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Verification of Parallel Programs I

design of parallel programs is hard
easy to make mistakes – data races, deadlocks

memory behaviour is very complex
effects of caches, out-of-order and speculative execution

int x, y = 0;
void thread0() {

y = 1;
int a = x;

}

void thread1() {
x = 1;
int b = y;

}

is it possible to end with a == 0 && b == 0? yes
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Verification of Parallel Programs II

C and C++

program is translated into LLVM intermediate language
LLVM is executed by the model checker
exploration of all possible runs of the program

actually of some representants of classes of equivalent runs

detect assertions, memory errors, compiler traps, . . .
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Relaxed Memory Example

int x, y = 0;
void thread0() { void thread1() {

y = 1; x = 1;
int a = x; int b = y;

} int c = x;
}

memory

x 0
y 0

store buffer of t. 0 store buffer of t. 1

thread 0
y = 1;

load x;

thread 1
x = 1;

load y;

load x;
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Why Relaxed Memory?

memory is significantly slower than processor cores
processor has caches to speed up execution

optimizations of cache coherency protocols
→ observable effects
reordering of instructions might be also observable (not on x86)
overall behaviour described by a (relaxed) memory model

now: x86-TSO memory model
stores are performed to store buffer
core-local FIFO buffers
entries flushed eventually to the memory
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Memory-Model-Aware Analysis I

encode the memory model into the program
verify it using a verifier without memory model support

e.g. DIVINE, a lot of other verifiers
program transformation instead of modification of the verifier

x = 1;
int a = y;

 

_store( &x, 1 );
int a = _load( &y );

_load, _store simulate the memory model
(more complex in practice)
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Memory-Model-Aware Analysis II

program transformation

can be improved with static analysis
memory model independent
most complexity is technical

memory operations

memory model dependent
rather complex (theoretically & technically)
impact efficiency a lot → the main aim of my work

efficient data structures (time & memory)
amount of nondeterminism

bounded reordering of (effects of) instructions

6 / 12



Memory-Model-Aware Analysis II

program transformation

can be improved with static analysis
memory model independent
most complexity is technical

memory operations

memory model dependent
rather complex (theoretically & technically)
impact efficiency a lot → the main aim of my work

efficient data structures (time & memory)
amount of nondeterminism

bounded reordering of (effects of) instructions

6 / 12



State Space Explosion
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flushes not needed if noone
reads given value

7 / 12



State Space Explosion
x = 0

y = 0

z = 0

SB0

∅

SB1

∅

x = 0

y = 0

z = 0

 
SB0

x ← 1

SB1

∅

t0: x ← 1

x = 0

y = 0

z = 0

 
SB0

∅

SB1

y ← 1

t1: y ← 1

x = 1

y = 0

z = 0

SB0

∅

SB1

∅

f: x ← 1

x = 0

y = 0

z = 0

SB0

x ← 1

SB1

y ← 1

t1: y ← 1 t0: x ← 1

x = 0

y = 1

z = 0

SB0

∅

SB1

∅

f: y ← 1

x = 1

y = 0

z = 0

 
SB0

∅

SB1

y ← 1

t1: y ← 1 f: x ← 1

x = 0

y = 1

z = 0

 
SB0

x ← 1

SB1

∅

f: y ← 1 t0: x ← 1

x = 1

y = 1

z = 0

SB0

∅

SB1

∅

f: y ← 1 f: x ← 1

flushes not needed if noone
reads given value

7 / 12



Critical Observations

1 not all memory is actually accessible by more than one thread
(shared)

2 not all shared memory is actually accessed by more that one
thread

3 even memory accessed by more than one threads is usually not
accessed by all of them all the time

DIVINE’s state space reduction uses these observations
but relaxed memory simulation has to be adapted to support
this
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Lazy x86-TSO

instead of flushing store buffers nondeterministically, flush them only
when needed

i.e. when someone tries to load given address
need to simulate all outcomes → nondeterminism in load

how to handle other entries in store buffer?
memory barriers and compare-and-swap/read-modify-write not
fully lazy

flushing of local store buffer can nondeterministically flush
entries from other buffers
fully lazy barriers would show down DiOS
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Lazy x86-TSO – Current Status I

the lazy simulation of x86-TSO store buffers mostly done
one known missing corner case

in sequence of stores to unrelated addresses
solution will probably increase laziness and therefore
performance

probably some space for speed improvement
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Lazy x86-TSO – Current Status II

current delays caused by interaction with state space reductions

store buffers look like shared memory for reduction
ensure reduction does not see every operation as visible
not everything in memory model implementation can be hidden
– “real” loads/stores
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Lazy x86-TSO – Future

1 finish implementation
2 add more tests and benchmarks
3 compare with other tools
4 publish

5 SV-COMP demo category?
6 (optimize & improve & publish)+

That is all. . . Thank You!
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