
Techniques for Memory-Efficient Model
Checking of C and C++ Code?

Petr Ročkai, Vladimı́r Štill, and Jǐŕı Barnat

Faculty of Informatics, Masaryk University
Brno, Czech Republic

{xrockai,xstill,barnat}@fi.muni.cz

Abstract. We present an overview of techniques that, in combination,
lead to a memory-efficient implementation of a model checker for LLVM
bitcode, suitable for verification of realistic C and C++ programs.
As a central component, we present the design of a tree compression
scheme and evaluate the implementation in context of explicit-state
safety, LTL and untimed-LTL (for timed automata) model checking. Our
design is characterised by dynamic, multi-way adaptive partitioning of
state vectors for efficient storage in a tree-compressed hash table, repre-
senting the closed set in the model checking algorithm. To complement
the tree compression technique, we present a special-purpose memory
allocation algorithm with very compact memory layout and negligible
performance penalty.

1 Introduction

Model checking is an important verification technique with wide applicability
in software development. The older generation of model checking tools primar-
ily targeted special-purpose “modelling” languages, and as such are suitable for
stratified, long-term development processes. In those cases, the role of the model
checker was towards the early stages, especially in high-level design. However,
the trend in the software industry is towards much more tightly integrated de-
velopment cycles, where all activities are coupled as closely as possible to coding
and early deployment. In those scenarios, it would be impractical to add a long
and drawn-out process of modelling design elements that are to be programmed
(coded) in the implementation language at almost the same time. It is those
concerns that motivate the current work on model checking code directly. Ad-
ditionally, such tight integration of programming and model checking has other
benefits: it becomes possible to use the model checker to verify implementation-
level properties this way (as contrasted with design-level properties). As such, a
sufficiently powerful model checker has the capacity to enter the programmer’s

? This work has been partially supported by the Czech Science Foundation grant No.
15-08772S.

† The final publication is available at Springer via http://dx.doi.org/10.1007/

978-3-319-22969-0_19



toolkit alongside interactive symbolic debuggers (like gdb) and runtime analysis
tools (like valgrind).

While it is quite obvious that those are all worthwhile goals, model checking
of executable code presents substantial challenges. In the case of explicit-state
model checking, the approach used by the DIVINE model checker [1], those chal-
lenges derive from the large number of distinct states reachable through exe-
cution of programs. This is most pertinent to multi-threaded programs, where
model checking happens to be also most useful. Besides the size of the state space,
the primary challenge in verifying a program directly lies in the interpretation of
the source code. In DIVINE, this challenge was quite successfully resolved by us-
ing a standard C/C++ compiler with an LLVM backend, and by interpreting the
resulting bitcode instead of the (much more complicated) original source code.
Besides simplifying the implementation of the model checker, this also removes
large portion of the complicated C++ compiler from the trusted code base.

The remaining challenges, stemming from large state spaces, are hence
twofold: the time required to explore the state space, and the memory required
to store it. Some techniques attack both problems at once: reduction techniques
that vastly reduce the number of reachable states are one such approach [7]. In
this regard, DIVINE employs a very successful τ+reduction [8] which removes
many thread interleavings and compresses state chains down to a single transi-
tion, without compromising the soundness of model checking. Some approaches
target one of those problems specifically: one such is parallelisation, which ex-
clusively aims at reducing the time required for a verification run to complete.
This is an important goal because a verification tool that can be used interac-
tively is more valuable than a batch one, where the user needs to wait overnight
(or for a week) to obtain the result. In this regard, DIVINE employs parallelism
extensively and achieves decent speed-ups through its use.

Finally, despite extensive state space reduction, the state spaces obtained
from C (and especially C++) programs are very large, memory-wise. And while
parallelism gives us an acceptably fast algorithm, it is easy to run out of available
memory. Of course, there is always room for optimisations: the LLVM interpreter
embedded in DIVINE is currently the main speed bottleneck, and as such is sub-
ject to ongoing optimisation effort. Nonetheless, even in its current incarnation,
on most computers, DIVINE will run out of memory very quickly. As such, tech-
niques that reduce memory use are of prime importance, even if they have a
modest negative impact on speed.

1.1 Reducing Memory Use

There are a few elements in an explicit-state model checker where large amounts
of (fast, random-access) memory are required. Usually, by far the most extensive
is the representation of the closed set, although the open set (usually a queue in a
parallel model checker) can become quite large as well. The representation of the
program being model checked is usually small and of constant size throughout
the computation, as is the code of the model checker itself. Hence, for all but
very small models, the memory requirements of the model checker are dominated



by the open and closed sets, which are composed of state vectors and often
some ancillary per-state data of the model checking algorithm. Besides the state
vectors themselves, the fact they are organised in a data structure (a hash table, a
queue or similar) causes memory overhead of its own. While with “plain” LLVM-
based model checking the state vectors are very large (often many kilobytes),
and as such, eclipse the memory requirements of all the data structures that hold
them, we will see the importance of memory efficiency of those data structures
rise in prominence when the amount of memory occupied by a single state vector
shrinks considerably.

One important technique that can contribute to memory efficiency of explicit-
state model checking is lossless compression. Several methods of lossless compres-
sion – including methods based on state vector decomposition – were introduced
over the time as discussed in Section 1.2. In our work we present an extension
of existing state vector decomposition methods that is particularly well suited
for real-world application of model checking of C and C++ code through LLVM
bitcode – it supports dynamically sized states, has no need for preallocation of
fixed-size closed set and supports parallel model checking. We show in our exper-
iments that for verification of real-world programs with DIVINE, the method we
describe constitutes enabling technology. That is, we show that it is possible to
verify programs where verification without compression would require terabytes
of RAM.

1.2 Related Work

The oldest and simplest lossless compression method was to use a generic data
compression algorithm (Huffman coding, arithmetic coding, etc.) to compress
individual state vectors before storing them into memory [5, 3]. These approaches
only minimally exploit the redundancy between different states, which is usually
much higher than the redundancy within a single state vector.

In this respect, a better method has been proposed in [4], where the state
vector is decomposed and each slice of the vector is hashed separately and only
indices to those slices are saved as a state. This exploits the fact that many state
vectors contain parts that are identical between different states and also much
longer than a single pointer – hence, storing a pointer to a separately hashed
slice is more memory-efficient than storing the duplicated area repeatedly. While
this idea is in a way a specialisation of otherwise very generic and well-known
dictionary-based compression (as employed by the commonly used LZ77 [10]
algorithm), it has some special properties that make it more interesting for model
checking: namely, the construction of the “dictionary” makes it easy and efficient
to hash the compressed states and compare them for equality – neither of those
steps needs to decompress states already stored.

The one-level scheme proposed in [4] has been improved upon by [2], making
it fully recursive. It also removes the requirement that the compression algo-
rithm knows specifics about the state vector layout. This recursive approach has
been further adapted for parallel model checking in [6]. One downside of this



implementation is a requirement for a fixed-size, pre-allocated hash table with
fixed size slots.

We use a similar scheme, but we re-introduce optional state vector layout
awareness into the compressor, we use generic n-ary trees instead of binary, we
use resizing hash tables in the implementation and we focus on dynamically sized
states which naturally occur in LLVM-based programs which include memory
allocation.

2 Tree Compression

Depending on the verification task, the storage size of a single vertex (state)
can be fairly large. This is especially true of more complicated model checking
inputs, like timed automata or LLVM1. In those cases, it makes sense to consider
compression schemes for states and/or the entire state space. In DIVINE, we
have implemented the latter [9], using a scheme similar to collapse [4]. Since our
hash table is resizeable to facilitate better resource use, we cannot directly use
some of the improvements that rely on fixed-size hash tables [6]. On the other
hand, since the hash table we use can accommodate variable-size keys, we are not
limited to fixed-layout trees and can use content-aware state decomposition like
in the original collapse approach (but unlike original collapse, we can decompose
the state recursively, which is useful with more complex state vectors, like those
arising from LLVM inputs). The decomposition tree structure is illustrated in
Figure 1.

state vector

root component vector

internal component vectors

leaves

Fig. 1. A decomposition of a state into a component tree. The leaves represent frag-
ments of the original state vector.

Our approach uses three hash tables that are adaptively resized as needed.
One holds root elements – one root element corresponds to each visited state

1 In theory, nothing about LLVM per se causes states to be large; in practice, however,
inputs that are expressed in terms of LLVM have a tendency to have much richer
state than more traditional formalisms, like DVE or ProMeLa.



1:1. These root elements are represented as component vectors, where each com-
ponent is represented as a separate object in memory. Those components are
de-duplicated using a leaf table – a state fragment that is identical in multiple
different states is only stored once, and the root table refers to the de-duplicated
instances of those objects. To facilitate recursive decomposition, we also main-
tain a third table, internal, for internal nodes of the state decomposition tree.
The internal nodes have the same structure as root nodes (a vector of point-
ers), but they do not correspond to complete states and the internal table is
not consulted by the model checking algorithm when looking up vertices during
search.

The component vectors contain a flag to decide whether a particular compo-
nent is another component vector or a state fragment, as otherwise they are not
distinguishable – both are stored as raw byte arrays in memory, without distinct
headers. Clearly, reconstructing a state vector from a component vector is eas-
ily done by walking the decomposition tree and copying leaf node content to a
buffer from left to right. In theory, storing the size of the entire state in the root
component vector could improve efficiency by making the reconstruction work in
a single pass, copying fragments into a pre-allocated buffer. In practice however,
the decomposition trees are small and the requisite pointers are retained in fast
CPU cache on the first pass (when the buffer size is computed), making the sav-
ings from a single-pass algorithm small. Moreover, the extra memory overhead
of storing another integer along with each state is far from negligible.

The trade-off inherent in tree-based compression schemes is visible in Fig-
ures 1 and 2. Compare the number of squares (memory cells) in these two pic-
tures. The original state vector occupies 11 cells, its decomposition uses 18 cells.
However, adding another similar state (state B in Figure 2) increases the mem-
ory use only by 9 cells in the compressed variant, while it would add another
11 cells without compression. The state vectors illustrated here are extremely
small; real-world LLVM states typically occupy thousands of memory cells and
bigger states naturally favour compression. On the other hand, a realistic imple-
mentation introduces slightly more memory overhead than the idealised picture
show here.

state A state B

Fig. 2. A de-duplicated pair of states. The layers are analogous to Figure 1. States A
and B differ only in the light green component.



2.1 Splitting State Vectors

The fact that both the component vectors in the internal nodes and the state
vector fragments stored in the leaf table are of possibly variable size (and making
them fixed-size would not improve compactness, thanks to the memory allocator
design described in Section 3), we gain the capability to decide on how to split
state vectors dynamically. This capability can be used to align boundaries of
both leaf fragments as well as their groupings with logical divisions of the state
vector. The working hypothesis is that this would improve compression ratio,
since changes between state vectors that are neighbours in the state space have
a tendency to be localised within the state vector. By correctly aligning the
split points for the purposes of compression, we expect the changes between
a pair of related state vectors to be localised to the smallest possible subtree.
Moreover, the size of a decomposition tree has an impact on performance: if we
can identify large contiguous chunks of the state vector that change only rarely,
if at all, we can reduce the size of the decomposition trees and thus improve
the overall speed of verification. On the other hand, if those larger chunks in
fact do change, this has adverse effect on compression ratio. Therefore, finding a
good way to split the state vectors is a balancing act: smaller leaf fragments and
more balanced trees lead to better compression, but incur higher performance
penalty. Of course, leaf fragment size cannot be reduced arbitrarily: to achieve
compression, a leaf must be strictly larger than a single pointer (8 bytes), since
the reference in the parent node is represented using a pointer.

2.2 Interactions

The tree compression methods interacts with other components of the model
checker. First, the memory allocation regime is an important aspect: how big
a pointer to a node is, for example, is quite important from the perspective of
compression ratio. With 32-bit pointers, compared to 64-bit, we could expect
nearly twice the memory efficiency. However, that would also limit the number
of nodes in the compression tree to about 4 billion: considering that on realistic
x86-class hardware, exploring and storing 40 billion states is possible, and even
if we neglect the requirement to also store internal and leaf nodes of the tree,
32-bit pointers are clearly insufficient.

Another aspect to consider is how the requirements of parallel exploration
affect the compression method. In shared memory, DIVINE offers two exploration
modes, shared and partitioned. On modern hardware, the shared mode is usually
faster, especially with higher thread counts. In the context of compression, it
offers another important advantage: since it uses a single hash table which is
shared by all the workers, tree compression is very efficient. Since all states are
stored in the same (compressed) hash table, all redundancy can be exploited
for compression. With the partitioned scheme, on the other hand, each state is
statically assigned to a particular worker thread, and each thread maintains a
private hash table. This hash table is slightly more efficient (because access to
it does not need to be thread-safe), but this advantage is usually outweighed by



more costly communication between the threads which need to exchange states
based on the partitioning. The effect on compression is even more pronounced,
though: since each thread stores – and compresses – state vectors privately, a
large fraction of the leaf and internal nodes will be duplicated. This happens
whenever two state vectors share a subtree, but are assigned to different worker
nodes. This subtree would only be stored once in the shared scheme, but twice
in the partitioned scheme.

On the other hand, DIVINE also offers a distributed-memory mode, using
MPI for communication. This mode necessarily works just like the partitioned
mode in shared memory: each machine in the cluster has a private hash table
and compression is performed locally within that hash table. This means the
compression will be less efficient in distributed-memory situations, nonetheless
substantial savings are still possible.

Finally, besides the closed set stored in the hash table (or hash tables in
partitioned and distributed modes), a model checker needs to maintain an open
set. In parallel algorithms, both for checking safety (reachability) and for LTL
model checking (OWCTY), this is often a queue. Since the compression method
we use is lossless, the state vector can be reconstructed from its compressed form
and it is possible to also compress the open set, in addition to the closed set.

3 Memory Allocation

Memory allocation is an extremely frequent operation in an explicit-state model
checker. Moreover, the memory pool that threads allocate from is a shared re-
source, requiring certain amount of synchronisation. One way to side-step this
issue is to statically pre-allocate as many resources as possible – this is the ap-
proach taken by, most prominently, the model checker SPIN. The main downside
of this approach is that the tool either has to “guess” resource use very well ahead
of time, or rely on the user to provide guidance. In all but very simple scenarios,
the former is very hard to get right – models vary wildly from one to another in
which parts of the model checker they stress. Some require very long queues or
deep stacks, even when the overall size of the state space is comparatively small.
Others only need a very small queue but the state space is huge, and almost
all memory needs to be allocated towards the closed set. Some models have few
big states, requiring few slots in the hash tables, but need a lot of memory for
storing the states themselves.2

However, there is a more important limitation, namely with regard to mul-
titasking: users expect to be able to execute multiple instances of a program
at the same time, especially if the verification runs are well below the limits of
the computer they are using. Static resource allocation in such cases becomes
a chore – especially so if multiple users are involved on shared hardware. In
most cases, we aim at interactive use: batch scheduling is only suitable for very

2 The LTSmin model checker avoids this particular resource split by storing state
vectors decomposed, each fixed-size chunk stored inline in the large pre-allocated
hash table.



large instances, where the entire computer (or a cluster) is tied up in a single
verification task. Meanwhile, a large SMP system can easily serve many tasks
and many users interactively – but this means that tasks should only consume
resources that they actually need, so that resource conflicts are minimised. This
is very hard to achieve if memory needs to be pre-allocated at a time when the
size of the state space is not yet known.

To address those issues, DIVINE uses dynamic allocation for all resources,
achieving optimal hardware utilisation when multitasking. There are, however,
multiple challenges associated with this flexibility, especially when dealing with
parallel algorithms.3

3.1 Allocation Profile

When designing a custom memory allocator, the first thing to ask is what is the
allocation profile of our target application. Are object sizes similar, or distributed
across a wide spectrum? Are there many small allocations, or few big allocations?
Is memory retained for a long time, or a short time? Is memory deallocated often?

We can answer most of those questions for DIVINE: for one, there is a ten-
dency to see many objects of similar size. This is most visible in models with
fixed-size states (this is actually the case with majority of input languages in
DIVINE: most traditional modelling languages require all state variables to be
explicitly declared and do not provide dynamic variables). It is also true, to a
smaller extent, with variable-size state vectors: many states will differ in content
but not the size of the state vector. For LLVM, state size changes when a thread
is created, a function is entered or left and when a new thread is created or
when heap memory is allocated. All these operations are comparatively rare, so
we can expect many states of any given size to appear over time. This is even
more pronounced when compression enters the picture, since the fragments have
more uniform sizes than the entire state vectors. This favours a design where
objects of a particular size are grouped into bigger blocks, reducing overheads
in the parent allocator (both time and memory overhead).

This type of layout also offers the opportunity to store exact object size
as allocator metadata, once per block of objects. When state vectors (or their
fragments) are of variable length, their length needs to be stored somewhere: if
each state vector stores its own length, this either adds 4 bytes of overhead per
state (or, when using 2 bytes, causes the rest of the vector to be stored unaligned
which incurs a large performance penalty). Both are far from optimal. If the size
is stored once per block, a single 4-byte word can be used to keep the size for
hundreds of objects, saving considerable amounts of memory. It does mean that
the allocator needs to be able to find block metadata from a pointer, to read the

3 Intra-process parallelism can be very useful even when multiple verification instances
are involved. A 64-core system can easily accommodate 4 verification tasks running
on 16 cores each, splitting memory between those 4 tasks as needed. If memory
becomes scarce, some of the processes can be suspended and swapped out to disk
and later, when other tasks have finished, resumed again.



object size associated with the pointer. This particular optimisation also cancels
out the extra overhead from adaptive, recursive state splitting employed in our
compression scheme. For root and internal nodes, the size of the node (obtained
through the allocator) can be used to easily compute the number of children.
Likewise, the size of a particular leaf fragment can be cheaply extracted from
the allocator metadata.

Second, there are two main classes of objects during state space exploration:
the first class contains state vectors that are part of the closed set, and will be
reclaimed at the end of the verification run, but not earlier. The second class
contains newly generated successor states that may or may not be duplicates of
states in the closed set – some of those will go on to be added to the closed set
(which may require their re-allocation if compression is enabled) while others
will be deallocated when they are found to be duplicates. In other words, some
objects are short-lived, and some are very long lived – however, there are few,
if any, “in-between” objects. This split would favour a generational allocator –
especially since we often know ahead of time whether a particular object will be
short- or long-lived (at least in the case where compression comes into play – in
other circumstances, the distinction is less clearly cut).

Since compression is such an important ingredient, its requirements need to
be considered in the design of a good memory allocator. The considerations laid
out above lead to a design where memory is allocated in blocks of same-sized
objects. For a number of reasons, it is impractical to reclaim blocks that have
been already claimed for a particular object size for another object size (here,
parallel access is the main reason that an efficient solution is not known to exist).
However, when compression is in use, the state vectors that are allocated during
successor generation (into the open set) only exist for a very short time, since
they are immediately moved into the compressed state store. Consequently, if
the same allocator was to be used for those ephemeral state vectors, a substantial
amount of memory would be claimed but unused. While the amount of memory
so wasted is only proportional to the number of different state vector sizes (and as
such not very large), it can add up to many megabytes. More importantly, this
overhead appears in each thread separately and is therefore also proportional
to the number of execution threads. So while raw speed is not affected much
by a generational approach, memory efficiency can be jeopardised. With those
considerations in mind, when state compression is enabled, ephemeral memory
is obtained from a simple, special-purpose allocator.

3.2 Pointer Representation

There are two basic options on how to represent pointers: either use raw ma-
chine pointers, or use an indirection scheme. The former has a clear advantage
in terms of access speed: dereferencing a raw machine pointer is as fast as it gets
– any other representation will incur additional costs. On the other hand, most
contemporary platforms use pointers that are 64 bits wide – for realistic memory
sizes, this constitutes substantial overhead. Current CPUs can physically address
at most 48-bit memory addresses, while the rest of the pointer representation



is unused – that is 16 bits of memory lost for every pointer. Moreover, there
are plenty of places in DIVINE where extra bits packed inside pointers can save
considerable amount of memory: the hash tables, for example, can use (some of)
those 16 bits to store a small part of the hash value to avoid full object com-
parisons and speed up lookups at no extra memory expense. Quite importantly,
the compression algorithm can use a few of those bits for type-tagging pointers,
making it free, in terms of memory use, to distinguish state vector fragments
from state component vectors (cf. Section 2).

Moreover, a custom pointer representation enables the allocator to easily find
the block header for any given pointer, making it possible to obtain object sizes
from pointers to those objects. As explained in previous section, this can save
considerable memory in some cases.

The main downside is that the pointer dereference operation needs to con-
sult a lookup table to reconstruct the raw machine pointer. The lookup tables
can be represented in such a way that this can be implemented using a single
addition instruction, followed by a memory fetch from the lookup table, followed
by another addition instruction. Since the lookup tables are relatively small, we
can hope that they will always be readily available from fast CPU cache. Maybe
more importantly, there will only be very few very hot cache lines in those lookup
tables. In our informal testing, the slowdown from this indirection was in single-
digits percent range, while the memory savings were quite substantial. Based
on this, we have decided to use indirect pointers for storing states and state
fragments.

3.3 Implementation

The considerations laid out in previous sections give us a fairly good guidance on
how to implement an efficient allocator for use in DIVINE. Our implementation
uses a custom pointer type, which is translated to machine pointers on demand,
at the cost of an extra memory fetch (which is expected to be served from cache,
since the indirection table is usually very hot) and a couple of addition instruc-
tions. All data structures in the hot paths of the allocator (object allocation and
deallocation) are thread-local and expensive thread synchronisation only hap-
pens in special circumstances, usually after some threshold is exceeded: either
per-thread freelists have grown too big, or they have become empty; or when
all freelists are empty and no pre-allocated memory is available, in which case
it needs to be obtained from the operating system.

The shared data structures: indirection tables and lists of shared freelist, are
implemented as standard lock-free data structures. Since they are only accessed
comparatively rarely, no special precautions need to be taken to make access
to them more efficient – the indirection table is almost entirely read-only – it
is only written when a new block is allocated. Additionally, a shared counter
is maintained to assign blocks to threads (threads claim 16 blocks at once to
minimise contention on this counter; the blocks are only allocated when they
are needed though).



Table 1. Scaling of pthread rwlock LLVM model with and without compression and
with different splitters.

W=1 W=2 W=4 W=8
Configuration time scale time scale time scale time scale

no comp.+eph alloc. 7581 1 3785 2.00 1985 3.82 1009 7.51
tree+none+generic 11094 1 6052 1.83 3000 3.70 1499 7.40
tree+old+generic 11625 1 6230 1.87 3074 3.78 1559 7.46
tree+eph+generic 11332 1 5693 1.99 2981 3.80 1523 7.44
tree+eph+hybrid 11258 1 5677 1.98 2973 3.79 1518 7.42

tree+eph+obj-mono 11227 1 5727 1.96 2972 3.78 1519 7.39
tree+eph+obj-rec 11265 1 5743 1.96 3006 3.75 1540 7.31

4 Measurements

We implemented the aforementioned scheme in DIVINE and evaluated it using
several large C and C++ models translated into LLVM. We also verified general
usability of this scheme by benchmarking a few UPPAAL Timed automata mod-
els. All the models can be found in DIVINE source distribution. In this section
we will give a detailed analysis of our results.

To measure memory requirements, we used DIVINE’s simple statistics output
which allows us to track memory allocation during a verification run. We mea-
sured resident memory usage, either for DIVINE as a whole or divided by number
of states explored; either way, the number in statistics is adjusted by subtract-
ing resident memory used before the model is loaded and before the verification
algorithm starts – this allows us to easily compare numbers between different
configurations of DIVINE, but still includes all the overheads of the algorithm,
such as overhead of thread-local data in a multi-threaded setting. Memory mea-
surements were performed on several computers in a way no memory swapping
could have occurred.

For time measurements, we take wall time from DIVINE’s report. This time
includes the initialisation of the algorithm and the time required to load the
model. Time measurements were performed on server with two Intel Xeon E5-
2630v2 CPUs at 2.60GHz with 128GB of memory.

Besides the detailed measurements presented in the following sections, we
have also measured (using the same set of models) that on average, verifica-
tion with compression generates states at 77% of the speed of uncompressed
algorithm in case of single threaded run, and 73% for 8 workers. We have also
measured the scaling behaviour of various configurations of compression and
memory allocation schemes. The results of those measurements are summarised
in Table 1.

4.1 Allocation schemes

Table 2 shows how memory requirements of DIVINE with tree compression vary
based on the allocation scheme used and the number of worker threads. In this
case we have considered three variations of allocation scheme:



Table 2. Memory use of LLVM models with compression depending on memory allo-
cator and number of workers.

Average state memory (B)
Name W=1 W=2 W=4 W=8 W=16

n/a old eph n/a old eph n/a old eph n/a old eph n/a old eph

pt rwlock 105 90 88 106 93 89 106 96 90 106 104 90 109 121 94
pt barrier 60 45 45 65 53 53 64 53 52 63 54 52 63 53 53
collision 252 232 229 253 237 229 253 245 229 257 261 235 265 296 246
elevator2 105 81 81 106 82 82 106 82 82 106 82 82 107 84 83
lead-uni basic 55 45 45 56 47 45 55 48 45 56 52 46 57 59 48
lead-uni peterson 66 57 56 67 59 56 67 61 56 67 67 58 69 79 60
hashset-2-4-2 243 202 191 244 213 191 244 232 192 246 270 194 250 340 198

W=40
hashset-3-1 67 77 47

n/a direct allocator, which uses raw machine pointers, and allocates them using
general purpose allocator (TBB malloc); this scheme stores the size of each
entry directly in the memory of the entry, which increases its overhead;

old indirection allocator from Section 3.3 without ephemeral memory optimi-
sation;

eph indirection allocator from Section 3.3 with ephemeral memory optimisation.

It can be clearly seen that indirection allocator with ephemeral memory
optimisation is the best option, providing best memory efficiency among the
considered options. While the indirection allocator without ephemeral mem-
ory optimisation provides comparable efficiency in single-threaded verification,
it quickly loses to the optimised version as number of workers increase; this
is caused by thread-local overhead of the allocator when allocating short-lived
blocks of different sizes. Furthermore, for sufficient number of workers, overhead
of the per-thread structures of this allocator can outweigh per-state overheads
of the naive solution. These measurements show the importance of an efficient
memory allocation scheme for multi-threaded verification, which was further em-
phasised on hashset-3-1 model with 630 millions of states, which was verified
using 40 worker threads: here, the naive solution has 43 % overhead over our
allocator with ephemeral storage, while the allocator without ephemeral storage
has 64 % overhead over ephemeral storage allocator. This shows that efficient
parallel allocator is a necessary part of memory-efficient parallel verification.

4.2 Compression efficiency

Tables 3 and 4 list overall memory usage and memory usage per state, respec-
tively, including memory usage for various state-vector splitting strategies:

none Verification without compression. For large models (where more than 320
GB RAM was required to finish verification) this value is a lower bound
based on average state size and the number of states as reported by a run



Table 3. Total resident memory used for LLVM models, without and with compression
with different splitters.

memory usage (GB)
Name # of compression ratio

states none generic hybrid obj-mono obj-rec best worst

pt rwlock 10.7 M 67.9 0.88 0.93 0.92 0.94 77.2 72.2
pt barrier 128.5 M > 825.4 5.48 9.00 8.98 9.27 150.5 89.0
collision 3.0 M 47.6 0.64 0.63 0.64 0.64 75.3 74.1
elevator2 33.0 M > 342.8 2.50 1.93 1.90 1.90 180.3 137.4
lead-uni basic 19.2 M 232.0 0.81 1.30 1.30 1.30 288.1 178.3
lead-uni peterson 12.2 M 146.4 0.64 1.03 1.03 1.03 229.6 142.2
hashset-2-4-2 6.7 M 133.3 1.20 1.15 1.15 1.16 116.1 111.1
hashset-3-1 626.9 M > 15109.8 27.51 31.96 31.55 31.44 549.1 472.7

Table 4. Total resident memory used for LLVM models, without and with compression
with different splitters.

average state memory (B)
Name # of compression ratio

states none generic hybrid obj-mono obj-rec best worst

pt rwlock 10.7 M 6807 88 92 91 94 77.2 72.2
pt barrier 128.5 M > 6900 45 75 75 77 150.5 89.0
collision 3.0 M 17119 229 227 231 229 75.3 74.1
elevator2 33.0 M > 11130 81 62 61 61 180.3 137.4
lead-uni basic 19.2 M 12966 45 72 72 72 288.1 178.3
lead-uni peterson 12.1 M 12926 56 90 90 90 229.6 142.2
hashset-2-4-2 6.7 M 21283 191 183 184 184 116.1 111.1
hashset-3-1 626.9 M > 25879 47 54 54 53 549.1 472.7

with compression. This bound therefore does not include any overheads of
the verification algorithm.

generic Compression with a generic splitter which decomposes a state vector
into a balanced binary tree with fixed-sized leaves.

hybrid Compression with a splitter that decomposes a state vector according
to the top-level structure of the state vector. The splitter is aware of global
symbols, heap, and thread stacks. These chunks are further split in a generic
way.

obj-mono An extension of the hybrid approach which further decomposes the
state vector, respecting boundaries of smaller objects (individual variables,
stack frames and so on). This splitter does not decompose any large individ-
ual objects.

obj-rec An extension of the obj-mono approach that also allow for decomposi-
tion of large objects (> 40 bytes) in a binary fashion.

From the aforementioned tables, the following conclusions can be drawn: tree
compression offers excellent savings for LLVM models, providing up to several
orders of magnitude decrease in memory requirements. This enables verification



Table 5. Total resident memory used for Timed Automata models, without and with
compression.

memory usage (GB) average state memory (B)
Name # of compression compression ratio

states none custom generic none custom generic best worst

fischer9 ltsm 0.56 M 0.86 0.11 0.13 1656 212 249 7.8 6.6
fischer9 0.56 M 0.86 0.11 0.13 1656 211 249 7.8 6.6
fischer10 2.5 M 4.40 0.26 0.26 1892 113 113 16.6 16.6
fischer11 11.1 M 23.2 1.15 1.40 2243 110 135 20.2 16.6
fischer12 48.8 M > 119 4.23 4.23 > 2618 93 93 28.0 28.0
train-gate9 6.5 M 3.26 0.91 1.03 535 149 169 3.6 3.2
train-gate10 65.4 M 36.8 5.94 11.14 604 97 182 6.2 3.3

of models which would be otherwise intractable on any realistic hardware4. Fur-
thermore, with the exception of hashset-3-1, all of the measured compressed
state-spaces can be efficiently verified using a high-end laptop. This is a signifi-
cant improvement over a dedicated multi-socket computer for verification of the
same models that would be needed otherwise (without compression).

Even more significant is the observation that memory requirements per state
decrease as the number of states increases, and that they seem to converge to
approximately the same number independent of state vector size: even though
hashset-3-1 has almost 4 times larger state vector then pthread barrier, its
states are compressed into almost the same size.

Finally, we observe that the effect of advanced splitting algorithms on mem-
ory efficiency is mostly negative for LLVM models, even though the achieved
compression ratios are still very good in those cases.

Table 5 shows compression results for UPPAAL Timed automata models, us-
ing a custom and a generic state vector splitter. The generic version is modelling-
language-agnostic and therefore the same as in case of LLVM models. The custom
splitter uses a technique similar to the hybrid approach in LLVM. For UPPAAL
models, the achieved compression ratios are much lower, but still a significant
reduction is obtained. Furthermore, we can see that in this case a custom splitter
can significantly improve compression ratio.

5 Conclusions

We have presented a scheme for compressing state vectors in an explicit-state
model checker geared towards verification of C and C++ programs. The main
contribution of our work is a very efficient scheme for allocating memory and
its novel combination with a tree compression scheme. Our approach builds on

4 If we extrapolate from the biggest model, hashset-3-1, we can estimate maximum
tractable state space size to be over 40 billion vertices considering high-end server
with 2TB of RAM, this could result in around 950 TB of raw uncompressed state
space.



earlier solutions but mitigates many of their limitations. The presented scheme
is very flexible and offers excellent compression ratios (up to 500×) at a very
modest performance penalty. Our tool, building on the presented approach, is
realistically capable of exploring on the order of tens of billions of states using
commercial, off-the-shelf hardware. Moreover, this number discounts the savings
from τ+reduction which alone offers a 50-1000× saving (depending on the model,
larger state spaces usually benefit more), together approaching the equivalent of
1012 unreduced, uncompressed states (or, considering an average state size of 12
kilobytes, the equivalent of 10000 terabytes of memory).

This represents a considerable improvement in our ability to verify real-world
code. With the addition of sufficient parallelism into the mix, very realistic pro-
grams can be model-checked in reasonable time and memory using explicit-state
techniques. Just as importantly, those advances benefit not only verification of
big problem instances on big hardware, but also considerably expands what can
be verified using your laptop. In the course of development of DIVINE itself, we
increasingly rely on model checking the source code of its components to ensure
their correctness. We are quite happy to report that this approach to software
development is quickly becoming viable.

References

1. J. Barnat, L. Brim, V. Havel, J. Havĺıček, J. Kriho, M. Lenčo, P. Ročkai, V. Štill,
and J. Weiser. DiVinE 3.0 – An Explicit-State Model Checker for Multithreaded
C & C++ Programs. In Computer Aided Verification (CAV 2013), volume 8044
of LNCS, pages 863–868. Springer, 2013.

2. S. Blom, B. Lisser, J. van de Pol, and M. Weber. A Database Approach to Dis-
tributed State Space Generation. Electronic Notes in Theoretical Computer Sci-
ence, 198(1):17–32, 2008.

3. J. Geldenhuys, P. de Villiers, and J. Rushby. Runtime Efficient State Compaction
in SPIN. In Theoretical and Practical Aspects of SPIN Model Checking, volume
1680 of LNCS, pages 12–21. Springer, 1999.

4. G. J. Holzmann. State Compression in SPIN: Recursive Indexing And Compression
Training Runs. In The International SPIN Workshop, 1997.

5. G. J. Holzmann, P. Godefroid, and D. Pirottin. Coverage Preserving Reduction
Strategies for Reachability Analysis. In PSTV, pages 349–363, 1992.

6. A. Laarman, J. van de Pol, and M. Weber. Parallel Recursive State Compression
for Free. In SPIN, pages 38–56, 2011.

7. D. Peled. Ten Years of Partial Order Reduction. In Proceedings of the 10th Interna-
tional Conference on Computer Aided Verification, pages 17–28. Springer-Verlag,
1998.

8. P. Ročkai, J. Barnat, and L. Brim. Improved State Space Reductions for LTL
Model Checking of C & C++ Programs. In NASA Formal Methods (NFM 2013),
volume 7871 of LNCS, pages 1–15. Springer, 2013.

9. V. Štill. State Space Compression for the DiVinE Model Checker, 2013. Bachelor’s
thesis, Faculty of Informatics, Masaryk University Brno.

10. J. Ziv and A. Lempel. A Universal Algorithm for Sequential Data Compression.
Information Theory, IEEE Transactions on, 23(3):337–343, May 1977.


