
F A C U L T Y O F I N F O R M A T I C S , M A S A R Y K U N I V E R S I T Y

Multi-Threaded Nested DFS
BACHELOR'S THESIS

Petr Ročkai

Brno, spring 2007

Declaration
Thereby I declare that this thesis is my original work, which I have created
on my own. All sources and literature used in writing the thesis, as well as
any quoted material, are properly cited, including full reference to its source.

Advisor: RNDr. Jiří Barnat, PhD.

Acknowledgements

I would like to thank my advisor RNDr. Jiří Barnat, PhD. for the help and
motivation he provided throughout my work on this thesis and prof. RNDr.
Luboš Brim, CSc. for valuable input. My thanks go also to the fine people in
the Parallel and Distributed Systems Laboratory and especially those that
have contributed to the D I V I N E project. Finally, I would like to thank my
family and Lucy - for the support and all the little things.

Abstract

Recent development in computer hardware has brought more wide-spread
emergence of shared-memory, multi-core systems. These architectures offer
opportunities to speed up various tasks - among others LTL model checking.
We have implemented several parallel algorithms for shared-memory LTL
model checking, based on Nested DFS and distributed-memory algorithms.
To achieve good scalability, we have devised and experimentally evaluated
several implementation techniques, which we present in the thesis.

Keywords

Model Checking, Parallel, Multi-Threading, Multi-Core, Shared Memory,
Symmetric Multiprocessing

Contents

1 Introduction 6

2 Parallel LTL Model-Checking Algorithms 8
2.1 Maximal Accepting Predecessor 8
2.2 One Way Catch Them Young 9
2.3 Negative Cycle Detection 9
2.4 Back-Level Edges 10
2.5 Cycle Locality 10

3 Implementation Techniques 12
3.1 Shared Memory Platform 12
3.2 Implementing Algorithms in Shared Memory 13
3.3 Communication 14
3.4 Memory Allocation 16
3.5 Efficient Termination Detection 17

4 Implemented Algorithms 20
4.1 Nested DFS 20
4.2 Nested DFS with VCL 20
4.3 OWCTY 22
4.4 Nested DFS and OWCTY 23

5 Experiments 25
5.1 Methodology 25
5.2 Results 25
5.3 Nested DFS and VCL 27
5.4 Comparison with SPIN 27

6 Conclusions 31

5

Chapter 1

Introduction

With the arrival of 64-bit technology the traditional space limitations in
explicit-state model checking1, may become less severe. Instead, time could
quickly become an important bottleneck. This naturally raises interest in
using parallelism to fight the "time-explosion" problem.

Much of the extensive research on the parallelisation of model check­
ing algorithms followed the distributed-memory programming model and
the algorithms were parallelised for networks of workstations, largely due
to easy access to networks of workstations. Recent shift in architecture de­
sign toward multicores has intensified research pertaining to shared-memory
paradigm as well.

In [11] G. Holzmann proposed an extension of the SPIN [12] model-
checker for dual-core machines. The algorithms keep their linear time com­
plexity and the liveness checking algorithm supports full LTL. The algorithm
for checking safety properties scales well to N-core systems. The algorithm
for liveness checking, which is based on the original SPIN's nested DFS al­
gorithm, is however unable to scale to N-core systems. It is still an open
problem to do verification of general liveness properties on N-cores with
linear time complexity.

A different approach to shared-memory model checking is presented
in [14], based on CTL* translation to Hesitant Alternating Automata. The
proposed algorithm uses so-called non-emptiness game for deciding validity
of the original formula and is therefore largely unrelated to the algorithms
based on fair-cycle detection.

In this work, we show several general techniques useful in writing parallel
shared-memory model checking algorithms, as well as an implementation of
basic versions of several such algorithms, with special focus on those based on
the venerable Nested DFS. This lends those algorithms linear time execution
and on-the-fly characteristic. Furthermore, a shared-memory version of the

XA comprehensive introduction to model checking and the approach based on fair-cycle
detection, as used in this thesis, may be found in [8].

6

One Way Catch Them Young algorithm, originally intended for distributed-
memory systems, is implemented and compared to Nested DFS. Finally,
the implemented algorithms are experimentally evaluated on a few exam­
ple models and properties and the results are compared to an MPI-based
implementation and to the SPIN modelchecker.

Many of the techniques and results from this thesis are also presented
in [2]. Source code for the implemented algorithms and accompanying in­
frastructure is available on the attached CD.

7

Chapter 2

Parallel LTL Model-Checking
Algorithms

Efficient parallel solution of many problems often requires approaches radi­
cally different from those used to solve the same problems sequentially. Clas­
sical examples are list rankings, connected components, depth-first search in
planar graphs etc. In the area of LTL model-checking the best known enu­
merative sequential algorithms based on fair-cycle detection are the Nested
DFS algorithm [9, 13] (implemented, e.g., in the model checker SPIN [12])
and SCC-based algorithms originating in Tarjan's algorithm for the decom­
position of the graph into strongly connected components (SCCs) [19]. How­
ever, both algorithms rely on inherently sequential depth-first search pos-
torder, hence it is difficult to adapt them to parallel architectures. Conse­
quently, different techniques and algorithms are needed. Unlike LTL model-
checking, the reachability analysis is a verification problem with efficient
parallel solution. The reason is that the exploration of the state space can
be implemented e.g. using breadth-first search. In the following, we sketch
four parallel algorithms for enumerative LTL model checking that are, more
or less, based on performing repeated parallel reachability to detect reach­
able accepting cycles. The reader is kindly asked to consult the original
sources for the details.

2.1 Maximal Accepting Predecessor

The main idea of the algorithm [4, 6] is based on the fact that every accept­
ing vertex lying on an accepting cycle is its own predecessor. An algorithm
that is directly derived from the idea, would require expensive computation
as well as space to store all proper accepting predecessors of all (accepting)
vertices. To remedy this obstacle, the MAP algorithm stores only a sin­
gle representative of all proper accepting predecessor for every vertex. The
representative is chosen as the maximal accepting predecessor accordingly

8

to a presupposed linear ordering -< of vertices (given e.g. by their memory
representation). Clearly, if an accepting vertex is its own maximal accept­
ing predecessor, it lies on an accepting cycle. Unfortunately, it can happen
that all the maximal accepting predecessor lie out of accepting cycles. In
that case, the algorithm removes all accepting vertices that are maximal ac­
cepting predecessors of some vertex, and recomputes the maximal accepting
predecessors. This is repeated until an accepting cycle is found or there are
no more accepting vertices in the graph.

The time complexity of the algorithm is ö(a2 -m), where a is the number
of accepting vertices. One of the key aspects influencing the overall perfor­
mance of the algorithm is the underlying ordering of vertices used by the
algorithm. It is not possible to compute the optimal ordering in parallel,
hence heuristics for computing a suitable vertex ordering are used.

2.2 One Way Catch Them Young

The next algorithm [7] is an extended enumerative version of the One Way
Catch Them Young Algorithm [10]. The idea of the algorithm is to
repeatedly remove vertices from the graph that cannot lie on an accepting
cycle. The two removal rules are as follows. First, a vertex is removed
from the graph if it has no successors in the graph (the vertex cannot lie
on a cycle), second, a vertex is removed if it cannot reach an accepting
vertex (a potential cycle the vertex lies on is non-accepting). The algorithm
performs removal steps as far as there are vertices to be removed. In the
end, either there are some vertices remaining in the graph meaning that
the original graph contained an accepting cycle, or all vertices have been
removed meaning that the original graph had no accepting cycles.

The time complexity of the algorithm is ö(h • m) where h = h(G). Here
the factor m comes from the computation of elimination rules while the
factor h relates to the number of global iterations the removal rules must be
applied. Also note, that an alternative algorithm is obtained if the rules are
replaced with their backward search counterparts.

2.3 Negative Cycle Detection

The idea behind the Negative Cycle Algorithm [5] is a transformation of
the LTL model checking problem to the problem of negative cycle detection.
Every edge of the graph outgoing from a non-accepting vertex is labeled
with 0 while every edge outgoing from an accepting vertex is labeled with
—1. Clearly, the graph contains a negative cycle if and only if it has an
accepting cycle.

The algorithm exploits the walk to root strategy to detect the presence of
a negative cycle. The strategy involves construction of the so called parent

9

graph that keeps the shortest path to the initial vertex for every vertex of
the graph. The parent graph is repeatedly checked for the existence of the
path. If the shortest path does not exist for a given vertex, then the vertex
is a part of negative, thus accepting, cycle. The worst case time complexity
of the algorithm is ö(n • m).

2.4 Back-Level Edges

An edge (u, v) is called a back-level edge if it does not increase the distance of
the target vertex v form the initial vertex of the graph. The key observation
connecting the cycle detection problem with the back-level edge concept, as
used in the Back-Level Edges Algorithm [1], is that every cycle contains
at least one back-level edge. Back-level edges are, therefore, used as triggers
to start a procedure that checks whether the edge is a part of an accepting
cycle. However, this is too expensive to be done completely for every back-
level edge. Therefore, several improvements and heuristics are suggested and
integrated within the algorithm to decrease the number of tested edges and
speed-up the cycle test.

The BFS procedure which detects back-level edges runs in time ö(m+n).
In the worst case, each back-level edge has to be checked to be a part of
a cycle, which requires linear time ö(m + n) as well. Since there is at
most m back-level edges, the overall time complexity of the algorithm is
ö(m.(m + nj).

2.5 Cycle Locality

All the algorithms allow for an efficient implementation on a parallel archi­
tecture. The implementation is based on partitioning the graph (its vertices)
into disjoint parts. Suitable partitioning is important to benefit from paral-
lelisation.

One particular technique, that is specific to automata based LTL model
checking, is cycle locality preserving problem decomposition. The graph
(product automaton) originates from synchronous product of the property
and system automata. Hence, vertices of product automaton graph are or­
dered pairs. An interesting observation is that every cycle in a product
automaton graph emerges from cycles in system and property automaton
graphs. Let A, B be Büchi automata and A <g> B their synchronous prod­
uct. If C is a strongly connected component in the automaton graph of
A <g> B, then A-projection of C and U-projection of C are (not necessarily
maximal) strongly connected components in automaton graphs of A and B,
respectively.

As the property automaton origins from the LTL formula to be verified,
it is typically quite small and can be pre-analysed. In particular, it is possi-

10

ble to identify all strongly connected components of the property automaton
graph. A partition function may then be devised, that respects strongly con­
nected components of the property automaton and therefore preserves cycle
locality. The partitioning strategy is to assign all vertices that project to
the same strongly connected component of the property automaton graph to
the same sub-problem. Since no cycle is split among different sub-problems
it is possible to employ localised Nested DFS algorithm to perform local
accepting cycle detection simultaneously.

Yet another interesting information can be drawn from the property au­
tomaton graph decomposition. Maximal strongly connected components can
be classified into three categories:

Type F: (Fully Accepting) Any cycle within the component contains at
least one accepting vertex. (There is no non-accepting cycle within
the component.)

Type P: (Partially Accepting) There is at least one accepting cycle and
one non-accepting cycle within the component.

Type N: (Non-Accepting) There is no accepting cycle within the compo­
nent.

Realizing that vertex of a product automaton graph is accepting only if
the corresponding vertex in the property automaton graph is accepting it is
possible to characterise types of strongly connected components of product
automaton graph according to types of components in the property automa­
ton graph. This classification of components into types N, F, and P can
be used to gain additional improvements that may be incorporated into the
above algorithms.

11

Chapter 3

Implementation Techniques

It is a well known fact, that a distributed-memory, parallel algorithm is
straightforwardly transformed into a shared-memory one. However, there
are several inefficiencies involved in this direct translation. Several traits of
shared memory architecture may be leveraged to improve real-world perfor­
mance of such implementations. In this section, we present our approaches at
the challenges of shared-memory architecture and its specific characteristics.

3.1 Shared Memory Platform

We work with a model based on threads that share all memory, although they
have separate stacks in their shared address space and a special thread-local
storage to store thread-private data. Our working environment is POSIX,
with its implementation of threads as lightweight processes. Switching con­
texts among different threads is cheaper than switching contexts among full-
featured processes with separate address spaces, so using more threads than
there are CPUs in the system incurs only a minor penalty.

Critical Sections, Locking and Lock Contention. In a shared-
memory setting, access to memory, that may be used for writing by more
than a single thread, has to be controlled through use of mutual exclusion,
otherwise, race conditions will occur. This is generally achieved through
use of a "mutual exclusion device", so-called mutex. A thread wishing to
enter a critical section has to lock the associated mutex, which may block
the calling thread if the mutex is locked already by some other thread. An
effect called resource or lock contention is associated with this behaviour.
This occurs, when two or more threads happen to need to enter the same
critical section (and therefore lock the same mutex), at the same time. If
critical sections are long or they are entered very often, contention starts to
cause observable performance degradation, as more and more time is spent
waiting for mutexes.

12

Role of Processor Cache. There are two fairly orthogonal issues asso­
ciated with processor cache. First, cache coherence which is implemented by
hardware, but its efficiency is affected by programmer, and cache efficiency,
which mostly depends on data structures and algorithms employed.

Cache coherence poses an efficiency penalty when there are many pro­
cessors writing to same area of memory. This is largely avoided by the
distributed algorithm, however, locking and access to shared data structures
have no other choice. Cache coherence on modern architectures works at a
level of cache lines, roughly 64 byte chunks of memory that are fetched from
main memory into cache at once.

Modern mutex implementations ensure that the mutex is the only thing
present on a given cache line, so it does not affect other data, and, more
importantly, it ensures that two mutexes never share a cache line, which
would pose a performance penalty.

Recent development in multi-core platforms deals with cache coherence
problem in a different, more efficient manner, namely, by sharing the level
two cache among two or more cores, therefore reducing the cache coherence
overhead significantly. Yet, with the current state of technology, this still
does not mitigate the overhead completely.

3.2 Implementing Algorithms in Shared Memory

The above considerations bring us to the actual algorithm implementation
and the associated techniques we came up with. They are all designed to
reduce communication overhead, exploiting traits of shared memory systems
that are not available in distributed memory environments. Consequently,
the main goal is to improve scalability of the implementation, which is in­
versely proportional to communication overhead and its growth with increas­
ing number of threads. That said, keeping in mind the possibility to scale
beyond shared memory systems, we try to keep the implementation in a
shape that would make a combined tool to work efficiently on clusters of
multi-CPU machines achievable.

When we venture into a strictly shared-memory implementation, one
may pose a question, whether a different approach of using a standard se­
rial algorithm modified to allow parallelisation at lower levels of abstraction
would give a scalable, efficient program for multi-CPU and/or multi-core
systems. Our efforts at extracting such a micro-parallelism in our code-base
have been largely fruitless, due high synchronisation cost relative to amount
of work we were able to perform in parallel. Although we intend to do more
research on this topic, we do not expect significant results. This is partially
supported by the observation, that modern CPUs and compilers already do a
fair amount of work at extracting micro-parallelism from the code to execute
efficiently on the internally parallel microarchitecture of a single core.

13

type FIFO of T:
type Node:

buffer: array of T
next: pointer to Node
read, write: integer

nodeSize: integer (size of buffer)
head, tail: pointer to Node
writeLock: mutex

Figure 3.1: FIFO representation

In the following sections, we explore the possibilities to build on existing
distributed memory approaches, in the vein of statically-partitioned graphs,
reducing the overhead using idioms only possible due to locality of memory.

3.3 Communication

Generally, in a distributed computation, all communication is accomplished
by passing messages - eg. using a library like MPI for cluster message
passing. However, in communication-intensive programs, or those sensitive
to communication delay, using general-purpose message passing interface is
fairly inefficient.

In shared memory, most of the communication overhead can be elim­
inated by using more appropriate communication primitives, like high-
performance, contention- and lock- free FIFOs (First In, First Out queues).
We have adopted a variant of the two-lock algorithm - a decent compromise
between performance on one hand and simplicity and portability on the other
- presented in [17]. Our modifications involve improved cache-efficiency (by
using a linked list of memory-continuous blocks, instead of linked list of sin­
gle items) and only using a single write-lock, instead of a pair of locks, one
for reading and one for writing, since there is ever only one thread reading,
while there may be several trying to write.

Every thread involved in the computation owns a single instance of the
FIFO and all messages for this thread are pushed onto this single queue.
This may introduce a source of resource-contention, where many processes
are trying to append messages to a single queue, but considering the mes­
sage distribution in our system, this turns out to be a negligible problem
in practice. With different patterns of communication, a complete lock-free
design may be more appropriate (one is given in [17]).

Representation and pseudocode for enqueue and dequeue algorithms are
found in Figures 3.1, 3.2 and 3.3, respectively. The correctness, linearizabil-
ity and liveness proofs as given in [17] are straightforwardly adapted to our
implementation and thus left out.

14

Require: / is a FIFO of T instance, x of type T is an element to enqueue
Ensure: / contains x as its last element

lock(f.writeMutex)
if f .tail, write = f.nodeSize then

t <— newly allocated Node, all fields 0
else

t <— f .tail
end if
t.buffer[t.write] <— x
t.write <— t.write + 1
if /.iaiZ 7̂ í then

f .tail.next = t
f .tail = t

end if
unlock(f.writeMutex)

Figure 3.2: FIFO enqueue

Require: / is a non-empty FIFO instance
Ensure: front element of / is dequeued and then returned

if f.head.read = f.nodeSize then
f .head <— f .head.next

end if
f.head.read <— f.head.read + 1
return f .head .buffer[f .head .read — 1]

Figure 3.3: FIFO dequeue

15

Alternatives to our implementation, which may be more appropriate in
different settings, include a ring-buffer FIFO implementation (if there is a
bound on the amount of in-flight data known beforehand, the ring-buffer
implementation may be more efficient) and possibly an algorithm based on
swapping incoming and outgoing queues (which could be easily implemented
as a pointer swap). The latter gives results comparable to the described
FIFO method, although the code and locking behaviour is much more com­
plex and error-prone, which made us opt for the simpler FIFO implementa­
tion.

3.4 Memory Allocation

In a distributed computation, every process has simply its own memory
which it fully manages. In a shared memory, however, we prefer to manage
the memory as a single shared area, since an equal partitioning of available
memory and separate management may fall short of efficient resource us­
age. However, this poses some challenges, especially in allocation-intensive
environment like ours.

First, a naive approach of protecting the allocation routines with a simple
mutual exclusion is highly prone to resource contention. Fortunately, mod­
ern general-purpose allocator implementations refrain from this idea and
have a generally non-contending behaviour on allocation. However, releas­
ing memory back for reuse is more complex to achieve without introducing
contention, in a setting where it is often the case that thread other than the
one allocating the chunk tries to release it.

There are known general-purpose solutions to this problem, eg. [16], how­
ever they are currently not in widespread use, therefore we have to refrain
from the above-mentioned pattern of releasing memory from different than
allocating thread, in order to avoid contention and the accompanying slow­
down.

The message-passing implementation we employ is pointer-based, in
other words, the message sent is only a pointer and the payload (actual
interesting message content) is allocated on the shared heap and it may be
either reused or released by the receiving thread. Observe however, that
releasing the associated memory in the receiving thread will introduce the
situation which we are trying to avoid.

We side-step the issue by adding a new communication FIFO to each
thread (recall that our communication induces only low overhead and vir­
tually no contention). When a receiving thread decides that the message
content needs to be disposed of, instead of doing it itself, sends the mes­
sage back to the originating thread using the second FIFO. The originating
thread then, at convenient intervals, releases the memory in a single batch,
having an interesting side-effect of slightly improving cache-efficiency.

16

3.5 Efficient Termination Detection

Since our algorithms rely on work distribution among several largely inde­
pendent threads, similarly to a distributed algorithm, we need a specific
algorithm for shared-memory termination detection, that would pose mini­
mal overhead and minimal serialisation.

One possible solution is presented in [15], which does not use locking and
relies on the system to provide an enqueue-with-wakeup primitive. However,
in our system, we have primitives available that support a somewhat different
approach: implementation of sleeping/wakeup primitives already relies on
locking and we leverage this inherent locking in our termination detection
algorithm.

The POSIX threading library offers a mechanism called "condition sig­
nalling", which we use to implement thread sleeping and wakeup. A "con­
dition" is a device that allows to be waited-for by its owning thread and
"signalling a condition" from another thread will cause the waiting thread
to wake up and continue execution. However, this device in itself is race-
prone, since the condition may be signalled just before the owner goes to
sleep, leading to a deadlock - another signal may never come. Therefore,
the condition is always protected by a mutex, which is always locked through
the execution of the owner thread and is only atomically unlocked when the
thread enters sleep state and atomically reclaimed before waking up.

Since the available mutex implementation allows a lock-or-fail behaviour,
as opposed to lock-or-wait which is usually employed for protecting critical
sections, we can use the condition device to implement an efficient termina­
tion detection algorithm.

Observe, that at any time when a thread is idle, its condition-protecting
mutex is unlocked and conversely, whenever the thread is busy, this mutex
is locked. So the termination detection algorithm first tries to lock condition
mutexes of all worker threads, one by one, using the lock-or-fail behaviour.
Then, it proceeds to check the queues. If it succeeded locking all threads
and all queues are empty, termination has occurred. Pseudocode for the
algorithm is shown in Figure 3.4.

We run the termination detection in a dedicated scheduler thread, which
also wakes up threads that have pending work - i.e., if it has successfully
grabbed any locks, queues belonging to those locked threads are checked,
and if any is found to be non-empty, the thread is awakened. After every
run, all grabbed locks are released again.

Moreover, although this algorithm works correctly as-is, it is rather inef­
ficient if left running in a loop. Therefore, the scheduler thread goes to sleep
after every iteration, and is woken up by any worker thread that goes idle.
This requires a slight modification to the algorithm above, since it adds a
race-condition, where the last thread going to sleep wakes up the scheduler,
which then runs the algorithm before the calling thread manages to go to

17

Require: threads: array of Thread, Thread contains idleMutex and
idleCondition, fifo

Ensure: termination has occurred iff true is returned
mutex: Mutex, cond: Condition, held: array of Boolean
busy <— false
for t in threads do

if trylock(i.idleMutex) then
held[t] <— true

else
held[t] <— false
busy <— true

end if
end for
for í in threads do

if not empty(t.fifo) then
6us?/ <— true
if /ieW[i] then

signal (í. idleCondition)
end if

end if
end for
for t in threads do

unlock(t.idleMutex)
end for
return not 6us?/

Figure 3.4: Termination Detection in Shared Memory

18

sleep, assuming termination did not happen and going to sleep, at which
point the system deadlocks, as everyone is idle.

An alternative approach would be to synchronously execute the termina­
tion detection algorithm in the thread that has become idle, but due to the
nature of the system, the above is more practical code-wise and only incurs
very insignificant overhead.

19

Chapter 4

Implemented Algorithms

4.1 Nested DFS

The dual-threaded Nested DFS algorithm we implemented is based on the
design presented in [11], i.e. the outer DFS runs in one of the threads, while
another thread executes the nested DFS. There is a FIFO from the outer
thread to inner and the outer DFS pushes accepting states to the FIFO in
post-order. The pseudocode for this approach can be found in Figures 4.1
and 4.2.

Since there is a clear master-slave relationship between the two threads,
the termination conditions are very simple. When the master (outer DFS)
finishes its work, it waits for the slave thread (nested DFS) to become idle
and then terminates.

4.2 Nested DFS wi th VCL

Further parallelisation of Nested DFS can be obtained from SCC decompo­
sition of the property automaton. This yields, as described in Section 2.5,
components of the product automaton. Out of those components, only those
of type P (partially accepting) need to be verified using Nested DFS. The
N (non-accepting) components may be explored using BFS reachability and
those of type F (fully accepting) may be checked with single cycle detection,
which, since we prefer BFS order, may be accomplished with single pass of
OWCTY elimination.

This makes both N and F component checking easily parallelisable, as
those may be checked using BFS-based algorithms. It also adds parallelism
for the case of multiple P components, since Nested DFS can be run in
parallel on each of these independent components. There is however no
benefit for properties, which are composed of single P component. The P
component checking may be done using either parallel or serial Nested DFS.

The current implementation only differentiates between N and non-N

20

procedure N E S T E D D F S (S * , I)
if S G NestedSeen t h e n re turn
else

NestedSeen <— NestedSeen U S*
end if
if / =Invalid t h e n

for succ <— successor of S do
N E S T E D D F S (S U C C , 5)

end for
else

for succ <— successor of 5 do
if S = I t h e n

echo "accepting cycle found"
else

N E S T E D D F S (S U C C , I)

end if
end for

end if
end procedure
procedure OiJTERDFS(sřaře instance of State, fifo instance of FIFO)

if state G Seen t h e n return
end if
Seen <— Seen U state
for succ <— successor of sřaře do

OuTERDFS(sřaře)
if state is accepting t h e n

_/i/o.push(sŕaŕe)
wake up other end of fifo

end if
end for

end procedure

Figure 4.1: Algorithmic procedures of Nested DFS

21

procedure NESTEDDFSTHREAD^/I /O instance of FIFO)
if fifo not empty then

S <- (fifo.pop)
NESTEDDFs(S*,Invalid)

else
sleep

end if
end procedure
procedure M.AiN(initial initial state of the system)

fifo <— new instance of FIFO
asynchronously execute NESTEDDFSTHREAD(_/I/O)
O U T E R D F S (ímŕía/, fifo)
terminate nested DFS thread

end procedure

Figure 4.2: Nested DFS

components, using BFS reachability for N components and Nested DFS on
the rest. All of the N components in the system are merged into one pool
of states, statically partitioned among available reachability worker threads.
Each P and F component gets its own instance of dual-thread Nested DFS.

This setting requires somewhat more complex termination detection than
the dual-core Nested DFS variant. All the worker threads take part in the
termination detection algorithm given in Section 3.5. Obviously, the termi­
nation detection cannot be done separately over the identified components,
since there are edges crossing their boundaries.

Furthermore, it is a nontrivial problem to determine optimal number of
threads to use with VCL. In the experimental section, we have allocated one
CPU per non-A^ component and rest was allocated for the shared pool of
N components. This approach however depends upon having enough CPUs
to cover all the components, and in case there are almost as many non-A^
components as CPUs, this approach becomes suboptimal.

4.3 OWCTY

As can be seen from the pseudocode (refer to Figure 4.3), the main OWCTY
loop consists of few steps, namely, reachability, elimination and reset. All
of them can be parallelised, but only on their own, which requires a barrier
after each of them. Only reachability and elimination run in parallel in the
current code, reset is to be implemented.

The algorithm uses a BFS state space visitor to implement both reacha­
bility and elimination. The underlying BFS is currently implemented using
a partition function, i.e., every state is unambiguously assigned to one of

22

Require: initial is initial state
S <—REACHABILITY (initial)
old ^ 0
while S 7̂ old do

oW <— 5
Ä ^ R E S E T (S)

S* ^REACHABILITY(S ')

S* ^ELIMINATION(S ')

end while
return S 7̂ 0

Figure 4.3: OWCTY Pseudocode

the threads. The framework in which the algorithm is implemented offers a
multi-threaded BFS implementation based on this kind of state-space parti­
tioning. The algorithm itself is only presented with resulting transition and
node-expansion events, unconcerned with the partitioning or communication
details.

The barriers are implemented using the termination detection algorithm
presented - the computation is initiated by the main thread and the termi­
nation detection is then executed in this same thread, which also doubles
as a scheduler. When the step terminates, the main thread prepares the
next step, spawns the worker threads and initiates the computation again.
Since the hash table is always thread-private, i.e. owned exclusively by a
single thread, the main thread has to transfer the hash table among differ­
ent threads in the serial portion of computation. This is nonetheless done
cheaply (few pointer operations only) so is probably not worth parallelising.

4.4 Nested DFS and OWCTY

Since OWCTY over weak automata behaves linearly, the VCL decomposition
can be used to partition the state space into a set of weak components (N
and F) and the remaining P components. The weak components can be all
merged together into a shared pool (like with N components in the Nested
DFS with VCL case) and a single-pass OWCTY can be run on this part of
the graph. Nested DFS can be used for the P components.

Algorithm designed this way is asymptotically optimal for all inputs,
while using the most scalable method available for any given portion of the
product graph.

In comparison with VCL, it should achieve better load-balancing over
the weak part of the graph, while reducing transition locality among threads
(i.e., it requires more communication than VCL, but achieves more even
distribution of states to processors). It also, compared to Nested DFS with

23

VCL, makes the problem of thread allocation slightly easier to tackle, since
all of the weak part of the graph can be allocated to an arbitrary number
of cores (whereas in VCL, the N and F subgraphs require separate core
allocation).

Note that this is only a theoretical result, as the proposed scheme has
not been implemented so far.

24

Chapter 5

Experiments

5.1 Methodology

The main testing machine we have used is a 16-way AMD Opteron 885 (8
CPU units with 2 cores each). All timed programs were compiled using
gcc 4.1.2 20060525 (Red Hat 4.1.1-1) in 32-bit mode, using -03. This limits
addressable memory to 3GB, which was enough for our testing. The machine
has 64GB of memory installed, which means that none of the runs were
affected by swapping.

For this paper, our main concern is speed and scalability, therefore we fo­
cus on these two parameters. Measurement was done using standard UNIX
time command, which measures real and cpu times used by program. Note
that the cpu time given in tables equals to a sum of times spent by individ­
ual processors, thus for parallel computations the value of cpu time should
exceed the value of real time.

For the experimental evaluation we implemented algorithms upon the
state generator from D I V I N E [3]. All the models we have used are listed in
Table 5.1 including the verified properties. The models come from the BEEM
database [18] that contains the models in DiViNE-native modeling language
as well as in ProMeLa. We used ProMeLa models for comparison with the
SPIN model checker. The models are not extremely large, although, their size
is sufficient for the time spent on parsing and initialization to be negligible.

5.2 Results

First, we have measured run-times of algorithms presented in Section 2 that
were implemented using D I V I N E framework and mpich2 library compiled
for shared-memory architecture. As shown in Figure 5.1 these implemen­
tations do not exhibit desired scalability on shared-memory architecture,
even though they all scale well in a distributed memory environment. Some
algorithms have scaled up to 4 cores, but using more cores did not bring

25

Acronym Description Property (LTL formula)

elevatori Motivated by elevator promela
model from distribution of SPIN.
The cab controller chooses the
next floor to be served as the
next requested floor in the direc­
tion of the last cab movement. If
there is no such floor then the
controller consider the oposite
direction. (3 floors)

If level 0 is requested, the cab
passes the level without serving
it at most once.

G(rO ==> (-nl0U(l0U(-^l0U(l0U

(/o A open))))))

elevator^ Same model as elevator, with
slightly adjusted parameters to
increase state space size. No for­
mula was used with this model.

N/A

leader Leader election algorithm based
on filters. A filter is a piece of
code tha t satisfy the two follow­
ing conditions: a) if m processes
enter the filter, then at most m / 2
processes exit; b) if some process
enter the filter, then at least one
of them exits. (5 processes)

Eventually a leader will be
elected.

F (leader)

rether Software-based, real-time Ether­
net protocol whose purpose is to
provide guaranteed bandwidth
and deterministic, periodic net­
work access to multimedia appli­
cations over commodity Ether­
net hardware. It is a contention-
free token bus protocol for the
datalink layer of the ISO proto­
col stack. (5 Nodes)

Infinitely many NRT actions of
Node 0.

G(F(nactO))

peterson Peterson's mutual exclusion pro­
tocol for N processes. (N=4)

Someone is in critical section in­
finitely many times.

G(F(SomeoneInCS))

anderson Anderson's mutual exlusion pro­
tocol for N processes. (N=6) N/A

Table 5.1: Models and verified properties.

26

any speedup. Under this setting, every MPI node is executed in a separate
process.

We have performed more experiments to evaluate the efficiency of tech­
niques introduced in Section 3. We have implemented parallel breadth-first
search based reachability and the OWCTY algorithm. Run-times of the
thread-optimised BFS reachability and of the thread-optimised implemen­
tation of OWCTY algorithm are reported in Figure 5.2.

The thread-optimised implementations display better scalability be­
haviour, since adding cores reduces computation time at least up to f 2 cores,
for some models even to f6 cores. Between 12 and 16 cores, the communi­
cation overhead reaches a limiting threshold, so adding more does not bring
any further speedup and may even impede a slight performance setback.

The actual threshold and curve steepness is generally affected by the
partition function used, as well as relative cost of cross transitions. The latter
issue partially explains why the MPI versions of algorithms have scalability
problems, since the cross transition cost is in this case much higher than in
the multi-threaded version.

5.3 Nested DFS and VCL

We have measured runtimes of single-threaded, dual-threaded and VCL-
based Nested DFS, using 1, 2 and 16 threads, respectively. The results
are to be seen in Table 5.2. Also, a 15-thread (+ 1 management thread)
OWCTY runtime is given in the table. These times however come from a
different version of the code-base than those in the above comparisons, so
the OWCTY timings were re-done with the same version as Nested DFS
ones, although the timings did not exhibit any remarkable deviations.

We can see, that performance of VCL varies with model used. In practice,
OWCTY seems to outperform both dual-core Nested DFS as well as VCL-
based one. This still does not invalidate the advantage of NDFS where cycle
(and therefore a counterexample) may be found without generating the full
state space. Also, as of this writing, we do not have a dual-core version of
OWCTY with satisfactory performance, so for dual-core machines, NDFS is
probably the first choice.

5.4 Comparison with SPIN

Since the multi-core version of SPIN was not publicly available, in order
to make a direct comparison, we run a single reachability on the product
automaton graph with SPIN. As SPIN was running only the first proce­
dure of the Nested DFS algorithm we get a good lower bound on runtime
of the multi-core SPIN implementation. SPIN was used with parameters -
mlOOOOOOO -w27 to get the best performance. We have not observed any

27

Model single-core NDFS dual-core NDFS VCL NDFS OWCTY

elevatori 1:12.4 0:51.4 0:35.1 0:27.8

leader 0:16.8 0:9.6 0:11.5 0:7.2

peterson 0:30.8 0:22.8 0:19.9 0:9.4

ret her 1:4.5 0:48.0 0:26.8 0:21.3

Table 5.2: Parallel Nested DFS in D I V I N E .

Model SPIN reachability BFS reachability OWCTY

elevatori 0:14.4 0:12.1 0:26.8

peterson 0:7.4 0:4.2 0:9.2

Table 5.3: Comparison with SPIN

performance penalty from using bigger stack or hash table than strictly nec­
essary.

Table 5.3 gives runtimes for SPIN, multi-threaded BFS reachability, and
OWCTY cycle detection algorithm, both performed on 16 cores.

28

BLEDGE

"O
c
o
o
<D

</>

12000
10000
8000
6000
4000
2000

0

eleyater
leader

peterson
rether

Number of cores

300

250

200

150

100

50

0

MAP

elevator
leader

"peterson
rether

Number of cores

NEGC

800
700
600
500
400
300
200
100
0

elevator
leader

peterson
rether

Number of cores

1
140
120
100
80
60
40
20

OWCTY

elevátor
leader

peterson
rether

Number of cores

Figure 5.1: Scalability of BLEDGE, MAP, NEGC, and OWCTY algorithms
implemented using D I V I N E and MPI compiled for shared-memory architec­
ture.

29

MT-OWCTY

100
90
80
70
60
50
40
30
20
10
0

elevator 1
leader

peterson
rether

180
160
140
120
100
80
60
40
20

0

12

Number of cores

MT-BFS

16

elevator 1
leader

peterson
rether

anderson
elevator 2

12 16

Number of cores

Figure 5.2: Scalability of multi-threaded OWCTY and BFS reachability.

30

Chapter 6

Conclusions

The current solutions available based on Nested DFS perform really well for
most cases. In general, at least a dual-core version is always available, for
all kinds of LTL verification problems. For many properties, more CPUs
and/or cores can be employed using VCL partitioning of the state space.

On the contrary, the OWCTY algorithm has super-linear complexity
for the general case, although for majority of LTL properties verified in
practice, it is linear. Scalability of OWCTY is superior to that of either of the
Nested DFS implementations. It does not depend on property decomposition
to be nontrivial to scale beyond 2 cores. However, for cases where both
original and dual-thread Nested DFS shine - automata composed of a single
partially accepting component, OWCTY may be outperformed by the dual-
core version of Nested DFS.

While Nested DFS seems like the ultimate choice for dual-core systems
right now, OWCTY appears to be the superior candidate when multitude of
cores is available, or when ability to execute efficiently in distributed memory
becomes a factor.

For reachability analysis, parallel BFS seems like the best pick, since
it both performs and scales well, while offering the possibility of efficient
distributed memory implementation.

From the profiling work we have done, it is clear that the main execution
time bottleneck of D I V I N E is its state generator. Improvements in this area
should reduce the absolute running times, but will likely negatively affect
relative scalability. Therefore, we will continue to work on reducing parallel
execution overhead, to maintain or even improve current scalability.

In the pursue of scalability, we also intend to explore alternative ap­
proaches to state-space partitioning, non-partitioning approaches and use­
fulness of load-balancing in this context.

31

Bibliography

[1] J. Barnat, L. Brim, and J. Chaloupka. Parallel Breadth-First Search
LTL Model-Checking. In Proc. 18th IEEE International Conference
on Automated Software Engineering, pages 106-115. IEEE Computer
Society, 2003.

[2] J. Barnat, L. Brim, and P. Ročkai. Scalable Multi-Core LTL Model-
Checking. In SPIN 2007, to appear, LNCS, 2007.

[3] J. Barnat, L. Brim, I. Černá, P. Moravec, P. Ročkai, and P. Šimeček.
DiVinE - A Tool for Distributed Verification (Tool Paper). In Computer
Aided Verification, volume 4144/2006 of LNCS, pages 278-281. Springer
Berlin / Heidelberg, 2006.

[4] L. Brim, I. Černá, P. Moravec, and J. Šimša. Accepting predecessors
are better than back edges in distributed ltl model-checking. In 5th In­
ternational Conference on Formal Methods in Computer-Aided Design
(FMCAD'04), volume 3312 of LNCS, pages 352-366. Springer-Verlag,
2004.

[5] L. Brim, I. Černá, P. Krčál, and R. Pelánek. Distributed LTL model
checking based on negative cycle detection. In Proc. of Foundations
of Software Technology and Theoretical Computer Science (FST TCS
2001), volume 2245 of LNCS, pages 96-107. Springer, 2001.

[6] L. Brim, I. Černá, P. Moravec, and J. Simša. How to order vertices for
distributed ltl model-checking based on accepting predecessors. In Pro­
ceedings of the 4th International Workshop on Parallel and Distributed
Methods in verification (PDMC 2005), volume 1M0545, pages 1-12,
2005.

[7] I. Černá and R. Pelánek. Distributed explicit fair cycle detection (set
based approach). In T. Ball and S.K. Rajamani, editors, Model Checking
Software. 10th International SPIN Workshop, volume 2648 of Lecture
Notes in Computer Science, pages 4 9 - 7 3 . Springer Verlag, 2003.

[8] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT press,
1999.

32

[9] C. Courcoubetis, M.Y. Vardi, P. Wolper, and M. Yannakakis. Memory-
Efficient Algorithms for the Verification of Temporal Properties. Formal
Methods in System Design, 1:275-288, 1992.

[10] K. Fisler, R. Fraer, G. Kamhi, M. Y. Vardi, and Z. Yang. Is there a best
symbolic cycle-detection algorithm? In Proc. Tools and Algorithms for
the Construction and Analysis of Systems, volume 2031 of LNCS, pages
420-434. Springer-Verlag, 2001.

[11] G. Holzmann. The Design of a Distributed Model Checking Algorithm
for SPIN. In FMCAD, Invited Talk, 2006.

[12] G. J. Holzmann. The Spin Model Checker: Primer and Reference Man­
ual. Addison-Wesley, 2003.

[13] G.J. Holzmann, D. Peled, and M. Yannakakis. On Nested Depth First
Search. In The SPIN Verification System, pages 23-32. American Math­
ematical Society, 1996. Proc. of the 2nd SPIN Workshop.

[14] C. Inggs and H. Barringer. Cti* model checking on a shared memory
architecture. Formal Methods in System Design, 29(2):135-155, 2006.

[15] Ho-Fung Leung and Hing-Fung Ting. An optimal algorithm for global
termination detection in shared-memory asynchronous multiprocessor
systems. IEEE Transactions on Parallel and Distributed Systems,
8(5):538-543, 1997.

[16] Maged M. Michael. Scalable lock-free dynamic memory allocation. SIG-
PLAN Not, 39(6):35-46, 2004.

[17] Maged M. Michael and Michael L. Scott. Simple, fast, and practical
non-blocking and blocking concurrent queue algorithms. In Symposium
on Principles of Distributed Computing, pages 267-275, 1996.

[18] R. Pelánek. BEEM: BEnchmarks for Explicit Model checkers.
h t tp : / /anna . f i .muni .cz /models / index.h tml , February 2007.

[19] R. Tarjan. Depth First Search and Linear Graph Algorithms. SIAM
Journal on Computing, pages 146-160, Januar 1972.

33

http://anna.fi.muni.cz/models/index.html

