.7 % 102284 77.9 %

G((¬p0cs)→ F (p0cs))
2 125 107 85.6 % 100 80.0 %
3 4751 3624 76.2 % 3527 74.2 %
4 262601 209343 79.7 % 204225 77.7 %

GF (someoneincs)
2 124 104 83.8 % 96 77.4 %
3 4749 3551 74.7 % 3448 72.6 %
4 262598 207080 78.8 % 201904 76.8 %

Table 4.1: Reduction in peterson, N is the number of processes.

 0

 20

 40

 60

 80

 100

 120

N=2:DFS Par N=3:DFS Par N=4:DFS Par

%
 s

ta
te

 s
p

a
c
e

Figure 4.2: Reduction in peterson, N is the number of processes.

N Full DFS-POR Par-POR

No property.
2 12 7 58.3 % 10 83.3 %
3 36 11 30.5 % 28 77.7 %
4 96 15 15.6 % 64 66.6 %
5 240 19 7.9 % 157 65.4 %
6 576 23 3.9 % 367 63.7 %
7 1344 27 2.0 % 835 62.1 %

Table 4.2: Reduction in token ring mutual exclusion, N is the number of processes.

4.8. EXPERIMENTS 41

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8

%
 s

ta
te

 s
p
a

c
e

DFS
Par

Figure 4.3: Reduction in token ring mutual exclusion, N is the number of processes.

N Full DFS-POR Par-POR

No property.
2 141 125 88.6 % 125 88.6 %
3 2152 1528 71.0 % 1528 71.0 %
4 55361 30433 54.9 % 30433 54.9 %

F (elected)
2 131 115 87.7 % 115 87.7 %
3 2122 1498 70.5 % 1498 70.5 %
4 55177 30249 54.8 % 30249 54.8 %

FG(oneleader)
2 271 239 88.1 % 239 88.1 %
3 4273 3025 70.7 % 3025 70.7 %
4 110537 60681 54.8 % 60681 54.8 %

noleader Uoneleader
2 131 115 87.7 % 115 87.7 %
3 2122 1498 70.5 % 1498 70.5 %
4 55177 30249 54.8 % 30249 54.8 %

Table 4.3: Leader election, N is the number of processes.

42 CHAPTER 4. PARTIAL ORDER REDUCTION

 0

 20

 40

 60

 80

 100

 120

N=2: DFS Par N=3: DFS Par N=4: DFS Par

%
 s

ta
te

 s
p
a

c
e

no property
property 1
property 2
property 3

Figure 4.4: Reduction in leader election, N is the number of processes.

Model Full DFS-POR Par-POR
peterson.1.dve 12498 7999 64.0 % 7780 62.2 %
peterson.2.dve 124704 106949 85.7 % 102779 82.4 %
peterson.3.dve 170156 129147 75.8 % 122704 72.1 %
peterson.1.prop2.dve 22816 17481 76.6 % 17098 74.9 %
peterson.2.prop2.dve 234376 214441 91.4 % 210287 89.7 %
peterson.1.prop3.dve 24985 15907 63.6 % 15479 61.9 %
peterson.2.prop3.dve 249368 212181 85.0 % 202829 81.3 %
mcs.1.dve 7963 7312 91.8 % 7778 97.6 %
mcs.2.dve 1408 937 66.5 % 1332 94.6 %
mcs.1.prop2.dve 12206 11545 94.5 % 12132 99.3 %
mcs.2.prop2.dve 2462 1849 75.1 % 2370 96.2 %
mcs.1.prop3.dve 15815 14687 92.8 % 15610 98.7 %
mcs.2.prop3.dve 2811 1941 69.0 % 2672 95.0 %
synapse.1.dve 46756 43290 92.5 % 43108 92.1 %
synapse.2.dve 61048 61048 100.0 % 61048 100.0 %
synapse.1.prop2.dve 7226 6758 93.5 % 6780 93.8 %
synapse.2.prop2.dve 15713 15713 100.0 % 15713 100.0 %
leader filters.1.dve 4966 4810 96.8 % 4810 96.8 %
leader filters.2.dve 29284 22423 76.5 % 22423 76.5 %
leader filters.3.dve 91093 87809 96.3 % 87809 96.3 %
leader filters.1.prop2.dve 4966 4966 100.0 % 4966 100.0 %
leader filters.2.prop2.dve 28804 23239 80.6 % 23239 80.6 %
leader filters.3.prop2.dve 91093 91093 100.0 % 91093 100.0 %

Table 4.4: A selection of BEEM models.

Chapter 5

Conclusion

We have presented a partial order reduction technique for parallel LTL model check-
ing. It is based on a novel C3 proviso that uses topological sort instead of the more
traditional DFS-based method. Moreover, the proposed proviso preserves time com-
plexity of the algorithm used for accepting cycle detection.

Moreover, we have given a broad overview of the current state of the art in
parallel LTL model checking. The partial order reduction technique has been shown
to fit nicely in the existing framework of parallel model checking technology. An
algorithm has been presented that fits well with the reduction heuristic and behaves
quite well in practice: it works on-the-fly and achieves significant speedup on parallel
hardware.

Additionally, we have evaluated the reduction heuristic experimentally. The
results are quite promising, with the heuristic matching or exceeding Nested DFS
in some cases. Unfortunately, there is also an example where Nested DFS provides
exponential reduction while the proposed heuristic fails to do so (even though it
is super-linear, it is not exponential... see Table 4.2 for details). Nevertheless, the
proposed heuristic appears to be quite usable in practice and is scheduled to be
included in a future release of DiVinE 2.

5.1 Future Work

It is currently not known, whether the missed exponential reduction opportunity in
the above example (Table 4.2) is inherent in the heuristic, or is only a coincidence.
The technique is quite new and there is definitely space for optimisation and tuning,
which could improve results in many cases.

As mentioned, the heuristic is scheduled for inclusion in DiVinE 2, which means
that a practical, robust and fast implementation of the proposed algorithms is re-
quired: only a proof-of-concept has been implemented for the purpose of experimen-
tal evaluation, which is unfortunately not ready for general use. Moreover, a new
modelling language is being worked on, and a production-ready implementation of
C0-C2 is wanted: the implementation available for the current language (DVE) is

43

44 CHAPTER 5. CONCLUSION

again more-or-less a proof of concept and has not been extensively optimised.
Apart from traditional C3 checking, an alternative algorithm (twophase, see

Section 4.2.3) exists that leverages singleton ample sets. An implementation of this
algorithm, possibly in a combination with the proposed C3 check may lead to an
improved reduction in some cases.

Bibliography

[1] J. Barnat, L. Brim, I. Černá, P. Moravec, P. Ročkai, and P. Šimeček. DiVinE
– A Tool for Distributed Verification (Tool Paper). In The 18th International
Conference on Computer Aided Verification, volume 4144 of LNCS, pages 278–
281. Springer-Verlag, 2006.

[2] J. Barnat, L. Brim, and P. Rockai. Scalable Shared Memory LTL Model Check-
ing. International Journal on Software Tools for Technology Transfer. To
appear.

[3] J. Barnat, L. Brim, and P. Ročkai. Scalable Multi-core LTL Model-Checking.
In Model Checking Software, the 14th international SPIN Workshop, volume
4595 of LNCS, pages 187–203. Springer-Verlag, 2007.

[4] J. Barnat, L. Brim, and P. Ročkai. DiVinE Multi-Core – A Parallel LTL Model-
Checker. In Automated Technology for Verification and Analysis, volume 5311
of LNCS, pages 234–239. Springer-Verlag, 2008.

[5] J. Barnat, L. Brim, and P. Ročkai. An Optimal On-the-fly Parallel Algorithm
for Model Checking of Weak LTL Properties. In International Conference on
Formal Engineering Methods, volume 5885 of LNCS, pages 407–425. Springer-
Verlag, 2009.

[6] J. Barnat, L. Brim, and P. Ročkai. DiVinE 2.0: High-Performance Model
Checking. In High Performance Computational Systems Biology. IEEE Con-
ference Publishing Services, 2009. To appear.

[7] J. Barnat and P. Ročkai. Shared Hash Tables in Parallel Model Checking. In
Participant proceedings of the Sixth International Workshop on Parallel and
Distributed Methods in verifiCation (PDMC 2007), pages 81–95. CTIT, Uni-
versity of Twente, 2007.

[8] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R.
Wilson. Hoard: A scalable memory allocator for multithreaded applications.
In International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS-IX), pages 117–128, Cambridge, MA,
November 2000.

45

46 BIBLIOGRAPHY

[9] L. Brim, I. Černá, P. Moravec, and J. Šimša. Accepting Predecessors are Bet-
ter than Back Edges in Distributed LTL Model-Checking. In 5th International
Conference on Formal Methods in Computer-Aided Design (FMCAD’04), vol-
ume 3312 of LNCS, pages 352–366. Springer-Verlag, 2004.

[10] L. Brim, I. Černá, P. Moravec, and J. Šimša. How to Order Vertices for
Distributed LTL Model-Checking Based on Accepting Predecessors. In The 4th
International Workshop on Parallel and Distributed Methods in verifiCation
(PDMC 2005), pages 1–12, 2005.

[11] Lubos Brim, Ivana Cerna, Pavel Moravec, and Jiri Simsa. Distributed partial
order reduction of state spaces. Electr. Notes Theor. Comput. Sci., 128(3):63–
74, 2005.

[12] Stefano Caselli, Gianni Conte, and P. Marenzoni. Parallel state space ex-
ploration for GSPN models. In Application and Theory of Petri Nets, pages
181–200, 1995.

[13] I. Černá and R. Pelánek. Distributed Explicit Fair Cycle Detection (Set Based
Approach). In T. Ball and S.K. Rajamani, editors, Model Checking Software,
the 10th International SPIN Workshop, volume 2648 of LNCS, pages 49 – 73.
Springer-Verlag, 2003.

[14] Gianfranco Ciardo, Joshua Gluckman, and David Nicol. Distributed state-
space generation of discrete-state stochastic models. INFORMS J. Comp, 1995.

[15] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT press, 1999.

[16] C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory-Efficient
Algorithms for the Verification of Temporal Properties. Formal Methods in
System Design, 1:275–288, 1992.

[17] Edsger W. Dijkstra. Shmuel Safra’s version of termination detection. EWD
Manuscript, January 1987.

[18] S. Edelkamp and S. Jabbar. Large-scale directed model checking LTL. In
SPIN’06, pages 1–18. Springer, 2006.

[19] S. Edelkamp, S. Leue, and A. Lluch-Lafuente. Directed explicit-state model
checking in the validation of communication protocols. International Journal
on Software Tools for Technology Transfer, 5(2-3):247–267, 2004.

[20] S. Edelkamp, A. Lluch-Lafuente, and S. Leue. Directed Explicit Model Check-
ing with HSF-SPIN. In SPIN’01, pages 57–79. Springer, 2001.

[21] E. Allen Emerson. Temporal and modal logic. In Handbook of Theoretical
Computer Science, pages 995–1072. Elsevier, 1990.

BIBLIOGRAPHY 47

[22] K. Fisler, R. Fraer, G. Kamhi, M. Y. Vardi, and Z. Yang. Is there a best sym-
bolic cycle-detection algorithm? In Tools and Algorithms for the Construc-
tion and Analysis of Systems, volume 2031 of LNCS, pages 420–434. Springer-
Verlag, 2001.

[23] G. J. Holzmann. The Spin Model Checker: Primer and Reference Manual.
Addison-Wesley, 2003.

[24] G. J. Holzmann, P. Godefroid, and D. Pirottin. Coverage preserving reduction
strategies for reachability analysis. In 12th Int. Conf on Protocol Specification
Testing nad Verification (IFIP 1992), pages 349–363, 1992.

[25] G. J. Holzmann, D. Peled., and M. Yannakakis. On Nested Depth First Search.
In The SPIN Verification System, pages 23–32. American Mathematical Soci-
ety, 1996. Proc. of the 2nd SPIN Workshop.

[26] Gerard J. Holzmann. A Stack-Slicing Algorithm for Multi-Core Model Check-
ing. In Participant proceedings of the Sixth International Workshop on Parallel
and Distributed Methods in verifiCation (PDMC 2007), pages 1–15. CTIT,
University of Twente, 2007.

[27] Gerard J. Holzmann and Dragan Bosnacki. The Design of a Multicore Exten-
sion of the SPIN Model Checker. Software Engineering, IEEE Transactions
on, 33:659–674, 2007.

[28] IEEE. IEEE 1003.1c-1995 Standard for Information Technology — Portable
Operating System Interface (POSIX) - System Application Program Interface
(API) Amendment 2: Threads Extension (C Language). IEEE Computer So-
ciety Press, 1995.

[29] IEEE. IEEE Std 1003.1-2001 Standard for Information Technology — Portable
Operating System Interface (POSIX) Base Definitions, Issue 6. IEEE, New
York, NY, USA, 2001. Revision of IEEE Std 1003.1-1996 and IEEE Std 1003.2-
1992) Open Group Technical Standard Base Specifications, Issue 6.

[30] R. Kaivola, R. Ghughal, N. Narasimhan, A. Telfer, J. Whittemore, S. Pandav,
A. Slobodová, Ch. Taylor, V. Frolov, E. Reeber, and A. Naik. Replacing
Testing with Formal Verification in Intel Core i7 Processor Execution Engine
Validation. In CAV’09, volume 5643 of LNCS, pages 414–429. Springer-Verlag,
2009.

[31] Robert P. Kurshan, Vladimir Levin, Marius Minea, Doron Peled, and
Hüsnü Yenigün. Static Partial Order Reduction. In Tools and Algorithms
for Construction and Analysis of Systems (TACAS’98), volume 1384 of LNCS,
pages 345–357. Springer, 1998.

[32] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard
Version 2.1, 2008.

48 BIBLIOGRAPHY

[33] M. M. Michael. Scalable lock-free dynamic memory allocation. SIGPLAN
Notices, 39(6):35–46, 2004.

[34] M. M. Michael and M. L. Scott. Simple, fast, and practical non-blocking
and blocking concurrent queue algorithms. In Symposium on Principles of
Distributed Computing, pages 267–275, 1996.

[35] P. Moravec. Distributed State Space Reductions. PhD thesis, Faculty of Infor-
matics, Masaryk University Brno, January 2008.

[36] R. Palmer and G. Gopalakrishnan. Partial order reduction assisted parallel
model checking. In Proc. Parallel and Distributed Model Checking (PDMC)
Workshop, 2002.

[37] R. Pelánek. BEEM: Benchmarks for Explicit Model Checkers. In Model Check-
ing Software, the 14th International SPIN Workshop, volume 4595 of LNCS,
pages 263–267. Springer-Verlag, 2007.

[38] D. Peled. All from One, One for All: on Model Checking Using Representatives.
In The 5th International Conference on Computer Aided Verification, pages
409–423, London, UK, 1993. Springer-Verlag.

[39] D. Peled. Combining partial order reductions with on-the-fly model-checking.
In Proceedings of CAV’94, pages 377–390. Springer Verlag, LNCS 818, 1994.

[40] Doron Peled. Ten years of partial order reduction. In The 10th International
Conference on Computer Aided Verification, pages 17–28. Springer-Verlag,
1998.

[41] John H. Reif. Depth-first search is inherently sequential. Information Process-
ing Letters, 20(5):229–234, June 1985.

[42] P. Ročkai. Multi-Threaded Nested DFS. Bachelor’s thesis, Faculty of Infor-
matics, Masaryk University Brno, 2007.

[43] P. Šimeček. DiVinE – Distributed Verification Environment. Master’s thesis,
Faculty of Informatics, Masaryk University Brno, 2006.

[44] S. A. M. Talbot. Performance tuning of programs for shared-memory multi-
processors. Master’s thesis, Imperial College, London, U.K., 1995.

[45] R. Tarjan. Depth First Search and Linear Graph Algorithms. SIAM Journal
on Computing, pages 146–160, January 1972.

[46] Antti Valmari. Stubborn set methods for process algebras. In Proceedings of
the DIMACS workshop on Partial order methods in verification, pages 213–231.
AMS Press, Inc., 1997.

[47] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. In IEEE Symposium on Logic in Computer Science, pages
322–331. Computer Society Press, 1986.

	Introduction
	Motivation
	Model Checking
	Automata-based Approach
	Parallelisation
	DiVinE
	Experiments

	Algorithms
	OWCTY
	MAP
	On The Fly Execution
	OWCTY On The Fly
	Experiments

	Parallel Architectures
	Shared Memory Platform
	MPI
	Implementing Algorithms
	Communication
	Distributed Memory

	Memory Allocation
	Termination Detection
	Experiments

	Partial Order Reduction
	Background
	Related Work
	Static Partial Order Reduction
	Dynamic Partial Order Reduction
	Parallel reductions

	Cycle Detection
	Correctness
	Time complexity
	Using with OWCTY
	Using with MAP
	Experiments

	Conclusion
	Future Work

	Bibliography

