
MASARYK UNIVERSITY
FACULTY OF INFORMATICS

}w��������
��������������� !"#$%&'()+,-./012345<yA|
Relaxed Memory Models

in DiVinE

BACHELOR’S THESIS

Vojtěch Havel

Brno, 2012



Declaration

Hereby I declare, that this paper is my original authorial work, which
I have worked out by my own. All sources, references and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

Vojtěch Havel

Advisor: doc. RNDr. Jiří Barnat, Ph.D.

ii



Acknowledgement

I would like to thank my adviser doc. RNDr. Jiří Barnat, Ph.D. and
prof. RNDr. Luboš Brim, CSc. for giving me the opportunity to par-
ticipate in an interesting research and for numerous discussions on
the topic.

iii



Abstract

In this thesis we suggest an extension of the DiVinE model checker
which allows verification of models written in the DVE modelling
language under a weaker memory model than the Sequential Con-
sistency (SC) memory model. On the top of this extension we devise
a synthesis procedure that can compute a set of positions of writes
which should be atomised in order to repair a parallel program cor-
rect on SC, but not on the weaker memory model.

iv



Keywords

model checking, memory model, TSO, PSO, DVE, DiVinE

v



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Relaxed memory models . . . . . . . . . . . . . . . . . . 3
2.1.1 Total Store Order . . . . . . . . . . . . . . . . . . 4
2.1.2 Partial Store Order . . . . . . . . . . . . . . . . . 6

2.2 DIVINE model checker . . . . . . . . . . . . . . . . . . . 7
2.2.1 LTL model checking in DIVINE . . . . . . . . . . 7
2.2.2 DVE modelling language . . . . . . . . . . . . . 9

3 Relaxed memory model in DVE . . . . . . . . . . . . . . . . 11
3.1 Delayed writes modelling . . . . . . . . . . . . . . . . . 11
3.2 Atomic writes and memory barriers . . . . . . . . . . . 14
3.3 Atomic writes synthesis . . . . . . . . . . . . . . . . . . 17
3.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . 19

4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1 Performance impact of atomic writes . . . . . . . . . . . 20
4.2 Evaluation on mutual exclusion protocols . . . . . . . . 20
4.3 Numbers of states . . . . . . . . . . . . . . . . . . . . . . 21

5 Conclusion and future work . . . . . . . . . . . . . . . . . . 23
A Content of the attached archive . . . . . . . . . . . . . . . . . 27

vi



1 Introduction

Ensuring correctness of parallel programs is a challenging task. Be-
sides all kinds of errors well-known from the sequential program-
ming, the parallel environment is a source of new classes of errors
(e.g. race conditions). These are often hard to find manually or even
with the help of testing, because of the non-determinism, which is
caused by the environment, especially by the scheduler. Therefore,
formal verification techniques may be very helpful as a part of the
development process of a parallel software. One such technique is
model checking [9]. It is a fully automatic procedure, which decides
whether a model satisfies given property specified in some, usually
temporal, logic, such as LTL or CTL. Unlike testing, model checking
of parallel programs, in some sense, examines all interleavings (or
at least all interesting interleavings) of concurrent threads and so it
always finds an interleaving leading to an error, if present.

A model for model checking is specified in some modelling lan-
guage. Variety of modelling languages capable of expressing mul-
tiple threads running concurrently are available. However, contem-
porary processors implement various low-level optimisations, such
as caching or store buffering, that can influence the behaviour of a
parallel program. Consequently, when verifying a model of a paral-
lel program, it may behave not as intended, because the semantics of
a modelling language does not capture this phenomenon called re-
laxed or weaker memory model, which is, unfortunately, the case of
most modelling languages. Moreover, standard modelling languages
lack constructs which can influence relaxed memory model, such as
memory barriers or atomic memory operations.

In this thesis, we suggest an extension of the workflow of the
DIVINE [7] model checker that allows LTL verification of DVE mod-
els under a weaker memory model. An algorithmic procedure to syn-
thesise positions of synchronisation primitives (atomic writes) which
guarantees correctness against the desired LTL specification is pre-
sented as a part of this extension.

The problem of automatic synchronisation primitives insertion
into parallel programs has been intensively studied in recent years.
However, standard approach to this problem is to statically analyse

1



1. INTRODUCTION

the given program and compute a set of positions of synchronisa-
tion primitives which is sufficient, in some sense, to restore SC. For
example Offence tool enriches the given assembly code with lock-
based of lock-free synchronisation instructions that guarantees pro-
gram stability to SC [1]. Our approach has the following advantage
over tools based on static analysis. It repairs a given parallel pro-
gram with respect to given LTL specification and thus it can do it
more sensitively; it can even keep the program untouched, if it has
non-SC executions but is correct against the specification.

This thesis is structured in the following way. In Chapter 2 we
shortly describe model checking in general and in DIVINE, and we
briefly mention memory models – formal descriptions of the main
memory. Main contribution of this thesis is contained in Chapter 3,
where an method for verifying DVE models under a weaker memory
model is suggested. We evaluate our method in Chapter 4 on three
mutual exclusion protocols. And finally, we summarise our work
and outline directions of possible future work in Chapter 5.

This work is based on our previous work [4], this thesis is its ex-
tended version.

2



2 Background

2.1 Relaxed memory models

Standard reasoning about parallel program is done on the traditional
Sequential Consistency (SC) memory model [11]. In this memory
model, every write to a shared variable is immediately visible to ev-
ery other processor. In other words, after a processor writes a value
a to a shared variable X , every subsequent read from the variable X
obtains a until any other change of X is made. Each execution of a
parallel program under SC is equivalent to some sequential execu-
tion which is constructed as interleaving of parallel threads.

However, Sequential Consistency memory model does not cap-
ture the real behaviour of the most contemporary processors, which
implement various “weaker memory” optimisations. Since these op-
timisations are mainly designed to hide memory latencies, their ef-
fect can be characterised by describing the relation between the order
of memory operations as executed by processor and the guaranteed
order in which are these operations seen by other processors. For ex-
ample, if arbitrary pair of memory instructions is executed by a pro-
gram in some order on SC (we will later refer this order of memory
operations as program order), then the instructions affect the main
memory in the same order and all changes are visible for all proces-
sors immediately.

Figure 2.1: Abstract machine implementing the Sequential Consis-
tency memory model.

Unfortunately, processor vendors do not provide precise formal

3



2. BACKGROUND

specification of memory model implemented by their hardware and
so it is hard to design reliable and usable formal tools working in
the area of relaxed memory models. This issue was addressed in [2],
where a general framework is suggested for definitions of semantics
of memory models in the proof assistant tool called Coq [8]. Subse-
quently, given definition of a memory model defined in such a way, a
diy tool tries to generate litmus tests (programs in pseudo-assembly
language) that should, if iterated many times, reveal potential dis-
crepancies in the memory model definition.

Memory models can be partially ordered by the “allows at least as
much executions as” relation�. A pair of memory models (A,B) is in
the� relation if for an arbitrary parallel program P and its execution
E on memory modelB it is possible that P exhibitsE on the memory
model A.

In this chapter, we give short descriptions of two important mem-
ory models, namely the Partial Store Order (PSO) memory model
and the Total Store Order (TSO) memory model and its modified
version x86-TSO. See [10] for exhaustive list of memory models, their
properties and connections to real hardware.

2.1.1 Total Store Order

TSO memory model was firstly defined by SPARC in [15] in terms
of ordering of memory operations. SPARC manual defines which
pairs of memory operations may be reordered. Loads are ordered
with respect to earlier loads, the same rule applies for stores, but ear-
lier stores can be reordered with loads from different memory lo-
cation. The name Total Store Order copies the fact that all processors
agree on the same ordering of stores issued by one processor, because
stores cannot be reordered. Because it is possible that no instruction
reordering occurs, TSO is weaker than SC (TSO � SC). The reverse
does not hold, as shows Figure 2.3. This memory model is in [13] ex-
tended with the semantics of atomic instructions and memory barri-
ers resulting in the memory model called x86-TSO.

TSO/x86-TSO has an elegant operational semantics. Note that in
TSO, the only one optimisation is that stores can be delayed until
some another store (or atomic instruction or memory barrier) is ex-
ecuted. Therefore, one can imagine hardware implementing TSO as

4



2. BACKGROUND

Figure 2.2: Abstract machine with store buffers.

a computational device, which constitutes of processors, the shared
main memory and one FIFO buffer called store buffer for each pro-
cessor. The store buffer contains pairs (v, a), where v is a value and
a is an address in the main memory. Operational semantics of this
abstract machine can be defined in few rules as follows.[13]

• Processor p can read a value v from main memory at address a
if none pending value to address a is present in p’s store buffer,
and the main memory contains v at the address a.

• Processor p can read a value v from its store buffer if the value
v is the newest pending value in the store buffer waiting to be
written to address a.

• Processor p can write a value v to its store buffer at any time.

• Processor p can silently deque the oldest item (v, a) in its store
buffer at any time and write v to the main memory at the posi-
tion a.

• Processor p can execute the MFENCE instruction (the full mem-
ory barrier) if its store buffer is empty.

Moreover, in [13] the semantics of the LOCK instruction is given.
A processor can issue the LOCK instruction on a memory location a.
This operation results in acquiring a lock on memory location a until
the UNLOCK instruction is executed by the same processor. While the

5



2. BACKGROUND

lock is acquired, other processors cannot operate with the memory
location a in the main memory, i.e. different processor cannot read
from the memory location a or deque a value from its store buffer to
the memory location a. Note that other processors can write a value
to the store buffer.

In Figure 2.3 is given a example of a program written in pseudo-
assembler that behaves differently on TSO and on SC processor. On
TSO, an execution where registers EAX of processor 0 and EBX of
processor 1 hold value 0 at the end, may be observed. On SC, this
situation is impossible to happen – at least one processor must hold
the value 1 in the register EA(B)X .

Note that the definition does not give any a priori bound on the
size of the store buffer, so a finite-state program enriched with store
buffers can become infinite-state. Moreover, some interesting veri-
fication problems become undecidable. [3] shows that reachability
for a program with store buffers is decidable (although with non-
elementary complexity), but repeated reachability is not. A state is
repeatedly reachable if it is reachable from an initial state and it is
reachable from itself. Therefore, even LTL formulae of the form FGp
cannot be algorithmically verified.

TSO and x86-TSO are important memory models as they are im-
plemented by the x86 architecture [14].

2.1.2 Partial Store Order

PSO is also defined by SPARC in [15]. PSO is weaker memory model
than TSO; besides reordering store-load pairs, PSO architecture al-
lows store-store pairs to different locations to be reordered. It means,
that processor which performed multiple stores sees them in the or-
der in which they were executed, but some other processor may see
them in different order. This phenomenon is illustrated in the pro-
gram given in Figure 2.4. Operational definition of PSO is similar to
the definition of TSO, but instead of one FIFO store buffer for each
process, each process has one FIFO store buffer for each shared mem-
ory location. The fact that these store buffers remain FIFO guarantees
that stores to one memory location are totally ordered, on the other
hand separate store buffers allow values to different memory loca-
tions to hit the main memory in different order than in the program

6



2. BACKGROUND

Proc 0 Proc 1
MOV [x] ← 1 MOV [y] ← 1
MOV EAX ← [y] MOV EBX ← [x]
Forbidden Final State: Proc 0:EAX=0 ∧ Proc 1:EBX=0

Figure 2.3: Litmus test indicating difference between TSO and SC.

Proc 0 Proc 1
MOV [x] ← 1 MOV EAX ← [y]
MOV [y] ← 1 MOV EBX ← [x]
Forbidden Final State: Proc 1:EAX=1 ∧ Proc 1:EBX=0

Figure 2.4: Litmus test indicating difference between PSO and TSO.

order.
As in the TSO case, state reachability is non-elementary for PSO

and repeated reachability is even undecidable [3]. PSO is in contem-
porary hardware used rarely; the reason why we include it here is
that our memory model to mimic in DVE is similar to the PSO mem-
ory model.

As PSO may preserve the order of all store-store pairs, it is weaker
than TSO (PSO � TSO). The reverse does not hold as demonstrates
Figure 2.4.

2.2 DIVINE model checker

2.2.1 LTL model checking in DIVINE

Definition Given a set of atomic propositionsAP , a Kripke structure
is a 4-tuple (S, T, s0, L), where

• S is a nonempty set of states

• T ⊆ S × S is a left-total transition relation (i.e. ∀x∃yT (x, y))

• s0 ∈ S is an initial state

• L : S → 2AP is a labelling function

7



2. BACKGROUND

Definition A run in a Kripke structure M is an infinite sequence of
states s0, s1, s2, . . . such that s0 is the initial state and for each i ∈ N
there is a transition between si and si+1 (i.e. (si, si+1) ∈ T ).

Kripke structure can be used as a low-level description of a sys-
tem, where each state of a Kripke structure represents one state of
a system. Note that by the definition of Kripke structure the set of
states may be infinite, DIVINE deals only with finite systems (with
finite number of states). Next, we will give a definition of the Linear
Temporal Logic (LTL), which is used in the DIVINE model checker
for properties specification.

Definition Syntax of LTL is described in BNF (Backus–Naur Form)
by the following equation:

ϕ ::= tt | ff | p | ϕ ∧ ϕ | ¬ϕ | Xϕ | ϕUϕ,

where p belongs to AP .

Definition Semantics of LTL is defined over runs of a Kripke struc-
ture M = (S, T, s0, L), given a set of atomic propositions AP . πi for
π = s0, s1, . . . denotes the run si, si+1, . . . and π0 denotes the first state
of the run π. Inductive definition of LTL semantics is as follows.

• π |= tt for arbitrary π

• π 6|= ff for arbitrary π

• π |= p iff p ∈ L(π0) for p ∈ AP

• π |= ϕ ∧ ψ iff π |= ϕ and π |= ψ

• π |= Xϕ iff π1 |= ϕ

• π |= ϕUψ iff ∃k ≥ 0.πk |= ψ and ∀0 ≤ i < k.πi |= ϕ

• π |= ¬ϕ iff not π |= ϕ

A few more derived operators are used in LTL, namely the tem-
poral operators Fϕ ≡ ttUϕ and Gϕ ≡ ¬F¬ϕ and Boolean connec-
tives ∨,⇒, defined in the standard way. A Kripke structure M satis-
fies the property ϕ if and only if all runs in M satisfy ϕ.

8



2. BACKGROUND

The DIVINE model checker uses standard automata-based ap-
proach to LTL model checking. Negation of the given formula ¬ϕ
is translated to a Büchi automaton A¬ϕ which accepts exactly those
runs that satisfy the formula ¬ϕ. The question whether the given
model M satisfies the property ϕ is reduced to the question of non-
emptiness of the product automaton A¬ϕ × M . Besides yes or no
answer, DIVINE displays in the case of negative outcome a coun-
terexample, a lasso-shaped trace which demonstrates an erroneous
behaviour of the model, which can be further analysed.

Being explicit model checker, verification in DIVINE suffers from
the state space explosion problem. For this reason, it utilises the par-
tial order reduction technique [5] and it is able to use distributed
memory.

2.2.2 DVE modelling language

Models for verification in the DIVINE model checker can be speci-
fied in several languages, including the Promela or the Murϕ mod-
elling language. The native modelling language of DIVINE is the
DVE language. A model (called system) in the DVE language is ba-
sically asynchronous composition of finite automata extended with
local or global (shared) variables. Every variable has finite range de-
fined by its type, which can be byte, int, or fixed-size array of these
types. Each transition can be enriched with guard – an arithmetic ex-
pression over variables and states of a system, effects – assignments
to local or global variables and synchronisation – a value-passing
mechanism between two processes, which is performed in a single
step of a system. Two processes passing a value cannot assign to the
same variable in effect. DVE models can be parametrised using the
m4 macro language. Examples of parametrised DVE models can be
found in the BEEM (BEnchmark for Explicit Model checkers) model
database [12].

Example of a simple system specified in DVE language is given in
Figure 2.5. It consists of two processes A and B, which may use global
variables x and y. Both processes do not define any local variables.

9



2. BACKGROUND

byte x=0;
byte y=0;

process A {
state a1,a2,a3;
init a1;
trans
a1->a2 {effect y=1;},
a2->a3 {effect x=1;};

}

process B {
state b1,b2;
init b1;
trans
b1->b2 {guard x; effect y=y*2;};

}

system async;

Figure 2.5: Parallel program as written in the DVE modelling lan-
guage.

10



3 Relaxed memory model in DVE

3.1 Delayed writes modelling

In this section we describe a way of modelling weaker memory be-
haviour in DVE. The memory model we consider is similar to PSO,
but in our approach we avoid the unbounded buffering situation by
allowing only a single value for a particular memory location to be
buffered. In particular, if the second write to the same memory loca-
tion is issued while the previous update still resides in the buffer, the
second update destroys the previous one. Under this assumption, the
total size of all buffers used by a single process may be bound by the
size of the main memory, which efficiently recovers the decidability
of the repeated reachability problem.

To extend a DVE model with the relaxed memory behaviour we
consider the PSO operational semantics that is restricted with the
assumption that a single value is stored for a single memory loca-
tion. This results in a situation where every DVE process maintains
as many different buffers as there are memory locations the process
writes to. Moreover, the size of each such a buffer is constant and
equals to one. In other words, every process maintains a temporary
variable to store the updated value for every memory location ac-
cessed by the process and a validity indicator indicating whether the
temporary variable is currently in use or not. Under this setting, a
write to a memory location equals to an update to the temporary
variable and the indicator. Read operation either reads the contents
of the temporary variable, or the value from the main memory de-
pending on the value of the validity indicator. The program under
verification is asynchronously executed in parallel with the so called
memory-model process that non-deterministically writes the con-
tents of temporary variables to the corresponding memory locations.
Every such a write destroys the value of the temporary variable,
hence, sets the corresponding validity indicator to false. Note that
due to the asynchronous execution of the program and the memory-
model process, two consecutive writes to a single memory location
performed by one process may happen according to two different
scenarios depending on the concrete interleaving of the writing pro-

11



3. RELAXED MEMORY MODEL IN DVE

cess and the memory-model process. In the first scenario, the second
write is issued before the first one is flushed out of the buffer by the
memory process, in which case the first update is lost. In the second
scenario, the first update is made globally visible by the memory-
model process before the second update is issued resulting in the sit-
uation that the first update is temporarily visible to other processes.

To extend a DVE modelM with the above described mechanism
for mimicking the relaxed memory behaviour, we proceed as fol-
lows. Let G be the set of all global variables inM, P be the set of all
processes ofM and T be the set of all transitions of all processes in
P . We define a new set of global variables sb(g, p) for all g ∈ G, p ∈ P
that will serve as the temporary store buffers to keep the values of
delayed updates to the main memory. For all g ∈ G, p ∈ P we also de-
fine Boolean variables i(g, p) that will serve as the validity indicators
that are set to true if and only if the store buffer variable sb(g, p) con-
tains a delayed value. The insertion of the relaxed memory behaviour
proceeds at the level of individual transitions of the DVE modelM.
Note that every transition t of a DVE model defines two (possibly
intersecting) sets of variables: the set R(t) of global variables that are
read by the transition t and the set W (t) of global variables that are
written by the transition t. During the transformation, each transi-
tion ofM is replaced by 2n transitions where n is the number of read
variables, i.e. size of the set R(t). The newly defined transitions dif-
fer in the places from where the values of the read variables are taken
from. Remember that a variable may be read either from the tempo-
rary store buffer or from the main memory.

Formally, the transformation substitute every transition t of a pro-
cess p with the set of transitions

{tA | A ⊆ R(t)},

where tA denotes the original transition t with the following modifi-
cations:

1. Guard of t is extended with:
∧

g∈A i(g, p) ∧
∧

g 6∈A ¬i(g, p).

2. All occurrences of a variable g ∈ A in the guard expression and
on the right-hand sides of all assignments are substituted with
sb(g, p).

12



3. RELAXED MEMORY MODEL IN DVE

3. Every occurrence of any variable g on the left-hand side of an
assignment is substituted with sb(g, p) and a new assignment
i(g, p) = true is added to the transition, unless this write to
variable g is atomised.

The particular role of the enumerated modifications are as follows.
Modification 1. guarantees that tA is enabled if and only if t is en-
abled and the set A contains exactly those global variables whose
values have been recently updated by the process p so they are still
stored in the temporary store buffers of p; 2. makes all reads from
the global variables in A to happen from the corresponding store
buffer; and finally 3. changes locations of all writes to be the tempo-
rary store buffers rather than the main memory. (Note that later on
we introduce a mechanism to make selected memory writes instant
and atomic.)

Another step in the transformation is that we add the memory-
model process (process MM). The memory-model process MM non-
deterministically chooses an occupied temporary store buffer for a
variable g and a process p and updates the main memory instance
of the variable invalidating at the same time the content of the tem-
porary variable. An example of a DVE model and the correspond-
ing transformation is given in Figure 2.5 and Figure 3.1, respectively.
Note that the transformed model as listed in Figure 3.1 contains ad-
ditional assignments to the temporary store buffer variables in the
memory-model process. Setting unused store buffer variables to zero
when they are invalidated generally helps the model checking pro-
cedure to avoid exploration of different but otherwise equivalent
states.

To complete the transformation it remains to address the prob-
lem of permanent delay of a write to a global variable [15, 13]. In our
approach, we let the memory-model process to run asynchronously,
which, in the case of cyclic programs, may cause the permanent de-
lay problem. What we are in need of is some fair behaviour of the
memory-model process to ensure that every write to a temporary
store buffer variable is eventually followed by a memory-model pro-
cess action that takes the value of the temporary variable and stores
it in the main memory. We suggest to address this problem by enrich-
ing the specification to be verified by a model checker. In particular,

13



3. RELAXED MEMORY MODEL IN DVE

in order to the model checker to verify the validity of a formula ϕ,
we let it check for formula V ⇒ ϕ, where V ensures that none of the
writes to store buffer is delayed forever. V is defined as follows:∧

g∈G,p∈P

GF¬i(g, p).

3.2 Atomic writes and memory barriers

As mentioned above, DVE modelling language is a high-level mod-
elling language that lacks syntactic and semantic constructs to ex-
press hardware-specific commands such as memory fence instruc-
tion or atomic memory writes. However, these are the necessary con-
cepts that a user of the model checker must be able to express should
we expect of her to verify parallel programs under relaxed memory
behaviour. Since the store buffer semantics is not part of the mod-
elling language, any extension of the languages in the direction of
low-level hardware instruction makes no sense. We solved the prob-
lem by introducing a parameter to the transformation of DVE model
into a DVE model with relaxed memory behaviour. The parameter
is a list of memory writes in the original DVE model that bypass the
temporary store buffer variable and directly modify the contents of
the main memory and a list of positions of memory barriers, which
causes the store buffers to write all stored values to shared variables.

The semantics of atomic writes is reflected in the delayed memory
writes modelling in two parts. The first is included in the modifica-
tion rule number 3 – an atomic write to a global variable g is written
directly to g instead of to the store buffer variable sb(g, p). The sec-
ond part ensures ordering of writes to the same global variable. Any
previous write (in program order) to g cannot be performed after the
atomic write and therefore we set the validity indicator i(g, p) to zero
when executing the atomic write, which models destroying any de-
layed write to g. Again, when destroying a value in store buffer, we
set sb(g, p) to zero in order not to create unwanted duplicated states.

We include a possibility to specify in the atomic.txt a place
(a transition) in a DVE model where a full memory barrier should
be executed. However, memory barriers are not used by the synthe-
sis algorithm, but it can be added manually to the atomic.txt file.

14



3. RELAXED MEMORY MODEL IN DVE

byte x=0, y=0;
byte sb_x_A = 0, sb_x_B = 0, sb_y_A = 0, sb_y_B = 0;
int i_x_A = 0, i_x_B = 0, i_y_A = 0, i_y_B = 0;

process A {
state a1,a2,a3; init a1;
trans
a1 -> a2 {effect sb_y_A = 1, i_y_A = 1;},
a2 -> a3 {effect sb_x_A = 1, i_x_A = 1;};

}
process B {
state b1,b2; init b1;
trans

b1 -> b2 {guard x && (not i_y_B) && (not i_x_B);
effect sb_y_B = y*2, i_y_B = 1;},

b1 -> b2 {guard x && i_y_B && (not i_x_B);
effect sb_y_B = sb_y_B*2, i_y_B = 1;},

b1 -> b2 {guard sb_x_B && i_x_B && (not i_y_B);
effect sb_y_B = y*2, i_y_B = 1;},

b1 -> b2 {guard sb_x_B && i_y_B && i_x_B;
effect sb_y_B = sb_y_B*2, i_y_B = 1;};

}
process MM {
state q0; init q0;
trans
q0 -> q0 {guard i_x_A == 1; effect x = sb_x_A, i_x_A = 0, sb_x_A = 0;},
q0 -> q0 {guard i_x_B == 1; effect x = sb_x_B, i_x_B = 0, sb_x_B = 0;},
q0 -> q0 {guard i_y_A == 1; effect y = sb_y_A, i_y_A = 0, sb_y_A = 0;},
q0 -> q0 {guard i_y_B == 1; effect y = sb_y_B, i_y_B = 0, sb_y_B = 0;};

}
system async;

Figure 3.1: Parallel program from Figure 2.5 with store buffers.

15



3. RELAXED MEMORY MODEL IN DVE

Memory barrier is mimicked in DVE by requiring all validity indica-
tors i(g, p) of the corresponding process p to be set to false. A memory
barrier is bound to a transition. When a transition t of process p is set
to perform a memory barrier, the guard of t is extended with the con-
dition ∧

g∈G

¬i(g, p).

Note that this causes memory barrier to execute prior the effect of
the transition t.

The overall workflow for automated synthesis of atomic writes is
depicted in Figure 3.2. We start with a source.dve file that is sup-
posed to contain a DVE model that is valid under Sequential Con-
sistency memory model. The original model is transformed into a
model with store buffers taking into account a list of write opera-
tions that should remain atomic and places where is a memory bar-
rier (atomic.txt file). The DiVinE model checker is called to ver-
ify the transformed DVE model (sourceSB.dve) against the given
LTL specification. Either the DVE model is correct under the relaxed
memory model behaviour, in which case whole procedure termi-
nates, or it exhibits invalid execution that is witnessed with a coun-
terexample run as provided by the model checker. If so, we anal-
yse the counterexample automatically to extend the list of memory
writes of the original DVE model that must be made atomic. Note
that it may take multiple iterations of the model checking loop be-
fore we synthesise a list of atomic writes that guarantee satisfaction
of the verified LTL formula.

The memory writes to be performed atomically are listed in a
separate file. This allows to maintain different atomic-write config-
urations associated with a single DVE model. It is therefore possible
to synthesise different atomic-write configurations for different LTL
formulae. The atomic writes are identified by pairs containing the
name of the variable to be written atomically and the identifier of
the transition that performs the update. Note that we use a syntactic
shortcut (∗, t) to mark as atomic all variable updates made by transi-
tion t. Also note that with this type of identification of atomic writes
we may differentiate between two writes to the same variable made
from different transitions (lines of code).

16



3. RELAXED MEMORY MODEL IN DVE

source.dve

+relaxed memory model

atomic.txt

sourceSB.dve

DIVINELTL property

CounterexampleModel is correct

Not satisfied
Satisfied

Repair

Figure 3.2: General workflow.

3.3 Atomic writes synthesis

Since we assume that the original DVE model was valid with respect
to the verified LTL formula under the sequential consistency model,
any counterexample generated for the modified DVE model must be
an exposure of the relaxed memory model behaviour. We employ
automatic procedure to detect the so called hazard intervals and in-
consistent access in the counterexample run to derive an automatic
update to the list of atomic writes.

A counterexample run π = s0
t0−→ s1

t1−→ s2 . . . of the modelM with
respect to the LTL property ϕ is a lasso-shaped sequence of states
and transitions. A hazard interval of the counterexample π denoted

as [k, k + l]X is a finite sub-sequence sk
tk−→ sk+1

tk+1−−→ . . .
tk+l−1−−−→ sk+l

of π such that transition tk of a process p writes non-atomically a
value to the global variable X , and tk+l−1 is the first action of the
memory-model process among transitions tk+1, . . . , tk+l−1 that writes
the value of X from the store buffer variable sb(p,X) to the main
memory. An inconsistent access to the hazard interval [k, k + l]X of

17



3. RELAXED MEMORY MODEL IN DVE

Figure 3.3: Example of an execution with a hazard interval and an
inconsistent access. Process P0 writes non-atomically to the variable
x (blue) and after few steps the memory-model process updates the
shared variable x with delayed value 42 (green). Between this two
events an inconsistent access from process P1 occurred (red). The
write from P0 to the shared variable x (blue) a candidate for atom-
ising.

the counterexample π is a transition tm, k < m < k + l, that reads
from or writes to the global variable X and is not part of the same
process as the transition tk.

Hazard intervals precisely describe parts of the counterexample
run where a value write is delayed in the temporary store buffer vari-
able, hence invisible for the other processes. However, a hazard in-
terval cannot be the reason for a relaxed-memory-related bug if this
hazard remains “hidden”, i.e. no other process manipulates (reads
from or writes to) the variable within the interval. Therefore, we only
search for hazard intervals for which there exists at least one incon-
sistent access. We consider those intervals as candidates for synthe-
sis of an atomic-write instruction. We choose one such an interval
[k, k+l]X and derive an atomic-write instruction (X, tk) to be inserted
into atomic.txt. After that we restart the procedure.

The choice of the inconsistent access to be mended can be crucial

18



3. RELAXED MEMORY MODEL IN DVE

with respect to the efficiency (number of iterations) of whole syn-
thesis procedure. For now we use a simple heuristics that prescribes
to fix the hazard interval with the largest number of inconsistent ac-
cesses.

3.4 Implementation

To allow us to experimentally evaluate properties of suggested meth-
ods, we have created a prototypical implementation of both the de-
layed memory writes modelling procedure and the synthesis proce-
dure as a script in the Python programming language which exter-
nally calls the DIVINE tool.

19



4 Experiments

4.1 Performance impact of atomic writes

To show that the requirement of sensitive synchronisation instruc-
tions placement is well motivated we have tested the performance
impact of using atomic writes instead of non-atomic writes. We have
measured the execution times of simple parallel program written
in the C programming language with none, one or both writes to
a variable atomically. The program consists of two parallel threads,
both execute the function given in Figure 4.1. We used the gcc built-
in __sync_fetch_and_add() function. Execution times were 3.85
seconds for unmodified program, 12.00 seconds in case of only the
first increment of x is atomic and 20.21 seconds for both increments
atomic. Therefore, for parallel programs that work with shared vari-
ables intensively can the number of atomic writes be crucial.

int x,y;

void * work()
{

for (int i = 0; i < I; i++) {
x = x+1;

}
for (int i = 0; i < I; i++) {

y = y+1;
}

}

Figure 4.1: Example of a parallel program in C.

4.2 Evaluation on mutual exclusion protocols

We have selected three DVE mutual exclusion protocols from the
BEEM database [12] – Peterson’s, Anderson’s and Lamport’s proto-

20



4. EXPERIMENTS

col. In all three protocols two or more processes communicate via
shared memory quite intensively. We chose LTL properties such that
the models satisfy them under SC. In all cases, the property was not
satisfied under the relaxed memory model with no memory access
atomised. We have counted pairs (x, t) added to the atomic.txt file
by a run of the synthesis procedure, the results are presented in Ta-
ble 4.1. Only in the case of the Peterson.dve model the number of
synthesised atomic writes is optimal (a model with three atomic and
no memory barrier cannot satisfy the given specification). Of course,
the numbers may be different when repeating experiment.

Some of these models contains shared variables of an array type,
and so firstly we had to create manually an equivalent models of
these protocols without arrays – instead of array A with k elements,
we created new variables A0, A1, . . . , Ak−1 for each element of A. If
an element of A is accessed by transition t with dynamically com-
puted index given by expression e, we created set of new transitions
t0, t1, . . . , tk−1 for each possible value of e – a transition ti is guarded
by the condition e = i and instead of accessing the variable A[e] we
used the variable Ai.

Table 4.1: The number of writes to global variables atomised by the
synthesis procedure.

Model Property Writes Atomic
Anderson G(wait⇒ Fgranted) 30 24
Lamport G¬collision 27 13
Peterson G¬collision 8 4

4.3 Numbers of states

We have also measured the numbers of states of models enriched
with store buffers (see Table 4.2). The results show that the blow-
up induced by the store buffering may be significant. If we consider
a model composed by p processes, each global (shared) variable in-
troduces p new validity indicators and p new store buffer variables.
Therefore, the state space size may increase exponentially with re-
spect to the number of processes and exponentially with respect to

21



4. EXPERIMENTS

the number of global variables. Such exponential growth of the num-
ber of states may be problem for even small toy models. For example
verifying the Lamport model against a short formula satisfied by
the model (when building full state space is necessary) causes that
DIVINE consumes over 10 gigabytes of memory.

Table 4.2: The number of states of models without store buffers (SC)
and with store buffers (SB).

Model shared variables states (SC) states (SB)
Anderson 4 80 380224
Lamport 5 29242 74948667
Peterson 4 196 7267

On the other hand, the state space size decreases with each new
item added to the atomic.txt file. While executing the synthesis pro-
cedure, building full state space of models with no atomic writes may
not be necessary in the case when a model does not satisfy a specifi-
cation under the relaxed memory model, because DIVINE may find a
counterexample before it builds full state space. We were able to exe-
cute whole synthesis procedure on the Lamportmodel on a machine
with only two gigabytes of memory in less than a minute.

22



5 Conclusion and future work

We have devised an extension of the model checking procedure of
the DIVINE tool that allows programmer to verify a model written
in the DVE modelling language under a relaxed memory model. The
memory model used is similar to the Partial Store Order memory
model. To complete the modelling part, we have showed how the
memory barrier and atomic write can be expressed in DVE in this
setting. On the top of that, we have built a procedure which syn-
thesises a set of writes which, if atomised, is sufficient to repair the
given parallel program with respect to the given LTL specification.
The synthesis procedure is complete, it always finds a sufficient set
of positions of atomic writes. However, it is not optimal in the num-
ber of atomised writes and requires multiple model checking invo-
cation. We have implemented these methods as a Python script and
we have done few experiments, which show that few naive imple-
mentations of classical mutual exclusion algorithms would not work
correctly when run on weaker memory model. Next, we have ob-
served an immense growth of the state space size when enriching a
model with relaxed memory behaviour.

Aims of possible future research can be divided in two directions.
First direction, the synthesis method itself currently uses only simple
rules for choosing the write to repair (make atomic). The static anal-
ysis may be employed to prune the set of candidate writes for atom-
ising; for now we do not use the structure of the examined program
at all. It may improve the synthesis procedure in terms of number of
inferred atomic writes and hence it can improve the performance of
resulting parallel program.

Second direction, we would like to apply the whole scheme to dif-
ferent input language than DVE. Current development version and
the future 3.0 version of the DIVINE tool allow verification of models
specified in the LLVM bitcode [6]. As LLVM bitcode can be emitted
by compilers clang and gcc (with the dragonegg plugin), it allows
to do LTL model checking of unmodified C or C++ programs. When
DIVINE creates a state space of the given LLVM bitcode program,
the weak memory model of a processor is not reflected, hence the
model could be imprecise when comparing to its execution on real

23



5. CONCLUSION AND FUTURE WORK

hardware. We would like to study the possibility of using the same
scheme we have suggested in this thesis on LLVM models instead of
DVE models.

24



Bibliography

[1] J. Alglave and L. Maranget. Stability in weak memory mod-
els. In Proceedings of the 23rd international conference on Com-
puter aided verification, CAV’11, pages 50–66. Springer-Verlag,
2011.

[2] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Fences in weak
memory models. In CAV, pages 258–272, 2010.

[3] Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burck-
hardt, and Madanlal Musuvathi. On the verification problem
for weak memory models. In Proceedings of the 37th annual
ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, POPL ’10, pages 7–18. ACM, 2010.

[4] J. Barnat, L. Brim, and V. Havel. LTL Model Checking of Parallel
Programs with Relaxed Memory Model.

[5] J. Barnat, L. Brim, and P. Ročkai. Parallel Partial Order Reduc-
tion with Topological Sort Proviso. In Software Engineering and
Formal Methods (SEFM 2010), pages 222–231. IEEE Computer
Society Press, 2010.

[6] J. Barnat, L. Brim, and P. Ročkai. Towards LTL Model Check-
ing of Unmodified Thread-Based C & C++ Programs. In NASA
Formal Methods Symposium, volume 7226 of LNCS, pages 252–
267. Springer, 2012.

[7] J. Barnat, L. Brim, M. Češka, and P. Ročkai. DiVinE: Parallel
Distributed Model Checker (Tool paper). In Parallel and Dis-
tributed Methods in Verification and High Performance Com-
putational Systems Biology, 9, pages 4–7, 2010.

[8] Y. Bertot and P. Castéran. Interactive Theorem Proving and Pro-
gram Development. Coq’Art: The Calculus of Inductive Con-
structions. Texts in Theoretical Computer Science. Springer Ver-
lag, 2004.

25



5. CONCLUSION AND FUTURE WORK

[9] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT
press, 1999.

[10] Kourosh Gharachorloo. Memory consistency models for
shared-memory multiprocessors. Technical report, 1995.

[11] L. Lamport. How to make a multiprocessor computer that cor-
rectly executes multiprocess programs. IEEE Trans. Comput.,
28(9):690–691.

[12] R. Pelánek. BEEM: Benchmarks for Explicit Model Checkers. In
Model Checking Software (SPIN 2007), volume 4595 of LNCS,
pages 263–267. Springer, 2007.

[13] P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen.
x86-TSO: a rigorous and usable programmer’s model for x86
multiprocessors. Commun. ACM, 53(7):89–97.

[14] Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer
on Memory Consistency and Cache Coherence. Synthesis Lec-
tures on Computer Architecture. Morgan & Claypool Publish-
ers, 2011.

[15] SPARC International. The SPARC architecture manual (ver-
sion 9). Prentice-Hall, Inc., 1994.

26



A Content of the attached archive

• model_example/ directory contains models of Peterson’s, Lam-
port’s and Anderson’s mutual exclusion algorithm. Both the
original version (<algorithm>.dve) and the modified ver-
sion (<algorithm>.sb.dve) are available.

• tools/ directory contains the following Python scripts

– add_SB.py script enriches the given DVE model with the
relaxed memory behaviour and writes the output to stan-
dard output. The file describing positions of atomic writes
and memory barriers may be supplied. The command for
execution is (the second parameter is optional):

./add_SB.py m.dve [atomic.txt]

– repair.py takes an unmodified DVE model, that enriches
with the relaxed memory behaviour and finally runs the
synthesis procedure against the LTL property. The result-
ing set of positions of atomised writes will be written to
the file atomic.txt.
The command for execution is (the third parameter is op-
tional):

./repair.py m.dve property.ltl [atomic.txt]

27


	Introduction
	Background
	 Relaxed memory models
	 Total Store Order
	 Partial Store Order

	 DiVinE model checker
	 LTL model checking in DiVinE
	 DVE modelling language


	Relaxed memory model in DVE
	 Delayed writes modelling
	 Atomic writes and memory barriers
	 Atomic writes synthesis
	 Implementation

	Experiments
	 Performance impact of atomic writes
	 Evaluation on mutual exclusion protocols
	 Numbers of states

	Conclusion and future work
	Content of the attached archive

