
Application of Design for Verification with
Concurrency Controllers to Air Traffic Control

Software

Aysu Betin-Can, Tevfik Bultan, Mikael Lindvall, Benjamin Lux,
Stefan Topp

Automated Software Engineering 2005

Aysu Betin-Can, Tevfik Bultan, Mikael Lindvall, Benjamin Lux, Stefan Topp ()TSAFE 1 / 18



Content

1 AAC

2 TSAFE

3 TSAFE verification

Aysu Betin-Can, Tevfik Bultan, Mikael Lindvall, Benjamin Lux, Stefan Topp ()TSAFE 2 / 18



AAC

Current state of US airspace

Modern Air Traffic Control (ATC) depends on air traffic controllers
to maintain aircraft separation
Surveils radar data for potential conflicts
Provides clearances to alter the trajectories
US airspace operates at only half its potential capacity
Reason: controllers’ workload limits
Little gain from resectorization or new ATC decision support tools

Aysu Betin-Can, Tevfik Bultan, Mikael Lindvall, Benjamin Lux, Stefan Topp ()TSAFE 3 / 18



AAC

Current state of US airspace

Modern Air Traffic Control (ATC) depends on air traffic controllers
to maintain aircraft separation
Surveils radar data for potential conflicts
Provides clearances to alter the trajectories
US airspace operates at only half its potential capacity
Reason: controllers’ workload limits
Little gain from resectorization or new ATC decision support tools

Aysu Betin-Can, Tevfik Bultan, Mikael Lindvall, Benjamin Lux, Stefan Topp ()TSAFE 3 / 18



AAC

Automated Airspace Concept (AAC)

Work of Dr. Heinz Erzberger (NASA)

A new paradigm is required to utilize full airspace capacity
Automated mechanisms play a primary role in aircraft separation
A persistent 2-way link with ground-based automated system
Conflict alerts and air traffic control clearances transmitted as data

Aysu Betin-Can, Tevfik Bultan, Mikael Lindvall, Benjamin Lux, Stefan Topp ()TSAFE 4 / 18



TSAFE

Tactical Separation Assisted Flight Environment
(TSAFE)

Integral part of AAC
Monitors aircrafts for potential violations of separation
Computes and issues short conflict-free trajectories otherwise
Originally implemented by Gregory G. Dennis (MIT) in 2003 as a
Master Thesis project
Later integrated into an experimental environment as part of
NASA’s High Dependability Computing Project

Aysu Betin-Can, Tevfik Bultan, Mikael Lindvall, Benjamin Lux, Stefan Topp ()TSAFE 5 / 18



TSAFE

TSAFE operation

1 A flight is compared to its up-to-date flight plan
2 It is assigned a one of 64 conformance statuses (8h x 8v)
3 Two trajectories are computed: nominal and dead reckoning
4 Depending on the conformance status one or both are probed for

loss of legal separation with other flights
5 If a high risk conflict warning is issued a short term conflict-free

trajectory is computed

Aysu Betin-Can, Tevfik Bultan, Mikael Lindvall, Benjamin Lux, Stefan Topp ()TSAFE 6 / 18



TSAFE

Calculating conformance

Conformance monitoring model (CMM) employed to obtain the
expected behavior:

Altitude and speed taken directly from flight plan
Expected heading and position derived from the nearest point on
flight plan to the aircraft’s actual position (snap-back)

Aysu Betin-Can, Tevfik Bultan, Mikael Lindvall, Benjamin Lux, Stefan Topp ()TSAFE 7 / 18



TSAFE

Calculating trajectories

Dead reckoning trajectory:
a straight line with current heading and speed

Planned trajectory:
route from snap-back point to the next fix
if look ahead time is greater than the time to reach the fix, add
route to the next fix
iterate until unable to reach fix in the set time horizon

Aysu Betin-Can, Tevfik Bultan, Mikael Lindvall, Benjamin Lux, Stefan Topp ()TSAFE 8 / 18



TSAFE

Demonstration

Demonstration of TSAFE

Aysu Betin-Can, Tevfik Bultan, Mikael Lindvall, Benjamin Lux, Stefan Topp ()TSAFE 9 / 18



TSAFE verification

Design for verification

Verification of complex systems depends on extracting a simplified
model

Requires reverse engineering to rediscover many properties
known to developers at design time

In design for verification developers either document their decisions or
apply specific agreed-upon design patterns.

Aysu Betin-Can, Tevfik Bultan, Mikael Lindvall, Benjamin Lux, Stefan Topp ()TSAFE 10 / 18



TSAFE verification

TSAFE III application character

TSAFE III
Java client/server application
server performs the conformance monitoring and trajectory
synthesis
client GUI in Swing/AWT
parallel threads access a shared database
RMI calls between client and server threads
21k lines of code in 87 classes

Java concurrent programming is error prone (conditional
waits/notifications using synchronized, wait, notify, notifyAll)

Aysu Betin-Can, Tevfik Bultan, Mikael Lindvall, Benjamin Lux, Stefan Topp ()TSAFE 11 / 18



TSAFE verification

TSAFE verification

Application has been reengineered to utilize concurrency controllers
concurrency controller interface verified separately from threads
threads participate in concurrency only through outside interfaces

Verification can be split to verifying the controller interfaces and that
threads obey the contracts of those interfaces.

Aysu Betin-Can, Tevfik Bultan, Mikael Lindvall, Benjamin Lux, Stefan Topp ()TSAFE 12 / 18



TSAFE verification

Concurrency controllers

Multiple client threads can read data from the shared database
Several server threads can update the data
RW controller class policies the reader/writer synchronization
Mutex controller policies exclusive access synchronization

class RWController implements RWInterface {
int nR; boolean busy;
w_enter = new GuardedCommand() {
public boolean guard() { return (nR == 0 && !busy);}
public void update() { busy = true } }; ...

Translated to Action Language:

w_enter: pc=IDLE and nR=0 and !busy and busy=’true and pc=’WRITING

Aysu Betin-Can, Tevfik Bultan, Mikael Lindvall, Benjamin Lux, Stefan Topp ()TSAFE 13 / 18



TSAFE verification

Verifying controllers

Controllers were verified using the Action Language Verifier (ALV)
against a list of properties.

AG(busy ⇒ nR = 0)

AG(busy ⇒ AF (¬busy))

AG(¬busy ∧ nR = 0 ⇒ AF (busy ∨ nR > 0))

∀xAG(nR = x ∧ nR > 0 ⇒ AF (nR 6= x))

. . .

Aysu Betin-Can, Tevfik Bultan, Mikael Lindvall, Benjamin Lux, Stefan Topp ()TSAFE 14 / 18



TSAFE verification

Interface verification

Using Java Path Finder (JPF)
Adhesion to the controller interfaces
Access the shared data only at allowed interface states
Each thread type is verified separately - interaction through stubs
and from drivers

Stub:
Concurrency controller - finite state automaton
Shared data - assertions based on associated concurrency
controllers, return any valid data or exception
RMI, GUI and I/O operations return any exception or value

Aysu Betin-Can, Tevfik Bultan, Mikael Lindvall, Benjamin Lux, Stefan Topp ()TSAFE 15 / 18



TSAFE verification

Interface verification (continued)

Drivers:
Simulate thread creation by assigning command-line arguments
and initialized variables
Model implicitly created threads - GUI and RMI event threads
generating event sequences

Data dependency analysis:
Verifying a thread with regard to all possible input causes JPF to
run out of memory
Some input parameters or return values don’t affect
synchronization behavior
Dependency graphs are generated through bachward traversals
Values that don’t influence the synchronization are set constant
Finite domain values are enumerated
Other are provided by the user

Aysu Betin-Can, Tevfik Bultan, Mikael Lindvall, Benjamin Lux, Stefan Topp ()TSAFE 16 / 18



TSAFE verification

Interface verification (continued)

Drivers:
Simulate thread creation by assigning command-line arguments
and initialized variables
Model implicitly created threads - GUI and RMI event threads
generating event sequences

Data dependency analysis:
Verifying a thread with regard to all possible input causes JPF to
run out of memory
Some input parameters or return values don’t affect
synchronization behavior
Dependency graphs are generated through bachward traversals
Values that don’t influence the synchronization are set constant
Finite domain values are enumerated
Other are provided by the user

Aysu Betin-Can, Tevfik Bultan, Mikael Lindvall, Benjamin Lux, Stefan Topp ()TSAFE 16 / 18



TSAFE verification

Experiments

Fault seeding:
40 modified versions were created
Benchmark of the verification process
All concurrency controller faults were discovered
Not all interface faults were discovered

Missed faults:
Deep faults - branching dependent on a counter set to 1000,
10000, 100000 passes

Aysu Betin-Can, Tevfik Bultan, Mikael Lindvall, Benjamin Lux, Stefan Topp ()TSAFE 17 / 18



TSAFE verification

Experiments

Fault seeding:
40 modified versions were created
Benchmark of the verification process
All concurrency controller faults were discovered
Not all interface faults were discovered

Missed faults:
Deep faults - branching dependent on a counter set to 1000,
10000, 100000 passes

Aysu Betin-Can, Tevfik Bultan, Mikael Lindvall, Benjamin Lux, Stefan Topp ()TSAFE 17 / 18



Discussion

The End

Thank you for your attention

Discussion

Aysu Betin-Can, Tevfik Bultan, Mikael Lindvall, Benjamin Lux, Stefan Topp ()TSAFE 18 / 18


	AAC
	TSAFE
	TSAFE verification
	Discussion

