Concurrent Program Verification With
Invariant-guided Underapproximation

S. Prabhu P. Schrammel M. Srivas
M. Tautsching A. Yeolekar
presented by Jan Mrazek

.}S ParaDiSe
Parallel & Distributed
:”:' Systems Laboratory

Masaryk University
Brno, Czech Republic

12th March 2018

| Bounded Model Checking L8 |

Basic idea of BMC for a system and a property ¢:

m unroll the system up to k-step

m number of context switches
m number of loop iteration
" ..

m transition function of the unrolled system as SAT or SMT
mif "pAPis:

® unsat, property holds up to k steps
m sat, property is violated

2/15

| Bounded Model Checking [|

Basic idea of BMC for a system and a property ¢:

m unroll the system up to k-step

m number of context switches
m number of loop iteration
" ..

m transition function of the unrolled system as SAT or SMT
mif "pAPis:

® unsat, property holds up to k steps
m sat, property is violated

Observations:

m satisfiability check is the bottle neck
m solvers work the best when formula is under- or over-specified

2/15

. o
Main ldea B

Add more constraints to overspecify the formula.

3/15

. o
Main Idea B

Add more constraints to overspecify the formula.

m good candidates: program invariants
m possible candidates: likely invariants

3/15

. g
Main Idea B

Add more constraints to overspecify the formula.

m good candidates: program invariants
m possible candidates: likely invariants

m simply add them to the conjunction
m the result might be underapproximation

3/15

'BMC Underapproximation

SAT,

Check
PA q@AINV

Pis
Unsafe

P is Safe

Yes

Get UNSAT
Proof C
Inv = Inv\
Cnlnv
No

4/15

Definition-Use Likely Invariants B

m paper: Do | Use the Wrong Definition? (Yao Shi et al.)
m tool DefUse

5/15

Definition-Use Likely Invariants B

m paper: Do | Use the Wrong Definition? (Yao Shi et al.)
m tool DefUse

m invariants for reads and writes (load/store):

m LR invariants
m follower invariants
m DSet invariants

m capturing likely invariants:

®m instrument a program

® run it multiple times

m collect data

m statistically choose good candidates

5/15

Local/Remote Invariant Motivation [}

Thread 1 Thread 2
S1: global_opt = 0; //apointer void child () {
hts newthread(chlld D; S3: global_opt = create_opt();
»I; o
S2: hts_cancel_file_push (global_opt..);

HTTrack Htsserver.c, htsweb.c

Programmers' assumption that S3 always
happens before S2 is not guaranteed in code.
S2 comes before S3 due to unexpectedly fast
execution after thread creation.

Failure Crash: null pointer dereference by global_opt.
Definition- | S2 should use the remote definition of a
use relation | global_opt by S3.

Root cause

Manifestation

6/15

Local/Remote Invariant Motivation [}

Thread 1 Thread 2
S3: atomic_decrease (&refcount);
/if (refcount == 0)
S1: atomic_decrease (&refcount), -\- cleanup_cache_obj();
S2: if (refcount == 0) <«
cleanup_cache_obj();

Apache mod_mem_cache.c

S1 and S2 are not protected within an atomic
section.

S2 uses the remote definition by S3 due to a
wrong thread interleaving.

Crash: both threads try to free the same cache
object (either dangling pointer or double free).
Definition- | S2 should use the local definition of refcount
use relation | By S1.

Root cause

Manifestation

Failure

7/15

. no
Local/Remote Invariant [

Thread 1 Thread 1 Thread 2

R1 R1

R1 should read a value R1 should read a value defined
defined by a local writer W1. by a remote writer W1.

m read should get data only from writes:

m in the same threads
m in other threads

8/15

- . .)1
Follower Invariant Motivation]

Thread 1 Thread 2
S3: buf_index +=len;
S1: If (buf_index + len < BUFFSIZE)™ o
S2: memcopy (buf[buf_index], log, len); ’

Apache mod_log_config.c

S1 and S2 are not protected within an atomic
section.

S2 uses updated buf_index by S3 after the
array bound checking in S1.

Failure Wrong results (corrupted log file) or crash.
Definition- | S2 should consume the same definition of
use relation | buf_index as S1 used.

Root cause

Manifestation

9/15

. .}E
Follower Invariant 4=

Thread 1 Thread 2
Wi+

Rio 4
&
R2

R2 (a follower) should read the
same value as what R1 reads

m atomicity assumption
m two following reads should get data from the same write

10/ 15

Definition Set Invariant Motivation

tr_bandwidthNew(h..);
// this function creates Thread 2
// and initializes h

Thread 1 Thread 2

S1:h = calloc (..); -——_
S2: h-> bandwidth = X~

S3: if (h->bandwidth->
band.isLimited) {..}

Transmission session.c peer-mgr.c

Root cause

Programmers' assumption that S2 always
happens before S3 is not guaranteed in code.

Manifestation

S3 comes before S2 sets h->bandwidth
properly and uses the definition from S1.

Failure

Crash: null-pointer dereference by h->bandwidth.

Definition-
use relation

S3 should use the definition only from S2, not
from S1.

1/15

Definition Set Invariant B

Thread 1 Thread 2

W1
R1 e
definition
set= {W1}

R1 should read the value defined
by a write in its definition set

m restricts the possible values a read can get
m define a set of writes

12/15

.) m)
Implementation E:

E instrument reads and writes in the verified program

m PIR instrumentation framework

® run it with random inputs

m possibly with guided thread scheduling: CHESS, CTrigger

m construct the likely invariants based on ranks

13/ 15

. no
Implementation Challenges B

m monitored memory locations

m granularity (DefUse: a byte)
m memory location (DefUse: heap only)

external definitions

m external functions might loose invariants (memset, memcpy)
m add annotation

virtual address recycle

m due to deallocations
m intercept deallocation

m context sensitivity

m small uninlined functions used by different threads

training noise

m incorrect oraculum

14 /15

Results

m 50 random inputs and random interleaving for invariant mining

m LI = tool from the paper
m NoR = encoding without unnecessary writes

File| Type |U| CBMC LI Refinement |Writes Saved| NoR
1.c |Unsafe|10| 14.06s | 13.541s | 87 to 87 in 1| 1235/2390 |21.719s
2.c |Unsafe|10| 2.835s | 2.034s |28 to 28 in 1| 450/912 1.734s
3.c |Unsafe|20| 21.127s | 10.359s | 58 to 58 in 1 | 1900/3727 | 16.87s
4.c | Safe [16]39.633s | 23.987s |107 to 88 in 5| 1266,/4489 | 6.818s
5.c |Unsafe|16| 28.273s | 34.923s | 93 to 93 in 1 | 2415/3710 | 5.813s
6.c |Unsafe|21| 15.984s | 11.416s | 42 to 42 in 1 | 1720/3144 |12.832s
7.c| Safe |6|48.716s |44.519s | 22 to 0 in 4 0/599 0.598s
8.c |Unsafe|11| 4.567s | 5.909s |32 to 32in 1| 685/1194 | 541s
9.c |Unsafe|10| 31.835s | 17.196s | 76 to 76 in 1 | 2115/3060 | 8.553s
10.c|Unsafe|10(101.484s| 29.699s | 76 to 76 in 1 | 1935/3060 TO
11.c|Unsafe| 9 | 38.624s | 20.81s |83 to 83 in 1| 1744/2868 |16.439s
12.c|Unsafe| 9 | 62.895s |155.681s| 68 to 68 in 1 | 1935/3060 | 3.03s
13.c| Safe |10| 7.392s | 10.993s | 22 to 8 in 3 144/736 8.4s

15/ 15

