
Faculty of Informatics, Masaryk University

} w��������
��������������� !"#$%&'()+,-./012345<yA|

1

Memory-Model-Aware
Analysis of Parallel Programs

PHD Thesis Proposal

Vladimír Štill

Supervisor:
prof. RNDr. Jiří Barnat, Ph.D. Brno, 2017

Abstract

Keywords

Acknowledgements

Contents

1 Introduction 1

2 Relaxed Memory Models 5
2.1 Description of Memory Model Semantics 6
2.2 Formalized Memory Models 8
2.3 Memory Models and Compilers 15

3 Analysis Techniques for Memory Models 17
3.1 Decidability and Complexity 17
3.2 Robustness Checking . 19
3.3 Direct Analysis Techniques 20

4 Aim of the Work 25
4.1 Objectives and Expected Results 25
4.2 Time Plan . 28

5 Achieved Results 29
5.1 Published Papers . 29

Bibliography 33

A Publications 43
A.1 Techniques for Memory-Efficient Model Checking of C and

C++ Code . 44
A.2 Weak Memory Models as LLVM-to-LLVM Transformations . 59
A.3 Using Off-the-Shelf Exception Support Components in C++

Verification . 71
A.4 Model Checking of C and C++ with DIVINE 4 82

vii

viii CONTENTS

Chapter 1

Introduction

Reasoning about the correctness of parallel programs is hard, even if we
assume that every memory action a thread performs is visible to all other
threads immediately, there is total ordering of these actions, and all loads
read from the last write in this ordering. Sadly, this assumption of sequen-
tial consistency of the memory does not hold in practice as both hardware
and compilers perform optimizations which disrupt it. These optimizations
include instruction reordering in compilers and out-of-order processors and
effects of cache hierarchies in the processors. These techniques are vital for
fast execution of all programs, not just parallel ones. In the presence of these
relaxations, memory changes can be observed in a different order by different
threads. It is the responsibility of the programmer to ensure that the program
executes correctly by enforcing ordering of some operations, for example us-
ing memory barriers and atomic instructions of a given processor architecture,
or using higher level constructs of a given programming language.

In many programming languages, this problem is partially mitigated by
the presence of higher level constructs such as mutexes (locks) or synchronized
sections of code. These constructs, if used correctly, guarantee that the pro-
gram will be executed as if running on hardware which preserves sequential
consistency. Nevertheless, programmers who design these synchronization
constructs, operating systems, and hi-performance parallel data structures
have to be aware of memory relaxations arising from the particular memory
model.

To complicate matters further, different hardware platforms perform dif-
ferent relaxations of memory accesses – for example, x86 and x86-64 (also
known as AMD64) processors can only delay stores after loads, while ARM
or POWER can also reorder writes with each other and reorder reads with
writes arbitrarily (except for reordering of dependent writes). Each platform
also comes with a specific set of atomic instructions and memory barriers,
which can be used to enforce operation ordering. Therefore, in order to be
able to have the same code work on different platforms, it is useful to have

1

2 CHAPTER 1. INTRODUCTION

support for enforcing memory operation ordering in the programming lan-
guage itself. This support is also important as the compiler can reorder some
operations while it optimizes the code and therefore it must be able to under-
stand constructs that prevent such reordering, so they can prevent it both in
the compiler and in the hardware.

Unfortunately, not all programming languages provide primitives related
to memory relaxation or even define behavior of parallel programs. For ex-
ample, C and C++ had no support for parallel programming until the re-
spective standards from the year 2011. In the older versions, parallelism was
achieved only by means of libraries which provided thread manipulation and
synchronization primitives (such as pthreads on POSIX systems) and mem-
ory ordering could have been controlled either by using these synchronization
primitives or by compiler-provided language extensions. Apart from the lack
of standardized and multi-platform parallel programming support, the prob-
lem of this approach is that it is not clear which ordering guarantees arise
from the program’s code. Other programming languages, such as Java, C#,
C11, and C++11, have support for parallelism (including synchronization us-
ing mutexes and atomic variables) and their respective specifications describe
what guarantees on memory operation ordering these languages provide. It
is then the responsibility of the compiler (and virtual machine in the case of
Java/C#) to ensure these guarantees are met on any supported platform.

In this situation, we believe that study of memory relaxations all the way
from the code in a programming language1 to the level of the hardware is
important for the design of correct data structures and algorithms for parallel
programs. Furthermore, we believe this study should produce both descrip-
tions of memory behavior of programming languages and hardware platforms
as well as tools which can help developers who design data structures and
algorithms for these platforms.

In my PhD research, I would like to primarily focus on analysis of parallel
programs running on hardware with relaxed memory semantics. I would like
to explore possibilities of efficient analysis of such programs which would be
powerful enough to be usable to developers of hi-performance parallel data
structures and algorithms. Such analysis needs to be able to handle unit tests
of real-world parallel data structures under relaxed memory models. For these
unit tests, it should be able to verify both unreachability of errors, as well
as termination and preferably also general liveness properties (as given by
linear temporal logic). Furthermore, the analysis should be parametrized by
the memory model and should support various hardware memory models and
the memory model of the programming language. As performance is often

1By programming language we understand higher-level languages in which code is mostly
written by humans (e.g. C, C++, and Java) and distinguish them from assembly languages,
which use platform-specific instructions and syntax, and from intermediate languages, which
are used in some compilers mainly for platform-independent optimizations (e.g. LLVM IR).

3

critical in parallel programs, I will focus on programs written in C and C++.
Providing a sound and complete decision procedure for memory models

is not always possible, as all important problems are undecidable at least for
some widespread memory models (more in Section 3.1). Nevertheless, the
introduced methods should be designed so that they give high confidence
in the correctness of analysed programs. The analysis should primarily be
developed for the DIVINE model checker but should also be transferable also
to other analysis tools.

The rest of this work is structured as follows: Chapter 2 describes promi-
nent memory models used in both hardware and programming languages.
Chapter 3 describes analysis and verification techniques for relaxed memory.
These two chapters together give an overview of the state-of-the-art. Chap-
ter 4 then presents aims of my future work and my time plan towards the
thesis. Finally, Chapter 5 describes my research results in the area of analysis
of parallel programs to date, including results not related to relaxed memory
and Appendix A contains selection of my published papers.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Relaxed Memory Models

The behavior of a program in the presence of relaxed memory is described
by the corresponding relaxed memory model. This memory model depends
on the programming language of choice (as it can allow reordering of certain
actions for the purpose of optimizations) and on the hardware on which the
program is running. It also depends on the compiler (or interpreter or virtual
machine) which is responsible for translating the program in a way that it
meets the guarantees given in the specification of the programming language.
We will abstract from the impact of the compiler and expect it to be correct
in most of our considerations. We will also abstract from the impact of
an operating system’s scheduler which can move program threads between
physical processing units, which could be visible in memory behavior, but the
operating system should make sure this effect is not visible.

In hardware, there are two main sources for the relaxed memory behavior,
both of them caused by the fact that memory is several orders of magnitude
slower than the processor. One of these sources is the cache hierarchy, which
tries to hide speed differences by storing parts of the data in caches. The
other is out-of-order execution, which further improves speed by reordering
the instructions and issuing instructions speculatively.

Depending on the implementation of these optimizations, different relax-
ations are observable. On x86 only store buffering (delaying of propagation
of writes to the memory) is observable, while on ARM or POWER reordering
of all kinds of instructions is observable, as is branch prediction. A more de-
tailed description of causes for memory relaxations (mainly originating from
cache hierarchies) can be found in [McK10]. All processors with relaxed
memory also provide instructions which allow the programmer to constrain
relaxations: memory fences (or barriers) which prevent reordering and atomic
instructions such as atomic compare-and-swap or atomic read-modify-write.

When dealing with the memory model of the hardware, it is usually nei-
ther possible nor useful to discuss the behavior of the concrete CPU, instead,
we discuss the behavior of a certain platform (e.g. Intel x86 or IBM POWER).

5

6 CHAPTER 2. RELAXED MEMORY MODELS

There are at least two good reasons for this: first, results which take into ac-
count only the concrete CPU might not be applicable to any other CPU, even
from the same family, and second, the exact architecture is usually kept se-
cret by the company manufacturing those CPUs. For this reason, hardware
memory models describe processor platforms and should over-approximate
behavior of processors of given platform and capture intend of hardware de-
signers to allow the results to remain relevant even for future processors. The
over-approximation might be also needed to simplify the memory model in
order to make the subsequent program analysis simpler.

Ideally, formalized memory models of hardware would be produced by
the hardware manufactures themselves, but this is not the case. Instead,
these memory models of contemporary platforms are usually created based
on informal descriptions provided by the manufacturers, empirical testing of
existing hardware, and discussion with the manufacturers [Sew+10; Sar+11;
Flu+16].

Alternatively, one might describe a memory model of a programming
language (or compiler, if the programming language in question does not
define memory behavior of parallel programs). This would then allow analysis
of the program to reason about its behavior on any platform for which it
can be compiled (assuming the compiler is correct). Sadly, similar to CPU
platforms, programming languages usually lack a precise formal description of
the memory model, see e.g. [Bat+11] for analysis of draft of C++11 memory
model. Furthermore, such specifications can be unnecessarily strict for some
cases: for example, according to C++11, any parallel programs in which
two threads communicate without presence of locks or atomic operations
has an undefined behavior and therefore can have arbitrary outcome, but
in practice communication using volatile variables (and possibly compiler
specific memory fences) can work well with most compilers and is often used
in legacy code written before C++11 (or C11 in the case of C) where there
was no support for concurrency in the language.

In the following sections, we will first look into ways to describe mem-
ory models formally (Section 2.1). Then we will inspect important memory
models of hardware and programming languages (Section 2.2). Finally, we
will shortly discuss the impact of compiler optimizations on memory models
(Section 2.3).

2.1 Description of Memory Model Semantics

As already noted, it is often the case that CPU architecture specifications
or language specifications describe memory models informally. This can lead
to imprecision when such specification is used as a basis for a program, com-
piler or analyzer implementation. For this reason, it is useful to have formal
semantics given to memory models.

2.1. DESCRIPTION OF MEMORY MODEL SEMANTICS 7

Two main options used for the description of memory model semantics
are an axiomatic semantics which is usually based on dependency relations
between actions of the program, and operational semantics which describes
working of an abstract machine which implements given memory model.

2.1.1 Axiomatic Semantics
The axiomatic semantics of a memory model usually builds on relations be-
tween various memory related actions of the program and properties of these
relations. These relations are mostly partial orders and a sequence of opera-
tions usually adheres to a memory model if a union of memory-model-specific
subset of these relations is acyclic (i.e. is a partial order). There are several
notations for describing axiomatic semantics which mostly differ in the names
of defined relations and in some details in the description. The framework
presented in [Alg+10] aims at description of different memory models in a
unified way by a set of common dependency relations. In our figures, we will
borrow some notation from this framework, namely the program order rela-
tion (po−→) which orders actions performed by a single thread, the read-from
relation (rf−→) which connects a read with the store that saved the loaded value,
and the from-read relation (fr−→)1 which connects read with the nearest store
after the one read (i.e. with the store which will overwrite the read value).
Furthermore, the write serialization relation (ws−→)2 is notable for describing
the guarantee given by all reasonable memory models: for each memory loca-
tion there is a single total order of all writes to this location. That is, writes
to a single location has to be observed in the same order by all the threads.
Other relations will be introduced as needed in the figures.

2.1.2 Operational Semantics
Alternativelly, description of memory models can use operational semantics.
Operational semantics describes behavior of a program in terms of its run on
an abstract machine, i.e. by describing the mechanisms which cause memory
relaxations (usually in a largely simplified way which should closely match
behavior of the real hardware, but might use very different mechanisms). This
usually makes operational semantics easier to understand by programmers
and hardware designers and also can lead to more direct implementation of
certain analysis techniques.

2.1.3 Other Ways of Description of Memory Models
There are also some works which use different frameworks to describe memory
models.

1In other works also conflict relation.
2In other works also coherence relation.

8 CHAPTER 2. RELAXED MEMORY MODELS

In [AM06] memory models are described in terms of two properties: al-
lowed instruction reordering and store atomicity. Store atomicity roughly
states that there is a global interleaving of all possibly reordered operations
and the authors suggest that it is a desirable property of a memory model.
Nevertheless, most architectural memory models lack store atomicity – both
SPARC memory models (TSO/PSO/RMO) and x86-TSO allow loads to be
satisfied from store buffer, making stores observable in the issuing thread
before they can be observed in other threads; POWER further allows inde-
pendent stores to become visible in different order in different threads.

The semantics given in [PS16] is based on event structures [NPW79] and
considers all runs of the program at once. It is intended to allow reasoning
about compiler optimizations. Due to its global view of the program, it is
not clear if it can be used for efficient analysis of larger programs.

2.2 Formalized Memory Models
In this section we describe commonly used and formalized memory models.
These memory models are usually derived from hardware or programming lan-
guage memory models. In older works, most notable memory models (apart
from Sequential Consistency) were memory models of the SPARC processors.
These processors can be configured for different memory models (given in
order from most strict to most relaxed): Total Store Order (TSO), Partial
Store Order (PSO), Relaxed Memory Order (RMO) [SPA94]. Later mem-
ory models include Non-Speculative Writes (NSW) memory model which is
more relaxed then PSO but less relaxed then RMO and is notable because
reachability problem of programs with finite state processes under NSW is
decidable while for RMO this problem is not decidable, which makes this
memory models significant even if it does not describe any hardware imple-
mentation. Further significant memory models include the x86 (and x86-64)
memory model formalized as x86-TSO, POWER and ARM memory models,
and memory models of certain programming languages, namely Java (Java
was the first mainstream programming language with defined memory model),
C#, and C/C++11.

2.2.1 Sequential Consistency
Under sequential consistency all memory actions are immediately globally
visible and therefore can be ordered by a total order (i.e. an execution of
parallel program is an interleaving of actions of its threads) [Lam79]. Fur-
thermore, each load returns the last value written to its memory location in
this total order. In the operational semantics, SC corresponds to machine
without any caches and buffers where every write is immediately propagated
to the global memory and every read reads directly from the memory. SC
is the most intuitive and strongest memory model and it is often used by

2.2. FORMALIZED MEMORY MODELS 9

x = 1; // a
r1 = y; // b

y = 1; // c
r2 = x; // d

init x init y

a

b

c

d
po po

rf rf

Reachable r1 == 0 && r2 == 0?

Figure 2.1: This code demonstrates behavior which is allowed under TSO
but is not allowed under SC. In this run x = 1 is executed first, but the
store is buffered and does not reach memory yet. Then r1 = y is executed,
reading value 0 from y. Then the second thread is executed fully, and since
the update of x was not yet propagated to the memory it reads 0 from x.
Finally, the update of x (originating from a) is performed.

program analysers, but it is not used in most modern hardware. There are
no fences in SC as it has no need for them.

2.2.2 Total Store Order
Total Store Order (TSO) was introduced in the context of SPARC proces-
sors [SPA94]. It allows reordering of writes with following reads originating
from the same thread. Also, the thread that invokes a read can read value
from a program-order-preceding write even if this write is not globally visible
yet.

Operational semantics can be described by a machine which has an un-
bounded, processor-local FIFO store buffer in each processor. Writes are
stored into the store buffer in the order in which they are executed. If a read
occurs, the processor first consults its local store buffer and if it contains an
entry for the loaded address it reads newest such entry. If there is no such
entry in the local store buffer, the value is read from the memory. An any
point the oldest value from the store buffer can be removed from the buffer
and stored to the memory. This way the writes in the store buffer are visible
only to the processor which issued them until they are (non-deterministically)
flushed to the memory. Machines which implement TSO-like memory mod-
els will usually provide memory barriers which flush the store buffer [McK10;
Sew+10].

An example of TSO-allowed run which is not allowed under SC can be
found in Figure 2.1.

2.2.3 x86-TSO: x86 and x86-64 Processors
The memory model used by x86 and x86-64 processors is basically TSO with
different fences and atomic instructions then in the SPARC implementation.
The memory model is described informally in Intel and AMD specification

10 CHAPTER 2. RELAXED MEMORY MODELS

x = 1; // a
g = 1; // b

while (!g) {} // c
r1 = x; // d

a

b

c

d

init x

po dp
rf

rf
fr

Reachable r1 == 0?

Figure 2.2: This code demonstates behavior prohibited by TSO but allowed
by PSO. In this case, the second thread waits for a guard g to be set and then
attempts to read x. However, under PSO, writes to x and g can be reordered,
resulting in action d reading from the initial value of x. Please note that
there is control flow dependency between c and d and therefore they cannot
be executed in inverted order under PSO.

documents and a formal semantics derived from these documents and ex-
perimental evaluation is described in the x86-TSO memory model [Sew+10].
The semantics of x86-TSO is formalized in HOL4 model and as an abstract
machine.

On top of stores and loads which behave as under the TSO memory model,
x86 has fence instructions, a family of read-modify-write instructions, and a
compare-exchange instruction.

2.2.4 Partial Store Order
Partial Store Order (PSO) is similar to TSO and also introduced by the
SPARC processors [SPA94]. On top of TSO relaxations it allows reordering
of pairs of writes which do not access the same memory location. Operational
semantics corresponds to a machine which has separate store buffer for each
memory location. Again, processor can read from its local store buffers, but
values saved in these buffers are invisible for other processors [SPA94]. PSO-
mode SPARC processors include barriers for restoration of TSO as well as
SC [SPA94]. An example for PSO-allowed run which is not TSO-allowed can
be found in Figure 2.2.

This memory model is supported for example by SPARC in PSO mode,
but this is not a common architecture and configuration [SPA94; McK10],
which means this memory model is mostly important theoretically.

2.2.5 Non-Speculative Writes
The Non-Speculative Writes (NSW) memory model was introduced in [Ati+12]
as a memory model which is more relaxed then PSO, but its reachability prob-
lem for programs with finite state threads is still decidable. The operation
model for NSW is also defined in [Ati+12]. It uses two levels of store buffers
and a memory history buffer for reordering of reads.

2.2. FORMALIZED MEMORY MODELS 11

x = 1; // a
write_fence();
y = 1; // b

r1 = x; // c
r2 = y; // d

r3 = y; // e
r4 = x; // f

Reachable r1 == 1 && r2 == 0 && r3 == 1 && r4 == 0?
c a

b

e

d f

init xinit y

ab
po po

rf rf

rf rffr

fr

Figure 2.3: An example for behaviour allowed by NSW but not allowed
by PSO. While the two writes are well ordered, the corresponding reads are
not and since the memory model relaxes read-read ordering they can observe
values in different order. The write fence is not necessary, if it was not present
the two threads would still not be able to observe different results under PSO,
but it is used to demonstrate read reordering more clearly. The fence gives
rise to the ab−→ relation.

On top of PSO relaxations, NSW allows reordering of reads with other
reads and it is defined with read-read and write-write fences and atomic read-
modify-write instructions. We show example of NSW behaviour which is not
allowed by PSO in Figure 2.3. There are probably no processors which use
NSW memory model – it is important theoretically for its decidability proofs.

2.2.6 Relaxed Memory Order

The relaxed memory order (RMO) further relaxes NSW by allowing all pairs
of memory operations to be reordering provided they don’t access the same
memory location [SPA94]. Operational semantics for RMO usually allows
instruction reordering in the machine, or involves guessing loaded value at
the point of the load instruction and validating the guess later.

RMO is supported by SPARC processors, examples of other hardware
architectures with RMO-like memory models are POWER, ARM, and Al-
pha [McK10].

2.2.7 POWER Memory Model

POWER is a very weak, RMO-like memory model in which it is possible to
observe out-of-order execution as well as various effects of multi-level caches
and cache coherence protocols [Sar+11; Mad+12]. For example, POWER
allows independent writes to be propagated to different threads in different
orders, or loads to be executed before control flow dependent loads (i.e. a load
after a branch can be executed before the load which determines if the branch

12 CHAPTER 2. RELAXED MEMORY MODELS

x = 1; // a y = 1; // b r1 = x; // c
read_fence();
r2 = y; // d

r3 = y; // e
read_fence();
r4 = x; // f

Reachable r1 == 1 && r2 == 0 && r3 == 1 && r4 == 0?

c

a b

e

d f

init xinit y

ab abrf rf

rf rf

frfr

Figure 2.4: An example of behavior allowed by POWER, but not by NSW.
There are 4 threads, two of them writing one of x and y. The remaining
two threads read these variables, but observe their updates in inverted order
(i.e. the third thread first reads new value of x and then old value of y,
therefore it observes x first, but the last thread observes new value of y and
then old value of x). The read fences do not help in this case, as the two
writes happen in independent threads an therefore are not ordered in any
way with respect to each other (the fences are used only to distinguish from
NSW). The ab−→ relation is created by the fences.

will be taken; this is not possible for writes). An example of POWER-allowed
behavior can be found in Figure 2.4.

The semantics of POWER processors is specified, apart from vendor
documents, in both operational and axiomatic formalizations. In [Sar+11]
POWER 7 memory model is described in form of an abstract machine: it is
an operational semantics, nevertheless, it is rather complicated due to sub-
tleties of the architecture. This description was later extended in [Sar+12] to
support POWER’s load-reserve/store-conditional instructions which are used
to implement low-level primitives such as compare-and-swap and atomic read-
modify-write. An axiomatic semantics of POWER 7 is given in [Mad+12]
and also in [Alg+10]. Nevertheless, [Sar+11] observes that while being in
agreement with experimental results, [Alg+10] is not matching architectonic
intend as well as their operational semantic. To our best knowledge, there is
no formal description of the newer POWER 8 or POWER 9 architectures.

2.2.8 ARM Memory Model
The ARM memory model is similar to the POWER memory model, also
exposing effects of out-of-order execution and cache hierarchy [Flu+16]. Nev-
ertheless, there are important distinctions between ARM and POWER, both
from the point of observable relaxations as well as hardware causes for this

2.2. FORMALIZED MEMORY MODELS 13

relaxations. It was formalized operationally in [Flu+16], building upon the
same principles as the operational model for POWER introduced in [Sar+11].
This operational model describes the latest ARMv8/AArch64 64bit architec-
ture and the work compares it to the POWER 7 architecture. There is also
an older axiomatic model of ARMv7 given in [AMT14].

2.2.9 Memory Models of Programming Languages

Modern programming languages often acknowledge importance of parallelism
and define memory behavior of concurrent programs. Some programming lan-
guages give guarantees that programs which correctly use locks for synchro-
nization observe sequentially consistent behavior (the data race free guar-
antee). This holds for example for Java [AŠ07] and for the fragment of
C++ without atomics weaker then sequentially consistent [TVD14] [Com12,
$1.10.21]. On top of that, some programming languages, such as C, C++,
and Java provide support for atomic operations which can be used for syn-
chronization without locks if the platform they are running on supports it. C
and C++ also support lower-level atomic operations with relaxed semantics
which can be faster on platforms with relaxed memory.

C and C++

In C and C++ prior to the 2011 standards, there was no support for threads
and shared memory parallelism in the language. In these times creators of
parallel programs were dependent on platform and compiler specific libraries
and primitives, e.g. the pthread library for threading and __sync_* family
of functions for atomic operations in the GCC and Clang compilers.

The C++11 and C11 standards introduced support for threading and
atomic operations to these languages. From the point of relaxed memory
models, the interesting part of this is the support for atomic operations and
fences.

The atomic operation library provides support for declaration of atomic
variables which can be used in atomic operations, such as loads, stores, atomic
read-modify-write, and compare-exchange. For any atomic operation, it is
possible to specify the required ordering: C/C++ allows not only sequentially
consistent atomic operations, but also weaker (low-level) atomic operations
which allows implementation of efficient parallel data structures in platform-
independent way.

The C++ memory model is not formalized in C++11 standard, an at-
tempt to formalize it was given in [Bat+11], formalizing the N3092 draft of
the standard [N3092]. While this formalization precedes the final C++11
standard, it seems that there were no changes in the specification of atomic
operations after N3092. Nevertheless, there are some differences between the
formalization and N3092 (which are justified in the paper).

14 CHAPTER 2. RELAXED MEMORY MODELS

A notable feature of the C++ memory model is that any program which
contains a data race on non-atomic variable3 has undefined behavior. This
means that synchronization is possible only by atomic variables and concur-
rency primitives such as mutexes and condition variables.

LLVM

The LLVM compiler infrastructure [Lat17] used by the clang compiler comes
with its own low-level programming language. The LLVM memory model
is derived from the C++11 memory model, with the difference that it lacks
release-consume ordering and offers additional Unordered ordering which does
not guarantee atomicity but makes results of data races defined [Pro17]. The
Unordered operations are intended to match semantics of Java memory model
for shared variables [Pro17].

Java

The Java memory model is rather different from the C++11 one. Its primary
goal is to ensure that programs which cannot observe data races under se-
quential consistency will execute as if running under sequential consistency
(the data race free guarantee) [MPA05]. The primary means of synchroniza-
tion in Java are mutexes (called monitors in Java), synchronized sections of
code (which use monitors internally), and volatile variables, which roughly
correspond to sequentially consistent atomics in C++11.

Furthermore, as Java strives to be memory safe, it also defines behavior of
programs with data races. This behavior is rather peculiar, as it is primarily
concerned with prohibiting out-of-this-air values – values which, informally
speaking, depend cyclically on themselves. These values are primarily pro-
hibited to avoid forging pointers to invalid memory or memory which should
be otherwise inaccessible to a given thread [MPA05].

Out-of-Thin-Air Values The problem with out-of-thin-air values is that
it is sometimes hard to draw a line between behavior in which value occurs
as a result of well established compiler optimization and where it undesirably
occurs out of pure speculation. To that end [MPA05] uses a definition which
is based on justifying executions – a kind of inductive definition in which
more relaxed executions are iteratively built from less relaxed executions.
While this semantics intended to allow wide range of optimizations, it later
turned out that it disallows certain reasonable optimizations [CKS07; ŠA08;
TVD10].

Indeed the task of disallowing out-of-thin-air values while allowing opti-
mizations is hard and there is no consensus on this topic. For example, the

3Data race is defined as two accesses to the same non-atomic variable, at least one of
them write, which are not synchronized so that they cannot happen concurrently.

2.3. MEMORY MODELS AND COMPILERS 15

C++11 memory model allows these behaviors, but at the same time states
that implementations are discouraged to exhibit them [Bat+11]. The frame-
work for for description of hardware memory models introduced in [Alg+10]
disallows out-of-thin-air values based on data and control dependencies. This
is too strict for use in programming language memory model as these depen-
dencies are changed by optimizers. It might be acceptable for hardware mem-
ory models where dependencies are more explicit and no current hardware
exhibits this behavior, but [Flu+16] mentions that this behavior is intention-
ally left allowed by the ARMv8 memory model, in accordance with intends of
the hardware architects. An alternative specification of semantics which aims
at avoiding this problem was shown in [PS16], proposing new formalization
of fragment of C++11.

2.3 Memory Models and Compilers
When analysing programs in high level programming languages (as opposed
to analysing assembly level programs), there can be substantially more re-
laxation then allowed by the memory model of the hardware these programs
target. The reason is that compilers are allowed to perform optimizations
which reorder code or eliminate unnecessary memory accesses. As a result,
a compiler can for example merge two loads from a non-atomic variable or
assume a load which follows a store to the same memory location to yield the
stored value. Further reordering is allowed as per-thread program order is
not a total order for programs in languages such as C and C++ (e.g. order of
evaluation of function arguments is not fixed by the standard in most cases).

These optimizations complicate analysis if they should be taken into ac-
count. The two basic options for their handling include reasoning about all
permitted reordering (see e.g. [PS16]), or side stepping the problem by us-
ing the same optimizing compiler to produce code both for verification and
for actual execution (e.g. by verifying the binary or optimized intermediate
representation of the compiler).

16 CHAPTER 2. RELAXED MEMORY MODELS

Chapter 3

Analysis Techniques for
Memory Models

Analysis and verification of parallel programs is desirable and memory models
play important role in correctness of these programs, therefore there are many
techniques for analysis of parallel programs under various memory models.
In this chapter, we will first look into decidability of common verification
problems under relaxed memory models and then we will review some of the
approaches to the analysis.

These techniques can be split into two main areas, first area focuses on
verification adherence of program to a certain memory model if it runs under
other, weaker (more relaxed), memory model. For example, they can test
whether given program has no runs under TSO which would not be allowed
under SC. Some of these techniques also support fence insertion to restrict
behaviours to that of the stronger memory model.

The second category aims at checking correctness of program (according
to some property) under a relaxed memory model (e.g. checking for assertion
safety or memory safety or checking of LTL properties). While the first cate-
gory can be seen as a special case of the second, we consider the distinction
important as the techniques from the first category are usually not used to
prove absence of certain types of erroneous behavior, but assume that all
relaxed behavior is undesirable.

3.1 Decidability and Complexity

Right from the start it is important to note that even if we limit ourselves
to programs with finite number of finite-state threads/processes, there are
important problems in important memory models which are not decidable
(while reachability under Sequential Consistency is in PSPACE for such pro-
grams [TODO]).

17

18 CHAPTER 3. ANALYSIS TECHNIQUES FOR MEMORY MODELS

3.1.1 Reachability of Error State

In this problem we ask if the program can reach an error (or goal) state from
its initial state. In practice, there can be multiple error states which are given
by some property which can be evaluated on each state separately, e.g. we
can look for assertion violation or memory errors.

According to [Ati+10], the problem of state reachability in concurrent
programs with finite-state processes running under relaxed memory mod-
els is decidable for TSO and PSO memory models, but not decidable for
RMO (and therefore also not decidable for POWER and ARM). The com-
plexity of the state reachability in these programs under TSO and PSO is
non-primitive recursive. In [Ati+12], these decidability finding are further
refined: a more relaxed decidable memory model, Non-Speculative Writes
(NSW) is identified, and stronger claim about undecidability is proven, show-
ing that adding relaxation which allows reordering reads after subsequent
writes to TSO brings undecidability.

The proofs in [Ati+10] use a very simple program model with finite-state
control unit and simple memory actions. Furthermore, they assume that the
number of memory locations and processes is fixed and that the data domain
is finite. On the other hand, in practice both valid memory locations and
processes can be created during the run of the program (and even though
there is an upper bound on their number, this upper bound is not practical
for the use in analysis).

3.1.2 Verification of Linear-Time Properties

An important class of properties are properties described by Linear Tempo-
ral Logic (LTL) [TODO]. These properties are often considered especially in
connection with reactive systems and explicit-state model checking [TODO].
They allow users to specify properties such as reaction to a certain event
or repeated occurrence of an event and they are evaluated on infinite runs
of the program. With the automata-based approach to explicit-state model
checking these problems are solved by solving repeated reachability of ac-
cepting states of Büchi product automaton derived from the program and
the specification [TODO].

According to [Ati+10], repeated reachability, which can be used as basis
for verification of LTL properties, is not decidable even for TSO. Further-
more, from the construction of the reduction in the repeated reachability un-
decidability proof and from [AJ96] it follows that both LTL and CTL model
checking problem for TSO is also undecidable. Therefore LTL model check-
ing is undecidable for all memory models more relaxed then SC shown in this
work. For SC, it is well known that LTL model checking is in PSPACE for
finite-state programs [TODO].

3.2. ROBUSTNESS CHECKING 19

3.1.3 Verification of Absence of SC Violations
Here the question is if the program, when run under a relaxed memory model,
does exhibit any runs not possible under SC. This problem is explored un-
der many names, e.g. [BM08] uses the notion of (TSO-)safety, [BDM13]
and [DM14] use the notion of robustness, and [AM11] uses the notion of
stability.

Interestingly, [DM14] shows that even for the POWER memory model,
checking robustness of programs with finite number of finite-state threads is
in PSPACE, using an algorithm based on reduction to language emptiness.
For PSO and TSO, PSPACE algorithm for robustness is shown by [BSS11],
this time the algorithm is based on monitoring of SC runs of the program.
This shows that checking that program does not exhibit relaxed behavior is
significantly simpler than checking if this behavior can actually lead to an
error.

3.1.4 Verification of Compliance of Hardware to a Memory
Model

There is also some work on verifying whether a hardware implements a given
memory model. As this problem is not directly related to software verification,
we will not consider such problems.

3.1.5 Consequences of Decidability and Complexity Results
It can be seen that analysis of a program under a relaxed memory model
is hard task, much harder than for a program running under SC. For this
reasons most analysis techniques cannot be used to prove absence of errors,
or only is cases when the program is robust to the given memory model. In
practice most analysis tools use some kind of constraining of the memory-
model-induced reordering: for example bounding the number of instructions
which can be reordered, or bounding the number of context switches.

3.2 Robustness Checking
As shown in the previous section, checking robustness (absence of relaxed
behavior) is significantly less complex than verifying absence of errors in re-
laxed runs. For this reason, there is an interest in combination of verification
under sequential consistency with robustness checker [BM08]. This way, it
is possible to check that program is correct under SC and if all relaxed runs
are equivalent to some SC runs. If both of these checks succeed, it is possi-
ble to conclude that program is correct under given relaxed memory model.
However, the disadvantage of this technique is that for correctness analysis
of parallel programs it can vastly over-approximate possible errors and in

20 CHAPTER 3. ANALYSIS TECHNIQUES FOR MEMORY MODELS

practice it is often desirable to allow relaxed behaviors, provided it does not
lead to an error, as it can yield much better performance [TODO?].

In [BM08], a tool SOBER which allows detection of TSO violations is
presented. This tool works by monitoring sequentially consistent runs of
the program and detecting violations which would occur under TSO. The
monitoring algorithm is based on vector clock and axiomatic definition of
TSO.

An alternative approach to checking robustness by monitoring SC runs is
presented in [BSS11]. This approach allows checking robustness under both
TSO and PSO and is built on the operational semantics of these memory
models. This monitoring algorithm is implemented in the tool THRILLE
and should be asymptotically faster then the one presented in [BM08] while
also being sound and complete.

A different approach for checking robustness under TSO is presented
in [BDM13]. This approach uses a notion of attacks, a form of restricted
out-of-order execution which witnesses SC violation. Authors also provide
an implementation in the tool Trencher which uses SC model checker
(Spin, [Hol97]) as a backend for validation of attacks.

A more general notion of stability (which relates two arbitrary memory
models) is used in [AM11] which explores recovering SC from x86 or POWER
memory model. The work also presents the tool offence which inserts syn-
chronization into x86 or POWER assembly to ensure stability.

Concerning stronger memory models, [DM14] shows an algorithm for
checking robustness under POWER, but does not provide any implemen-
tation. The algorithm presented in this work also assumes that the number
of processes is fixed and each process is a finite automaton, therefore it is not
directly applicable to robustness checking of real-world programs.

A somewhat related problem of data race detection is explored in [YGL04]
for the Java Memory Model (JMM). In this case we ask if the program uses
enough synchronization to avoid any data races. However, as the JMM de-
fines data races in terms of SC executions, this work formalizes only SC.
The entire program, memory constraints, and specification is encoded as con-
straint solving problem, which can be solved by constraint solver, e.g. Prolog
with finite domain data. This work is accompanied by a tool DefectFindrer.

3.3 Direct Analysis Techniques
Many techniques for safety analysis of programs under relaxed memory mod-
els fall into the category of bug finding tools – such tools are unable to prove
correctness in general, but they provide substantially better coverage of possi-
ble behaviors of parallel program then testing. Mostly, this incompleteness is
caused by either bound on the number of instructions which can be reordered
or number of context switches the program can do during any explored run.

3.3. DIRECT ANALYSIS TECHNIQUES 21

There are several reasons for this bounding, the obvious one is the time
complexity of the analysis, but another important reason is that dealing with
programs in programming languages is substantially more difficult then deal-
ing with programs given as composition of finite-state processes (as assumed
in the complexity analyses).

Transformation-Based Techniques

A widely used family of methods for analysis of relaxed memory models is
based on transformation of an input program P into a different program
P ′ such that running P ′ under sequential consistency allows us to explore
runs equivalent to running P under some more relaxed memory model. The
main advantage of this approach is that it makes it possible to reuse exist-
ing analysis tools for sequentially consistent programs together with all the
advancements in their development. In most cases the transformation also
includes some way of bounding relaxation and therefore this allows exploring
only a subset of runs of P . Further under-approximation might be caused by
the used SC analyser (e.g. if bounded model checker is used as a backend).

In [Alg+13] a transformation-based technique for the x86, POWER, and
ARM memory models is presented. This transformation is parametrized and
can be tweaked to implement different memory models. It is implemented
in the tool goto-instrument for instrumentation of goto-programs which
can be created by translation from C and therefore it primarily focuses on C
programs. The output of the transformation is a goto-program which can be
verified directly by some analysers, or translated back to C. The technique
presented in this work is sound, but not complete (due to buffer bounding
and possible incompleteness in the backend). It is also not clear if it can
cover all cases of delaying reads after writes. The work is accompanied by
Coq proofs matching the axiomatic semantics to the operational semantics
used for the implementation.

Another approach to program transformation is taken in [ABP11], it this
case the transformation uses context switch bounding but not buffer bounding
and it uses additional copies for shared variables for TSO simulation. Two
options for the transformation are presented, in the first one the total number
of context switches is limited, in the second there is a limited number of
context switches the value can be delayed for, but the overall analysis is not
context-switch-bounded. There is no tool accompanying this publication –
the experiments were performed using manually translated C programs.

In [Abd+17] the context-bounded analysis using transformation is applied
to the POWER memory model. The resulting program uses nondetetermin-
ism heavily to guess results of sequence of instructions which is later checked.
It uses bounded model checker CBMC as a backend. The publication is ac-
companied by a tool power2sc which implements the transformation of C
programs.

22 CHAPTER 3. ANALYSIS TECHNIQUES FOR MEMORY MODELS

Our own work in [ŠRB16b] presents transformation of LLVM bitcode to
simulate buffer-bounded TSO runs. It targets DIVINE and therefore C and
C++ programs.

Stateless Model Checking

Stateless Model Checking methods are intended for safety analysis of termi-
nating programs in real-world programming languages [God97]. They employ
Dynamic Partial Order Reduction (DPOR) to avoid exploring equivalent runs
of the program [FG05] and the works concerning relaxed memory models in
this setting often discuss interlay between DPOR and relaxed memory model
in length.

The work [ND13] presents a stateless model checking approach to the
C++11 memory model (with the exception of release-consume synchroniza-
tion). It uses custom implementation of the C++ thread and atomic libraries
to produce binaries which performs the analysis. It lazily builds relations be-
tween memory operations in the form of the modification order graph. This
representation prevents exploration of infeasible executions as well as unnec-
essary distinction between equivalent executions. Furthermore, as the C++
memory model allows reordering of reads with future operation, the authors
propose to simulate this by propagating stored values to previous loads and
validating this speculation (which does not simulate out-of-thin-air values).
The paper includes a long discussion about features of the C++ memory
model and the corresponding implementation in CDSChecker, which is us-
able for (small) unit tests of concurrent data structures written in C11 or
C++11.

In [ZKW15] the authors focus mostly on modelling of TSO and PSO
and its interplay with DPOR. They combine modelling of thread scheduling
nondeterminism and memory model nondeterminism using store buffers to a
common framework. This is done by adding store buffers to the program and
adding shadow thread for each store buffer which is responsible for flushing
contents of this buffer to the memory. The proposed approach is implemented
in the tool rInspect, which is a LLVM-based stateless model checker which
supports both unbounded store buffers and buffer bounding (however, as it
is a stateless model checker, it works only on programs which terminate).

Another approach to combining TSO and PSO analysis with stateless
model checking is presented in [Abd+15]. In this work executions are rep-
resented by chronological traces which capture dependencies required to rep-
resent interaction between memory actions. These chronological traces are
acyclic relations and therefore can be used for DPOR, including the opti-
mal DPOR which explores exactly one execution in the equivalence class of
the partial order [Abd+14]. The advantage of this approach is that for ro-
bust programs, using the optimal DPOR algorithm with chronological traces
should produce the same number of executions under SC as under relaxed

3.3. DIRECT ANALYSIS TECHNIQUES 23

memory model. The proposed approach is implemented in LLVM-based tool
Niddhugg which supports analysis of C programs with pthreads parallelism
and with bounded execution length.

Unbounded Methods

There are also analysis methods which aim at being able to discover any
memory-model-related bugs, regardless on number of instructions being re-
ordered or number of context switches.

The work [LW10] presents such an approach to verification of programs
under TSO with unbouded store buffers. It uses store buffers represented
by automata and leverages cycle iteration acceleration (for cycles involving
changes in only one store buffer) to get representation of store buffers on
paths which would form cycles if values in store buffers were disregarded. It
uses sleep set POR to reduce state space. The provided tool targets modified
Promela language [Hol97]. Due to the limitation of acceleration to changes
only in one store buffer it is not clear if the algorithm is guaranteed to termi-
nate.

Another unbounded approach is presented in [Bou+15] – it introduces
TSO behaviors lazily by iterative refinement, and while it is not complete it
should eventually find all errors. This work is based on the robustness checker
presented in [BDM13] and uses it to detect runs to which relaxed behavior
should be added. The work is accompanied by an implementation in the tool
Trencher.

Other Methods

In [PD95], the SPARC hierarchy of memory models (TSO, PSO, RMO) is
modelled using encoding from assembly to Murφ [Dil96]. The encoding allows
all reordering of instructions allowed by given memory model to a certain
reordering bound. This work targets small synchronization primitives such
as spin locks.

In [HR06] an explicit state model checker for C# programs (supporting
subset of C#/.NET bytecode) which uses the .NET memory model is pre-
sented. The verifier first verifies program under SC and then it explores
additional runs allowed under .NET memory model. It can also insert barri-
ers into the program to avoid relaxed runs which violate given property. The
implementation of the exploration algorithm uses list of delayed instructions
to implement instruction reordering, while the authors mention that the num-
ber of reordered instructions is not bounded, they do not discuss how this
approach works for programs with cycles.

The work [Dan+13] presents an approach for verification of (potentially
infinite state space) programs under TSO and PSO using predicate abstrac-
tion. The paper first shows that it is not possible to use traditional predicate

24 CHAPTER 3. ANALYSIS TECHNIQUES FOR MEMORY MODELS

abstraction to produce boolean program and then verify this boolean pro-
gram using weak memory semantics. Instead, they propose a schema which
first verifies the program under SC and then extrapolates predicates from SC
run to verify a transformed version of the original program which has store
buffers explicitly encoded. The store buffers are bounded in this transforma-
tion. Implementation in the tool cupex is also provided.

A completely different approach is taken in [TVD14], this work introduces
a separation logic GPS which allows proving properties about programs using
the (fragment of) C11 memory model. That is, this work is intended for man-
ual proving of properties of parallel programs, not for automatic verification.
The memory models is not complete, it lacks relaxed and consume-release ac-
cesses. Another fragment of the C11 memory model is targeted by the RSL
separation logic in [VN13].

Chapter 4

Aim of the Work

Overall, the aim of my PhD research is to devise methods for efficient anal-
ysis of C and C++programs running under relaxed memory models. These
methods should also be implemented and thoroughly evaluated, aiming at
real-world usability. Namely, I would like to make it possible to apply relaxed-
memory-aware analysis to unit tests of nontrivial parallel data structures and
algorithms. The implementation will be primarily working with the DIVINE
model checker [Bar+17].

4.1 Objectives and Expected Results

4.1.1 An LLVM-Based Program Transformation for Analysis
of Relaxed Memory Models

A large number of verifiers and analysers with support for parallel programs
lack support for relaxed memory models and assume sequential consistency.
While it is possible to extend these verifiers to relaxed memory models di-
rectly in many cases, we believe that an easier and more versatile path lies in
transformation of the input formalism for these analysers, as done for example
by [Alg+13] or [Abd+17]. This way, the input program is transformed into
another program which, when run under SC, simulates runs of the original
program under a given relaxed memory model.

The most promising approach seems to be the use of the LLVM Interme-
diate Representation (LLVM IR) as the source and the target for the trans-
formation. LLVM IR is widely used both by compilers (namely the clang
compiler which can be used to compile C, C++, and Objective C on all ma-
jor operating systems) and by a growing number of analysers with support for
parallelism, for example DIVINE [Bar+17], SMACK [RE14], VVT [GLW16],
Skink [Cas+17], and Nidhugg [Abd+15]. Furthermore, CPAchecker [BK11]
has support for parallelism [BF16] and there are plans to add support for
LLVM IR to it. Similarly, CBMC [CKL04] has support for parallelism and

25

26 CHAPTER 4. AIM OF THE WORK

planned support for LLVM. Also, LLVM IR can be rather easily transformed
as it is used for optimizations in the LLVM framework.

One of the advantages of the program transformation approach is that
the same transformation (possibly with minor configuration) can be used for
many analysers. The transformation works by replacing memory operations
with either fragments of code or calls to functions which provide implemen-
tation of a given operation under a relaxed memory model. This also means
that the same transformation, but with different implementations of memory
operations, can be used to simulate different memory model, which makes
this approach especially suitable for evaluation of different memory models
and modes of their simulation.

An initial LLVM transformation for relaxed memory models was devel-
oped for [ŠRB16b] and later extended for [Šti16]. This transformation is now
being updated to remove its dependence on DIVINE-specific API and make
its interface more general to work with different memory model implementa-
tions.

Furthermore, there are many options in optimization of the transforma-
tion, e.g. it is not necessary to transform memory operations for which it
can be proven statically that they only access thread-local data. The first
of my aims is therefore finishing this program transformation and its opti-
mizations. The transformation will be used as a basis for implementation of
memory-model-aware analysis in DIVINE and possibly other verifiers.

4.1.2 An Efficient Support for Non-Speculative Writes Mem-
ory Model

The program transformation needs to be accompanied by implementation
of memory model operations (memory model runtime). The existing imple-
mentations for DIVINE [ŠRB16b; Šti16] support either TSO or a subset of
the C++11 memory model without read reordering, both of which use buffer
bounding to limit state space explosion and achieve decidability while keeping
the implementation simple.

I would like to implement a framework for simulation of various mem-
ory models. The first step in this direction will be to design an efficient
operational model for the Non-Speculative Writes memory model. This op-
erational model should be designed so that it can be efficiently implemented
and provide good performance for the verification.

The NSW memory model was chosen as it is decidable for programs with
finite-state threads, it is more relaxed then PSO, and it should be possible to
implement it reasonably efficiently. To the best of our knowledge, the only
operational semantics for NSW is given in [Ati+12] when it is introduced.
However, while sufficient for proving its decidability, this semantics is not
efficient for verification as it needs to resolve ordering of memory events
eagerly, which leads to lot of branching it the explored state space. It also

4.1. OBJECTIVES AND EXPECTED RESULTS 27

includes storing complete snapshots of memory in form of history buffers.
Instead, we would like to resolve ordering lazily only when actually needed,
which should improve scalability of the analysis and to save only relevant
parts of memory history.

At first, we will use bounded data structures in implementation of NSW
support, therefore, the resulting analysis algorithm will not be able to prove
absence of bugs. Nevertheless, we believe this approach is reasonable as it
can uncover large number of errors which are otherwise hard to find.

4.1.3 Heuristically-Directed Exploration Algorithm for Anal-
ysis under Relaxed Memory Models

An important aspect for usability of automatic verification and analysis tech-
niques such as model-checking is their ability to produce property violation
witness (counterexample) in the case property violation is found. However,
usability of these counterexamples depends a lot on the exploration strat-
egy employed by the analyser. For relaxed memory models, it is desirable
that counterexamples which contain least possible deviations from sequential
consistency are found first.

Furthermore, it is expected that by directing exploration to find less re-
laxed runs first, the algorithm will (on average) run faster for programs which
contain errors. It might be also possible to employ heuristics to direct relax-
ations so that it is first applied on variables on which it is more likely to cause
property violations. Another possibility is using robustness-based heuristics
and employ relaxed memory semantics only when needed.

4.1.4 Analysis of Very Weak Memory Models

The POWER and ARM memory models (which are quite similar) are impor-
tant as they are very weak and there is increasing number of devices which
use ARM processors and a good number of hi-performance devices powered
by POWER. However, these memory models come with relaxations such as
writes which can propagate in different order to different processors and re-
ordering of loads with succeeding writes which can lead to seemingly cyclic
dependencies. For this reason, these memory models are more subtle then
NSW and require more advanced analysis.

The C11/C++11 standards came with a memory model intended to al-
low efficient multi-platform implementation of parallel primitives, even on
very relaxed platforms such as POWER/ARM. For this reason the C++11
memory model can be used as over-approximation of POWER/ARM in the
context of C/C++. A very similar memory models is also used by the LLVM
intermediate language. As DIVINE is an analyzer for C/C++ it is natural
to have support for verification of programs against this memory model.

28 CHAPTER 4. AIM OF THE WORK

4.1.5 Techniques for Unbounded Memory Model Analysis
Up to this point I expect to allow only bounded instruction reordering. How-
ever, in order to increase coverage of our analysis, I would like to investi-
gate techniques which allow unbounded reordering. Such techniques could
use some form of symbolic encoding of delayed memory operations, such as
automata-based encoding introduced in [LW10] (which supports only TSO),
or they could use abstractions. Another possibility is using SMT-based sym-
bolic encoding. All of these approaches will likely also require changes to
the verification algorithm and therefore will not be implemented purely as
program transformations accompanied by memory model runtime.

4.2 Time Plan
The plan of the rest of my PhD study and research activities is following:

Now – January 2018 Extension of the relaxed memory support in DI-
VINE to the NSW memory model and design of verification-friendly
semantics for NSW.

January 2018 Doctoral exam and defense of this thesis proposal.

February 2018 – June 2018 Development of heuristically directed search
algorithm for verification under relaxed memory models in DIVINE.

June 2018 – November 2018 Extension of relaxed memory support to
more relaxed memory models such as C++, POWER and ARM mem-
ory models, including development of transformation-friendly semantics
of these memory models.

December 2018 – July 2019 Investigation and design of techniques for
unbounded verification of programs running under relaxed memory
models.

August 2019 – January 2020 Text of the PhD thesis.

January 2020 The final version of the thesis.

Chapter 5

Achieved Results

My work so far has been mostly concerned with analysis of parallel programs
and the DIVINE model checker [Bar+17]. It started during my bachelor
studies with techniques for compression of state space, which resulted in pub-
lication [RŠB15]. During my master’s study, my work included heuristics for
state space exploration [ŠRB14] and transformations of LLVM Intermediate
Representation [ŠRB16b; Šti16]. These transformations included optimiza-
tions which can lead to more efficient verifications and transformations for
relaxed memory models.

During my PhD work, I fist focused mostly on general verification of
parallel C and C++ programs. This included revised support for the C++
exceptions in DIVINE [ŠRB17] and a lot of work on the new version of DI-
VINE which mostly had character of implementation and resulted in a tool
paper [Bar+17].

5.1 Published Papers
• Jiří Barnat, Luboš Brim, Vojtěch Havel, Jan Havlíček, Jan Kriho, Milan

Lenčo, Petr Ročkai, Vladimír Štill, and Jiří Weiser. “DiVinE 3.0 – An
Explicit-State Model Checker for Multithreaded C & C++ Programs”.
In: Computer Aided Verification. Vol. 8044. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2013, pp. 863–868. doi: 10.1007/
978-3-642-39799-8_60 [Bar+13]
Tool paper for DIVINE 3, I have minor contribution to the implemen-
tation of DIVINE 3 as described in this paper.

• Vladimír Štill, Petr Ročkai, and Jiří Barnat. “Context-Switch-Directed
Verification in DIVINE”. in: Mathematical and Engineering Methods in
Computer Science. Vol. 8934. Lecture Notes in Computer Science.
Springer International Publishing, 2014, pp. 135–146. doi: 10.1007/
978-3-319-14896-0_12 [ŠRB14]

29

https://doi.org/10.1007/978-3-642-39799-8_60
https://doi.org/10.1007/978-3-642-39799-8_60
https://doi.org/10.1007/978-3-319-14896-0_12
https://doi.org/10.1007/978-3-319-14896-0_12

30 CHAPTER 5. ACHIEVED RESULTS

This paper shows that directing search of explicit-state model checker
to first explore runs with low number of context switches can improve
performance of the verifier as well as improve the counterexamples. I
have made implementation and evaluation for this paper as well as writ-
ten part of the text. I have also presented this paper on the MEMICS
2014 conference.

• Petr Ročkai, Vladimír Štill, and Jiří Barnat. “Techniques for Memory-
Efficient Model Checking of C and C++ Code”. In: Software Engi-
neering and Formal Methods. Vol. 9276. Lecture Notes in Computer
Science. Springer International Publishing, 2015, pp. 268–282. doi:
10.1007/978-3-319-22969-0_19 [RŠB15]

This paper describes techniques which lead to better memory efficiency
of verification of parallel programs in an explicit-state model checker.
These techniques include a tree-based compression scheme for state
space storage and a custom allocation schema. I have made part of
the implementation (concerning the compression), full evaluation and
part of the text. I have also presented this paper on the SEFM 2015
conference.

• Jiří Barnat, Petr Ročkai, Vladimír Štill, and Jiří Weiser. “Fast,
Dynamically-Sized Concurrent Hash Table”. In: Model Checking
Software (SPIN 2015). Vol. 9232. Lecture Notes in Computer
Science. Springer International Publishing, 2015, pp. 49–65. doi:
10.1007/978-3-319-23404-5_5 [Bar+15]

This paper describes efficient design of a concurrent hash table used in
DIVINE. I have minor contributions to this paper.

• Vladimír Štill, Petr Ročkai, and Jiří Barnat. “Weak Memory Models
as LLVM-to-LLVM Transformations”. In: Mathematical and Engineer-
ing Methods in Computer Science, Revised Selected Papers. Vol. 9548.
Lecture Notes in Computer Science. Springer International Publishing,
2016, pp. 144–155. doi: 10.1007/978-3-319-29817-7_13 [ŠRB16b]

This paper describes the approach to analysis of programs under the
TSO memory model using LLVM transformation. I am the main author
of this paper, I have made most of the design and implementation, full
evaluation, and most of the text. I have also presented this paper on
the MEMICS 2015 conference.

• Jiří Barnat, Ivana Černá, Petr Ročkai, Vladimír Štill, and Kristína
Zákopčanová. “On Verifying C++ Programs with Probabilities”. In:
ACM Symposium on Applied Computing. 2016, pp. 1238–1243. doi:
10.1145/2851613.2851721 [Bar+16]

https://doi.org/10.1007/978-3-319-22969-0_19
https://doi.org/10.1007/978-3-319-23404-5_5
https://doi.org/10.1007/978-3-319-29817-7_13
https://doi.org/10.1145/2851613.2851721

5.1. PUBLISHED PAPERS 31

This paper describes chaining of DIVINE (which was extended to allow
annotation of edges with probabilities) with the PRISM model checker
to allow probabilistic analysis. I have provided small part of the imple-
mentation (concerning export of state space from DIVINE) and text
concerning this part for the paper.

• Vladimír Štill, Petr Ročkai, and Jiří Barnat. “DIVINE: Explicit-State
LTL Model Checker”. In: Tools and Algorithms for the Construction
and Analysis of Systems. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2016, pp. 920–922. doi: 10 . 1007 / 978 - 3 - 662 - 49674 - 9 _
60 [ŠRB16a]
Competition contribution for SV-COMP 2016 [Bey16]. This paper
shortly describes DIVINE and the specifics of applying it to the concur-
rency category of the SV-COMP. I am the main author of this paper, I
have written most of the text as well as implemented all modifications
of DIVINE which were needed for participation in SV-COMP 2016. I
have also had short presentation of this paper in the SV-COMP session
of the ETAPS/TACAS 2016 conference.

• Jan Mrázek, Martin Jonáš, Vladimír Štill, Henrich Lauko, and Jiří
Barnat. “Optimizing and Caching SMT Queries in SymDIVINE”. in:
Tools and Algorithms for the Construction and Analysis of Systems.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2017, pp. 390–393. doi:
10.1007/978-3-662-54580-5_29 [Mrá+17]
Competition contribution for SV-COMP 2017 [Bey17]. This paper
shortly describes tool SymDIVINE which combines explicit and sym-
bolic approach to verification of parallel programs. I have made minor
contributions to this paper.

• Vladimír Štill, Petr Ročkai, and Jiří Barnat. “Using Off-the-Shelf Ex-
ception Support Components in C++ Verification”. In: IEEE Interna-
tional Conference on Software Quality, Reliability and Security (QRS).
July 2017, pp. 54–64. doi: 10.1109/QRS.2017.15 [ŠRB17]
This paper describes the approach we took towards verification of C++
code with exceptions in DIVINE 4. We show that carefully selecting
which components of existing implementations and libraries to reuse
and which to reimplement allowed us to provide full C++ exception
support in DIVINE without much cost in terms of runtime performance,
implementation effort or increase of complexity of the verifier. I am
the main author of this paper: I have written most of the text and
implementation for exception support in DIVINE 4 as well as performed
the evaluation for this paper. I have also presented this paper on the
QRS 2017 conference. The paper and its presentation was awarded
with the best paper award.

https://doi.org/10.1007/978-3-662-49674-9_60
https://doi.org/10.1007/978-3-662-49674-9_60
https://doi.org/10.1007/978-3-662-54580-5_29
https://doi.org/10.1109/QRS.2017.15

32 CHAPTER 5. ACHIEVED RESULTS

• Zuzana Baranová, Jiří Barnat, Katarína Kejstová, Tadeáš Kučera, Hen-
rich Lauko, Jan Mrázek, Petr Ročkai, and Vladimír Štill. “Model
Checking of C and C++ with DIVINE 4”. In: International Sympo-
sium on Automated Technology for Verification and Analysis (ATVA)
(to appear). 2017 [Bar+17]
Tool paper describing architecture of DIVINE 4 and new features of
this version. I have written most of the text for this paper.

Bibliography

[Abd+14] Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstanti-
nos Sagonas. “Optimal Dynamic Partial Order Reduction”. In:
Principles of Programming Languages. POPL ’14. San Diego, Cal-
ifornia, USA: ACM, 2014, pp. 373–384. doi: 10.1145/2535838.
2535845.

[Abd+15] Parosh Aziz Abdulla, Stavros Aronis, Mohamed Faouzi Atig,
Bengt Jonsson, Carl Leonardsson, and Konstantinos Sagonas.
“Stateless Model Checking for TSO and PSO”. In: Tools and Al-
gorithms for the Construction and Analysis of Systems. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2015, pp. 353–367. doi:
10.1007/978-3-662-46681-0_28.

[Abd+17] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani,
and Tuan Phong Ngo. “Context-Bounded Analysis for POWER”.
In: Tools and Algorithms for the Construction and Analysis of
Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017,
pp. 56–74. doi: 10.1007/978-3-662-54580-5_4.

[ABP11] Mohamed Faouzi Atig, Ahmed Bouajjani, and Gennaro Parlato.
“Getting Rid of Store-Buffers in TSO Analysis”. In: Computer
Aided Verification. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2011, pp. 99–115. doi: 10.1007/978-3-642-22110-1_9.

[AJ96] Parosh Aziz Abdulla and Bengt Jonsson. “Undecidable verifica-
tion problems for programs with unreliable channels”. In: Infor-
mation and Computation 130.1 (1996), pp. 71–90.

[Alg+10] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell.
“Fences in Weak Memory Models”. In: Computer Aided Veri-
fication. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,
pp. 258–272. doi: 10.1007/978-3-642-14295-6_25.

[Alg+13] Jade Alglave, Daniel Kroening, Vincent Nimal, and Michael
Tautschnig. “Software Verification for Weak Memory via
Program Transformation”. In: European Symposium on Pro-
gramming. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,
pp. 512–532. doi: 10.1007/978-3-642-37036-6_28.

33

https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1145/2535838.2535845
https://doi.org/10.1007/978-3-662-46681-0_28
https://doi.org/10.1007/978-3-662-54580-5_4
https://doi.org/10.1007/978-3-642-22110-1_9
https://doi.org/10.1007/978-3-642-14295-6_25
https://doi.org/10.1007/978-3-642-37036-6_28

34

[AM06] Arvind Arvind and Jan-Willem Maessen. “Memory Model = In-
struction Reordering + Store Atomicity”. In: SIGARCH Comput.
Archit. News 34.2 (May 2006), pp. 29–40. issn: 0163-5964. doi:
10.1145/1150019.1136489.

[AM11] Jade Alglave and Luc Maranget. “Stability in Weak Memory
Models”. In: Computer Aided Verification. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 50–66. doi: 10.1007/978-
3-642-22110-1_6.

[AMT14] Jade Alglave, Luc Maranget, and Michael Tautschnig. “Herding
Cats: Modelling, Simulation, Testing, and Data Mining for Weak
Memory”. In: ACM Trans. Program. Lang. Syst. 36.2 (July 2014),
7:1–7:74. issn: 0164-0925. doi: 10.1145/2627752.

[AŠ07] David Aspinall and Jaroslav Ševčík. “Formalising Java’s Data
Race Free Guarantee”. In: Theorem Proving in Higher Order Log-
ics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 22–
37. doi: 10.1007/978-3-540-74591-4_4.

[Ati+10] Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt,
and Madanlal Musuvathi. “On the Verification Problem for
Weak Memory Models”. In: Principles of Programming Lan-
guages. POPL ’10. Madrid, Spain: ACM, 2010, pp. 7–18. doi:
10.1145/1706299.1706303.

[Ati+12] Mohamed Faouzi Atig, Ahmed Bouajjani, Sebastian Burckhardt,
and Madanlal Musuvathi. “What’s Decidable about Weak Mem-
ory Models?” In: European Symposium on Programming. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 26–46. doi: 10.
1007/978-3-642-28869-2_2.

[Bar+13] Jiří Barnat, Luboš Brim, Vojtěch Havel, Jan Havlíček, Jan Kriho,
Milan Lenčo, Petr Ročkai, Vladimír Štill, and Jiří Weiser. “Di-
VinE 3.0 – An Explicit-State Model Checker for Multithreaded
C & C++ Programs”. In: Computer Aided Verification. Vol. 8044.
Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2013, pp. 863–868. doi: 10.1007/978-3-642-39799-8_60.

[Bar+15] Jiří Barnat, Petr Ročkai, Vladimír Štill, and Jiří Weiser. “Fast,
Dynamically-Sized Concurrent Hash Table”. In: Model Checking
Software (SPIN 2015). Vol. 9232. Lecture Notes in Computer
Science. Springer International Publishing, 2015, pp. 49–65. doi:
10.1007/978-3-319-23404-5_5.

[Bar+16] Jiří Barnat, Ivana Černá, Petr Ročkai, Vladimír Štill, and
Kristína Zákopčanová. “On Verifying C++ Programs with
Probabilities”. In: ACM Symposium on Applied Computing. 2016,
pp. 1238–1243. doi: 10.1145/2851613.2851721.

https://doi.org/10.1145/1150019.1136489
https://doi.org/10.1007/978-3-642-22110-1_6
https://doi.org/10.1007/978-3-642-22110-1_6
https://doi.org/10.1145/2627752
https://doi.org/10.1007/978-3-540-74591-4_4
https://doi.org/10.1145/1706299.1706303
https://doi.org/10.1007/978-3-642-28869-2_2
https://doi.org/10.1007/978-3-642-28869-2_2
https://doi.org/10.1007/978-3-642-39799-8_60
https://doi.org/10.1007/978-3-319-23404-5_5
https://doi.org/10.1145/2851613.2851721

35

[Bar+17] Zuzana Baranová, Jiří Barnat, Katarína Kejstová, Tadeáš
Kučera, Henrich Lauko, Jan Mrázek, Petr Ročkai, and Vladimír
Štill. “Model Checking of C and C++ with DIVINE 4”. In: Inter-
national Symposium on Automated Technology for Verification
and Analysis (ATVA) (to appear). 2017.

[Bat+11] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark
Weber. “Mathematizing C++ Concurrency”. In: Principles of
Programming Languages. POPL ’11. Austin, Texas, USA: ACM,
2011, pp. 55–66. doi: 10.1145/1926385.1926394.

[BDM13] Ahmed Bouajjani, Egor Derevenetc, and Roland Meyer. “Check-
ing and Enforcing Robustness against TSO”. In: European Sym-
posium on Programming. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2013, pp. 533–553. doi: 10.1007/978-3-642-37036-
6_29.

[Bey16] Dirk Beyer. “Reliable and Reproducible Competition Results
with BenchExec and Witnesses (Report on SV-COMP 2016)”.
In: Tools and Algorithms for the Construction and Analysis of
Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016,
pp. 887–904. doi: 10.1007/978-3-662-49674-9_55.

[Bey17] Dirk Beyer. “Software Verification with Validation of Results”.
In: Tools and Algorithms for the Construction and Analysis of
Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017,
pp. 331–349. doi: 10.1007/978-3-662-54580-5_20.

[BF16] Dirk Beyer and Karlheinz Friedberger. “A Light-Weight
Approach for Verifying Multi-Threaded Programs with
CPAchecker”. In: Mathematical and Engineering Methods in
Computer Science. 2016, pp. 61–71. doi: 10.4204/EPTCS.233.6.

[BK11] Dirk Beyer and M. Erkan Keremoglu. “CPAchecker: A Tool for
Configurable Software Verification”. In: Computer Aided Veri-
fication. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 184–190. doi: 10.1007/978-3-642-22110-1_16.

[BM08] Sebastian Burckhardt and Madanlal Musuvathi. “Effective Pro-
gram Verification for Relaxed Memory Models”. In: Computer
Aided Verification. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2008, pp. 107–120. doi: 10.1007/978-3-540-70545-1_12.

[Bou+15] Ahmed Bouajjani, Georgel Calin, Egor Derevenetc, and Roland
Meyer. “Lazy TSO Reachability”. In: Fundamental Approaches to
Software Engineering. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2015, pp. 267–282. doi: 10.1007/978-3-662-46675-9_18.

https://doi.org/10.1145/1926385.1926394
https://doi.org/10.1007/978-3-642-37036-6_29
https://doi.org/10.1007/978-3-642-37036-6_29
https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.4204/EPTCS.233.6
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-540-70545-1_12
https://doi.org/10.1007/978-3-662-46675-9_18

36

[BSS11] Jabob Burnim, Koushik Sen, and Christos Stergiou. “Sound
and Complete Monitoring of Sequential Consistency for Relaxed
Memory Models”. In: Tools and Algorithms for the Construction
and Analysis of Systems. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2011, pp. 11–25. doi: 10.1007/978-3-642-19835-9_3.

[Cas+17] Franck Cassez, Anthony M. Sloane, Matthew Roberts, Matthew
Pigram, Pongsak Suvanpong, and Pablo Gonzalez de Aledo.
“Skink: Static Analysis of Programs in LLVM Intermediate Rep-
resentation”. In: Tools and Algorithms for the Construction and
Analysis of Systems. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2017, pp. 380–384. doi: 10.1007/978-3-662-54580-5_27.

[CKL04] Edmund Clarke, Daniel Kroening, and Flavio Lerda. “A Tool
for Checking ANSI-C Programs”. In: Tools and Algorithms for
the Construction and Analysis of Systems. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 168–176. doi: 10.1007/
978-3-540-24730-2_15.

[CKS07] Pietro Cenciarelli, Alexander Knapp, and Eleonora Sibilio. “The
Java Memory Model: Operationally, Denotationally, Axiomati-
cally”. In: European Symposium on Programming. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2007, pp. 331–346. doi: 10.
1007/978-3-540-71316-6_23.

[Com12] ISO C++ Standards Committee. Standard for Program-
ming Language C++. Working Draft N3337. Tech. rep. ISO
IEC JTC1/SC22/WG21, 2012. url: http : / / www . open -
std.org/jtc1/sc22/wg21/docs/papers/2012/n3337.pdf.

[Dan+13] Andrei Marian Dan, Yuri Meshman, Martin Vechev, and
Eran Yahav. “Predicate Abstraction for Relaxed Memory
Models”. In: International Static Analysis Symposium. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 84–104. doi:
10.1007/978-3-642-38856-9_7.

[Dil96] David L. Dill. “The Murphi Verification System”. In: Computer
Aided Verification. CAV ’96. London, UK, UK: Springer-Verlag,
1996, pp. 390–393. url: http://dl.acm.org/citation.cfm?
id=647765.735832.

[DM14] Egor Derevenetc and Roland Meyer. “Robustness against Power
is PSpace-complete”. In: Automata, Languages, and Program-
ming. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014,
pp. 158–170. doi: 10.1007/978-3-662-43951-7_14.

https://doi.org/10.1007/978-3-642-19835-9_3
https://doi.org/10.1007/978-3-662-54580-5_27
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-71316-6_23
https://doi.org/10.1007/978-3-540-71316-6_23
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3337.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3337.pdf
https://doi.org/10.1007/978-3-642-38856-9_7
http://dl.acm.org/citation.cfm?id=647765.735832
http://dl.acm.org/citation.cfm?id=647765.735832
https://doi.org/10.1007/978-3-662-43951-7_14

37

[FG05] Cormac Flanagan and Patrice Godefroid. “Dynamic Partial-
order Reduction for Model Checking Software”. In: Principles
of Programming Languages. POPL ’05. Long Beach, California,
USA: ACM, 2005, pp. 110–121. doi: 10.1145/1040305.1040315.

[Flu+16] Shaked Flur, Kathryn E. Gray, Christopher Pulte, Susmit
Sarkar, Ali Sezgin, Luc Maranget, Will Deacon, and Peter
Sewell. “Modelling the ARMv8 Architecture, Operationally:
Concurrency and ISA”. In: Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. POPL ’16. St. Petersburg, FL, USA: ACM, 2016,
pp. 608–621. doi: 10.1145/2837614.2837615.

[GLW16] Henning Günther, Alfons Laarman, and Georg Weissenbacher.
“Vienna Verification Tool: IC3 for Parallel Software”. In: Tools
and Algorithms for the Construction and Analysis of Systems:
22nd International Conference, TACAS 2016, Held as Part of
the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016,
Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016,
pp. 954–957. doi: 10.1007/978- 3- 662- 49674- 9_69. url:
https://doi.org/10.1007/978-3-662-49674-9_69.

[God97] Patrice Godefroid. “Model Checking for Programming Languages
Using VeriSoft”. In: Proceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages.
POPL ’97. Paris, France: ACM, 1997, pp. 174–186. doi: 10.1145/
263699.263717.

[Hol97] G. J. Holzmann. “The model checker SPIN”. In: IEEE Trans-
actions on Software Engineering 23.5 (May 1997), pp. 279–295.
issn: 0098-5589. doi: 10.1109/32.588521.

[HR06] Thuan Quang Huynh and Abhik Roychoudhury. “A Memory
Model Sensitive Checker for C#”. In: FM 2006: Formal Methods.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 476–491.
doi: 10.1007/11813040_32.

[Lam79] L. Lamport. “How to Make a Multiprocessor Computer That Cor-
rectly Executes Multiprocess Programs”. In: IEEE Trans. Com-
put. 28.9 (Sept. 1979), pp. 690–691. issn: 0018-9340. doi: 10.
1109/TC.1979.1675439.

[Lat17] Chris Lattner. The LLVM Compiler Infrastructure Project. 2017.
url: http://llvm.org/ (visited on 08/22/2017).

https://doi.org/10.1145/1040305.1040315
https://doi.org/10.1145/2837614.2837615
https://doi.org/10.1007/978-3-662-49674-9_69
https://doi.org/10.1007/978-3-662-49674-9_69
https://doi.org/10.1145/263699.263717
https://doi.org/10.1145/263699.263717
https://doi.org/10.1109/32.588521
https://doi.org/10.1007/11813040_32
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
http://llvm.org/

38

[LW10] Alexander Linden and Pierre Wolper. “An Automata-Based Sym-
bolic Approach for Verifying Programs on Relaxed Memory Mod-
els”. In: Model Checking Software. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 212–226. doi: 10.1007/978-3-642-
16164-3_16.

[Mad+12] Sela Mador-Haim, Luc Maranget, Susmit Sarkar, Kayvan Memar-
ian, Jade Alglave, Scott Owens, Rajeev Alur, Milo M. K. Martin,
Peter Sewell, and Derek Williams. “An Axiomatic Memory Model
for POWER Multiprocessors”. In: Computer Aided Verification.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 495–512.
doi: 10.1007/978-3-642-31424-7_36.

[McK10] Paul E McKenney. “Memory barriers: a hardware view for
software hackers”. In: Linux Technology Center, IBM Beaverton
(2010).

[MPA05] Jeremy Manson, William Pugh, and Sarita V. Adve. “The Java
Memory Model”. In: Principles of Programming Languages.
POPL ’05. Long Beach, California, USA: ACM, 2005, pp. 378–
391. doi: 10.1145/1040305.1040336.

[Mrá+17] Jan Mrázek, Martin Jonáš, Vladimír Štill, Henrich Lauko, and
Jiří Barnat. “Optimizing and Caching SMT Queries in SymDI-
VINE”. In: Tools and Algorithms for the Construction and Anal-
ysis of Systems. Berlin, Heidelberg: Springer Berlin Heidelberg,
2017, pp. 390–393. doi: 10.1007/978-3-662-54580-5_29.

[ND13] Brian Norris and Brian Demsky. “CDSchecker: Checking Concur-
rent Data Structures Written with C/C++ Atomics”. In: Object
Oriented Programming Systems Languages & Applications. OOP-
SLA ’13. Indianapolis, Indiana, USA: ACM, 2013, pp. 131–150.
doi: 10.1145/2509136.2509514.

[NPW79] Mogens Nielsen, Gordon Plotkin, and Glynn Winskel. “Petri nets,
event structures and domains”. In: Semantics of Concurrent Com-
putation. Berlin, Heidelberg: Springer Berlin Heidelberg, 1979,
pp. 266–284. doi: 10.1007/BFb0022474.

[PD95] Seungjoon Park and David L. Dill. “An Executable Specification,
Analyzer and Verifier for RMO (Relaxed Memory Order)”. In:
Symposium on Parallel Algorithms and Architectures. SPAA ’95.
Santa Barbara, California, USA: ACM, 1995, pp. 34–41. doi: 10.
1145/215399.215413.

[Pro17] LLVM Project. LLVM Language Reference Manual. 2017. url:
http://llvm.org/docs/LangRef.html (visited on 08/22/2017).

https://doi.org/10.1007/978-3-642-16164-3_16
https://doi.org/10.1007/978-3-642-16164-3_16
https://doi.org/10.1007/978-3-642-31424-7_36
https://doi.org/10.1145/1040305.1040336
https://doi.org/10.1007/978-3-662-54580-5_29
https://doi.org/10.1145/2509136.2509514
https://doi.org/10.1007/BFb0022474
https://doi.org/10.1145/215399.215413
https://doi.org/10.1145/215399.215413
http://llvm.org/docs/LangRef.html

39

[PS16] Jean Pichon-Pharabod and Peter Sewell. “A Concurrency Seman-
tics for Relaxed Atomics That Permits Optimisation and Avoids
Thin-air Executions”. In: Principles of Programming Languages.
POPL ’16. St. Petersburg, FL, USA: ACM, 2016, pp. 622–633.
doi: 10.1145/2837614.2837616.

[RE14] Zvonimir Rakamarić and Michael Emmi. “SMACK: Decoupling
Source Language Details from Verifier Implementations”. In:
Computer Aided Verification. Cham: Springer International
Publishing, 2014, pp. 106–113. doi: 10 . 1007 / 978 - 3 - 319 -
08867-9_7.

[RŠB15] Petr Ročkai, Vladimír Štill, and Jiří Barnat. “Techniques for
Memory-Efficient Model Checking of C and C++ Code”. In: Soft-
ware Engineering and Formal Methods. Vol. 9276. Lecture Notes
in Computer Science. Springer International Publishing, 2015,
pp. 268–282. doi: 10.1007/978-3-319-22969-0_19.

[ŠA08] Jaroslav Ševčík and David Aspinall. “On Validity of Program
Transformations in the Java Memory Model”. In: European
Conference on Object-Oriented Programming. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2008, pp. 27–51. doi:
10.1007/978-3-540-70592-5_3.

[Sar+11] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and
Derek Williams. “Understanding POWER Multiprocessors”. In:
Programming Language Design and Implementation. PLDI ’11.
San Jose, California, USA: ACM, 2011, pp. 175–186. doi: 10.
1145/1993498.1993520.

[Sar+12] Susmit Sarkar, Kayvan Memarian, Scott Owens, Mark Batty,
Peter Sewell, Luc Maranget, Jade Alglave, and Derek Williams.
“Synchronising C/C++ and POWER”. In: Programming Lan-
guage Design and Implementation. PLDI ’12. Beijing, China:
ACM, 2012, pp. 311–322. doi: 10.1145/2254064.2254102.

[Sew+10] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa
Nardelli, and Magnus O. Myreen. “X86-TSO: A Rigorous
and Usable Programmer’s Model for x86 Multiprocessors”. In:
Communications of the ACM 53.7 (July 2010), pp. 89–97. issn:
0001-0782. doi: 10.1145/1785414.1785443.

[SPA94] CORPORATE SPARC International Inc. The SPARC architec-
ture manual (version 9). Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1994.

https://doi.org/10.1145/2837614.2837616
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-319-08867-9_7
https://doi.org/10.1007/978-3-319-22969-0_19
https://doi.org/10.1007/978-3-540-70592-5_3
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/2254064.2254102
https://doi.org/10.1145/1785414.1785443

40

[ŠRB14] Vladimír Štill, Petr Ročkai, and Jiří Barnat. “Context-Switch-
Directed Verification in DIVINE”. In: Mathematical and Engi-
neering Methods in Computer Science. Vol. 8934. Lecture Notes
in Computer Science. Springer International Publishing, 2014,
pp. 135–146. doi: 10.1007/978-3-319-14896-0_12.

[ŠRB16a] Vladimír Štill, Petr Ročkai, and Jiří Barnat. “DIVINE: Explicit-
State LTL Model Checker”. In: Tools and Algorithms for the Con-
struction and Analysis of Systems. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2016, pp. 920–922. doi: 10.1007/978-3-662-
49674-9_60.

[ŠRB16b] Vladimír Štill, Petr Ročkai, and Jiří Barnat. “Weak Memory
Models as LLVM-to-LLVM Transformations”. In: Mathematical
and Engineering Methods in Computer Science, Revised Selected
Papers. Vol. 9548. Lecture Notes in Computer Science. Springer
International Publishing, 2016, pp. 144–155. doi: 10.1007/978-
3-319-29817-7_13.

[ŠRB17] Vladimír Štill, Petr Ročkai, and Jiří Barnat. “Using Off-the-Shelf
Exception Support Components in C++ Verification”. In: IEEE
International Conference on Software Quality, Reliability and Se-
curity (QRS). July 2017, pp. 54–64. doi: 10.1109/QRS.2017.15.

[Šti16] Vladimír Štill. “LLVM Transformations for Model Checking”.
Master’s Thesis. Masarykova univerzita, Fakulta informatiky,
Brno, 2016. url: http://is.muni.cz/th/373979/fi_m/.

[TVD10] Emina Torlak, Mandana Vaziri, and Julian Dolby. “MemSAT:
Checking Axiomatic Specifications of Memory Models”. In:
Programming Language Design and Implementation. PLDI
’10. Toronto, Ontario, Canada: ACM, 2010, pp. 341–350. doi:
10.1145/1806596.1806635.

[TVD14] Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. “GPS:
Navigating Weak Memory with Ghosts, Protocols, and Separa-
tion”. In: Object Oriented Programming Systems Languages &
Applications. OOPSLA ’14. Portland, Oregon, USA: ACM, 2014,
pp. 691–707. doi: 10.1145/2660193.2660243.

[VN13] Viktor Vafeiadis and Chinmay Narayan. “Relaxed Separation
Logic: A Program Logic for C11 Concurrency”. In: Object Ori-
ented Programming Systems Languages & Applications. OOPSLA
’13. Indianapolis, Indiana, USA: ACM, 2013, pp. 867–884. doi:
10.1145/2509136.2509532.

https://doi.org/10.1007/978-3-319-14896-0_12
https://doi.org/10.1007/978-3-662-49674-9_60
https://doi.org/10.1007/978-3-662-49674-9_60
https://doi.org/10.1007/978-3-319-29817-7_13
https://doi.org/10.1007/978-3-319-29817-7_13
https://doi.org/10.1109/QRS.2017.15
http://is.muni.cz/th/373979/fi_m/
https://doi.org/10.1145/1806596.1806635
https://doi.org/10.1145/2660193.2660243
https://doi.org/10.1145/2509136.2509532

41

[YGL04] Yue Yang, Ganesh Gopalakrishnan, and Gary Lindstrom.
“Memory-Model-Sensitive Data Race Analysis”. In: Interna-
tional Conference on Formal Engineering Methods. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2004, pp. 30–45. doi:
10.1007/978-3-540-30482-1_11.

[ZKW15] Naling Zhang, Markus Kusano, and Chao Wang. “Dynamic Par-
tial Order Reduction for Relaxed Memory Models”. In: Program-
ming Language Design and Implementation. PLDI ’15. Portland,
OR, USA: ACM, 2015, pp. 250–259. doi: 10.1145/2737924.
2737956.

https://doi.org/10.1007/978-3-540-30482-1_11
https://doi.org/10.1145/2737924.2737956
https://doi.org/10.1145/2737924.2737956

42

Appendix A

Publications

Here I include a selection of my publications in which I have major contribu-
tion.

43

Techniques for Memory-Efficient Model
Checking of C and C++ Code?

Petr Ročkai, Vladimı́r Štill, and Jǐŕı Barnat

Faculty of Informatics, Masaryk University
Brno, Czech Republic

{xrockai,xstill,barnat}@fi.muni.cz

Abstract. We present an overview of techniques that, in combination,
lead to a memory-efficient implementation of a model checker for LLVM
bitcode, suitable for verification of realistic C and C++ programs.
As a central component, we present the design of a tree compression
scheme and evaluate the implementation in context of explicit-state
safety, LTL and untimed-LTL (for timed automata) model checking. Our
design is characterised by dynamic, multi-way adaptive partitioning of
state vectors for efficient storage in a tree-compressed hash table, repre-
senting the closed set in the model checking algorithm. To complement
the tree compression technique, we present a special-purpose memory
allocation algorithm with very compact memory layout and negligible
performance penalty.

1 Introduction

Model checking is an important verification technique with wide applicability
in software development. The older generation of model checking tools primar-
ily targeted special-purpose “modelling” languages, and as such are suitable for
stratified, long-term development processes. In those cases, the role of the model
checker was towards the early stages, especially in high-level design. However,
the trend in the software industry is towards much more tightly integrated de-
velopment cycles, where all activities are coupled as closely as possible to coding
and early deployment. In those scenarios, it would be impractical to add a long
and drawn-out process of modelling design elements that are to be programmed
(coded) in the implementation language at almost the same time. It is those
concerns that motivate the current work on model checking code directly. Ad-
ditionally, such tight integration of programming and model checking has other
benefits: it becomes possible to use the model checker to verify implementation-
level properties this way (as contrasted with design-level properties). As such, a
sufficiently powerful model checker has the capacity to enter the programmer’s
toolkit alongside interactive symbolic debuggers (like gdb) and runtime analysis
tools (like valgrind).

? This work has been partially supported by the Czech Science Foundation grant No.
15-08772S.

44 APPENDIX A. PUBLICATIONS

While it is quite obvious that those are all worthwhile goals, model checking
of executable code presents substantial challenges. In the case of explicit-state
model checking, the approach used by the DIVINE model checker [1], those chal-
lenges derive from the large number of distinct states reachable through exe-
cution of programs. This is most pertinent to multi-threaded programs, where
model checking happens to be also most useful. Besides the size of the state space,
the primary challenge in verifying a program directly lies in the interpretation of
the source code. In DIVINE, this challenge was quite successfully resolved by us-
ing a standard C/C++ compiler with an LLVM backend, and by interpreting the
resulting bitcode instead of the (much more complicated) original source code.
Besides simplifying the implementation of the model checker, this also removes
large portion of the complicated C++ compiler from the trusted code base.

The remaining challenges, stemming from large state spaces, are hence
twofold: the time required to explore the state space, and the memory required
to store it. Some techniques attack both problems at once: reduction techniques
that vastly reduce the number of reachable states are one such approach [7]. In
this regard, DIVINE employs a very successful τ+reduction [8] which removes
many thread interleavings and compresses state chains down to a single transi-
tion, without compromising the soundness of model checking. Some approaches
target one of those problems specifically: one such is parallelisation, which ex-
clusively aims at reducing the time required for a verification run to complete.
This is an important goal because a verification tool that can be used interac-
tively is more valuable than a batch one, where the user needs to wait overnight
(or for a week) to obtain the result. In this regard, DIVINE employs parallelism
extensively and achieves decent speed-ups through its use.

Finally, despite extensive state space reduction, the state spaces obtained
from C (and especially C++) programs are very large, memory-wise. And while
parallelism gives us an acceptably fast algorithm, it is easy to run out of available
memory. Of course, there is always room for optimisations: the LLVM interpreter
embedded in DIVINE is currently the main speed bottleneck, and as such is sub-
ject to ongoing optimisation effort. Nonetheless, even in its current incarnation,
on most computers, DIVINE will run out of memory very quickly. As such, tech-
niques that reduce memory use are of prime importance, even if they have a
modest negative impact on speed.

1.1 Reducing Memory Use

There are a few elements in an explicit-state model checker where large amounts
of (fast, random-access) memory are required. Usually, by far the most extensive
is the representation of the closed set, although the open set (usually a queue in a
parallel model checker) can become quite large as well. The representation of the
program being model checked is usually small and of constant size throughout
the computation, as is the code of the model checker itself. Hence, for all but
very small models, the memory requirements of the model checker are dominated
by the open and closed sets, which are composed of state vectors and often
some ancillary per-state data of the model checking algorithm. Besides the state

45

vectors themselves, the fact they are organised in a data structure (a hash table, a
queue or similar) causes memory overhead of its own. While with “plain” LLVM-
based model checking the state vectors are very large (often many kilobytes),
and as such, eclipse the memory requirements of all the data structures that hold
them, we will see the importance of memory efficiency of those data structures
rise in prominence when the amount of memory occupied by a single state vector
shrinks considerably.

One important technique that can contribute to memory efficiency of explicit-
state model checking is lossless compression. Several methods of lossless compres-
sion – including methods based on state vector decomposition – were introduced
over the time as discussed in Section 1.2. In our work we present an extension
of existing state vector decomposition methods that is particularly well suited
for real-world application of model checking of C and C++ code through LLVM
bitcode – it supports dynamically sized states, has no need for preallocation of
fixed-size closed set and supports parallel model checking. We show in our exper-
iments that for verification of real-world programs with DIVINE, the method we
describe constitutes enabling technology. That is, we show that it is possible to
verify programs where verification without compression would require terabytes
of RAM.

1.2 Related Work

The oldest and simplest lossless compression method was to use a generic data
compression algorithm (Huffman coding, arithmetic coding, etc.) to compress
individual state vectors before storing them into memory [5, 3]. These approaches
only minimally exploit the redundancy between different states, which is usually
much higher than the redundancy within a single state vector.

In this respect, a better method has been proposed in [4], where the state
vector is decomposed and each slice of the vector is hashed separately and only
indices to those slices are saved as a state. This exploits the fact that many state
vectors contain parts that are identical between different states and also much
longer than a single pointer – hence, storing a pointer to a separately hashed
slice is more memory-efficient than storing the duplicated area repeatedly. While
this idea is in a way a specialisation of otherwise very generic and well-known
dictionary-based compression (as employed by the commonly used LZ77 [10]
algorithm), it has some special properties that make it more interesting for model
checking: namely, the construction of the “dictionary” makes it easy and efficient
to hash the compressed states and compare them for equality – neither of those
steps needs to decompress states already stored.

The one-level scheme proposed in [4] has been improved upon by [2], making
it fully recursive. It also removes the requirement that the compression algo-
rithm knows specifics about the state vector layout. This recursive approach has
been further adapted for parallel model checking in [6]. One downside of this
implementation is a requirement for a fixed-size, pre-allocated hash table with
fixed size slots.

46 APPENDIX A. PUBLICATIONS

We use a similar scheme, but we re-introduce optional state vector layout
awareness into the compressor, we use generic n-ary trees instead of binary, we
use resizing hash tables in the implementation and we focus on dynamically sized
states which naturally occur in LLVM-based programs which include memory
allocation.

2 Tree Compression

Depending on the verification task, the storage size of a single vertex (state)
can be fairly large. This is especially true of more complicated model checking
inputs, like timed automata or LLVM1. In those cases, it makes sense to consider
compression schemes for states and/or the entire state space. In DIVINE, we
have implemented the latter [9], using a scheme similar to collapse [4]. Since our
hash table is resizeable to facilitate better resource use, we cannot directly use
some of the improvements that rely on fixed-size hash tables [6]. On the other
hand, since the hash table we use can accommodate variable-size keys, we are not
limited to fixed-layout trees and can use content-aware state decomposition like
in the original collapse approach (but unlike original collapse, we can decompose
the state recursively, which is useful with more complex state vectors, like those
arising from LLVM inputs). The decomposition tree structure is illustrated in
Figure 1.

state vector

root component vector

internal component vectors

leaves

Fig. 1. A decomposition of a state into a component tree. The leaves represent frag-
ments of the original state vector.

Our approach uses three hash tables that are adaptively resized as needed.
One holds root elements – one root element corresponds to each visited state
1:1. These root elements are represented as component vectors, where each com-
ponent is represented as a separate object in memory. Those components are

1 In theory, nothing about LLVM per se causes states to be large; in practice, however,
inputs that are expressed in terms of LLVM have a tendency to have much richer
state than more traditional formalisms, like DVE or ProMeLa.

47

de-duplicated using a leaf table – a state fragment that is identical in multiple
different states is only stored once, and the root table refers to the de-duplicated
instances of those objects. To facilitate recursive decomposition, we also main-
tain a third table, internal, for internal nodes of the state decomposition tree.
The internal nodes have the same structure as root nodes (a vector of point-
ers), but they do not correspond to complete states and the internal table is
not consulted by the model checking algorithm when looking up vertices during
search.

The component vectors contain a flag to decide whether a particular compo-
nent is another component vector or a state fragment, as otherwise they are not
distinguishable – both are stored as raw byte arrays in memory, without distinct
headers. Clearly, reconstructing a state vector from a component vector is eas-
ily done by walking the decomposition tree and copying leaf node content to a
buffer from left to right. In theory, storing the size of the entire state in the root
component vector could improve efficiency by making the reconstruction work in
a single pass, copying fragments into a pre-allocated buffer. In practice however,
the decomposition trees are small and the requisite pointers are retained in fast
CPU cache on the first pass (when the buffer size is computed), making the sav-
ings from a single-pass algorithm small. Moreover, the extra memory overhead
of storing another integer along with each state is far from negligible.

The trade-off inherent in tree-based compression schemes is visible in Fig-
ures 1 and 2. Compare the number of squares (memory cells) in these two pic-
tures. The original state vector occupies 11 cells, its decomposition uses 18 cells.
However, adding another similar state (state B in Figure 2) increases the mem-
ory use only by 9 cells in the compressed variant, while it would add another
11 cells without compression. The state vectors illustrated here are extremely
small; real-world LLVM states typically occupy thousands of memory cells and
bigger states naturally favour compression. On the other hand, a realistic imple-
mentation introduces slightly more memory overhead than the idealised picture
show here.

state A state B

Fig. 2. A de-duplicated pair of states. The layers are analogous to Figure 1. States A
and B differ only in the light green component.

48 APPENDIX A. PUBLICATIONS

2.1 Splitting State Vectors

The fact that both the component vectors in the internal nodes and the state
vector fragments stored in the leaf table are of possibly variable size (and making
them fixed-size would not improve compactness, thanks to the memory allocator
design described in Section 3), we gain the capability to decide on how to split
state vectors dynamically. This capability can be used to align boundaries of
both leaf fragments as well as their groupings with logical divisions of the state
vector. The working hypothesis is that this would improve compression ratio,
since changes between state vectors that are neighbours in the state space have
a tendency to be localised within the state vector. By correctly aligning the
split points for the purposes of compression, we expect the changes between
a pair of related state vectors to be localised to the smallest possible subtree.
Moreover, the size of a decomposition tree has an impact on performance: if we
can identify large contiguous chunks of the state vector that change only rarely,
if at all, we can reduce the size of the decomposition trees and thus improve
the overall speed of verification. On the other hand, if those larger chunks in
fact do change, this has adverse effect on compression ratio. Therefore, finding a
good way to split the state vectors is a balancing act: smaller leaf fragments and
more balanced trees lead to better compression, but incur higher performance
penalty. Of course, leaf fragment size cannot be reduced arbitrarily: to achieve
compression, a leaf must be strictly larger than a single pointer (8 bytes), since
the reference in the parent node is represented using a pointer.

2.2 Interactions

The tree compression methods interacts with other components of the model
checker. First, the memory allocation regime is an important aspect: how big
a pointer to a node is, for example, is quite important from the perspective of
compression ratio. With 32-bit pointers, compared to 64-bit, we could expect
nearly twice the memory efficiency. However, that would also limit the number
of nodes in the compression tree to about 4 billion: considering that on realistic
x86-class hardware, exploring and storing 40 billion states is possible, and even
if we neglect the requirement to also store internal and leaf nodes of the tree,
32-bit pointers are clearly insufficient.

Another aspect to consider is how the requirements of parallel exploration
affect the compression method. In shared memory, DIVINE offers two exploration
modes, shared and partitioned. On modern hardware, the shared mode is usually
faster, especially with higher thread counts. In the context of compression, it
offers another important advantage: since it uses a single hash table which is
shared by all the workers, tree compression is very efficient. Since all states are
stored in the same (compressed) hash table, all redundancy can be exploited
for compression. With the partitioned scheme, on the other hand, each state is
statically assigned to a particular worker thread, and each thread maintains a
private hash table. This hash table is slightly more efficient (because access to
it does not need to be thread-safe), but this advantage is usually outweighed by

49

more costly communication between the threads which need to exchange states
based on the partitioning. The effect on compression is even more pronounced,
though: since each thread stores – and compresses – state vectors privately, a
large fraction of the leaf and internal nodes will be duplicated. This happens
whenever two state vectors share a subtree, but are assigned to different worker
nodes. This subtree would only be stored once in the shared scheme, but twice
in the partitioned scheme.

On the other hand, DIVINE also offers a distributed-memory mode, using
MPI for communication. This mode necessarily works just like the partitioned
mode in shared memory: each machine in the cluster has a private hash table
and compression is performed locally within that hash table. This means the
compression will be less efficient in distributed-memory situations, nonetheless
substantial savings are still possible.

Finally, besides the closed set stored in the hash table (or hash tables in
partitioned and distributed modes), a model checker needs to maintain an open
set. In parallel algorithms, both for checking safety (reachability) and for LTL
model checking (OWCTY), this is often a queue. Since the compression method
we use is lossless, the state vector can be reconstructed from its compressed form
and it is possible to also compress the open set, in addition to the closed set.

3 Memory Allocation

Memory allocation is an extremely frequent operation in an explicit-state model
checker. Moreover, the memory pool that threads allocate from is a shared re-
source, requiring certain amount of synchronisation. One way to side-step this
issue is to statically pre-allocate as many resources as possible – this is the ap-
proach taken by, most prominently, the model checker SPIN. The main downside
of this approach is that the tool either has to “guess” resource use very well ahead
of time, or rely on the user to provide guidance. In all but very simple scenarios,
the former is very hard to get right – models vary wildly from one to another in
which parts of the model checker they stress. Some require very long queues or
deep stacks, even when the overall size of the state space is comparatively small.
Others only need a very small queue but the state space is huge, and almost
all memory needs to be allocated towards the closed set. Some models have few
big states, requiring few slots in the hash tables, but need a lot of memory for
storing the states themselves.2

However, there is a more important limitation, namely with regard to mul-
titasking: users expect to be able to execute multiple instances of a program
at the same time, especially if the verification runs are well below the limits of
the computer they are using. Static resource allocation in such cases becomes
a chore – especially so if multiple users are involved on shared hardware. In
most cases, we aim at interactive use: batch scheduling is only suitable for very

2 The LTSmin model checker avoids this particular resource split by storing state
vectors decomposed, each fixed-size chunk stored inline in the large pre-allocated
hash table.

50 APPENDIX A. PUBLICATIONS

large instances, where the entire computer (or a cluster) is tied up in a single
verification task. Meanwhile, a large SMP system can easily serve many tasks
and many users interactively – but this means that tasks should only consume
resources that they actually need, so that resource conflicts are minimised. This
is very hard to achieve if memory needs to be pre-allocated at a time when the
size of the state space is not yet known.

To address those issues, DIVINE uses dynamic allocation for all resources,
achieving optimal hardware utilisation when multitasking. There are, however,
multiple challenges associated with this flexibility, especially when dealing with
parallel algorithms.3

3.1 Allocation Profile

When designing a custom memory allocator, the first thing to ask is what is the
allocation profile of our target application. Are object sizes similar, or distributed
across a wide spectrum? Are there many small allocations, or few big allocations?
Is memory retained for a long time, or a short time? Is memory deallocated often?

We can answer most of those questions for DIVINE: for one, there is a ten-
dency to see many objects of similar size. This is most visible in models with
fixed-size states (this is actually the case with majority of input languages in
DIVINE: most traditional modelling languages require all state variables to be
explicitly declared and do not provide dynamic variables). It is also true, to a
smaller extent, with variable-size state vectors: many states will differ in content
but not the size of the state vector. For LLVM, state size changes when a thread
is created, a function is entered or left and when a new thread is created or
when heap memory is allocated. All these operations are comparatively rare, so
we can expect many states of any given size to appear over time. This is even
more pronounced when compression enters the picture, since the fragments have
more uniform sizes than the entire state vectors. This favours a design where
objects of a particular size are grouped into bigger blocks, reducing overheads
in the parent allocator (both time and memory overhead).

This type of layout also offers the opportunity to store exact object size
as allocator metadata, once per block of objects. When state vectors (or their
fragments) are of variable length, their length needs to be stored somewhere: if
each state vector stores its own length, this either adds 4 bytes of overhead per
state (or, when using 2 bytes, causes the rest of the vector to be stored unaligned
which incurs a large performance penalty). Both are far from optimal. If the size
is stored once per block, a single 4-byte word can be used to keep the size for
hundreds of objects, saving considerable amounts of memory. It does mean that
the allocator needs to be able to find block metadata from a pointer, to read the

3 Intra-process parallelism can be very useful even when multiple verification instances
are involved. A 64-core system can easily accommodate 4 verification tasks running
on 16 cores each, splitting memory between those 4 tasks as needed. If memory
becomes scarce, some of the processes can be suspended and swapped out to disk
and later, when other tasks have finished, resumed again.

51

object size associated with the pointer. This particular optimisation also cancels
out the extra overhead from adaptive, recursive state splitting employed in our
compression scheme. For root and internal nodes, the size of the node (obtained
through the allocator) can be used to easily compute the number of children.
Likewise, the size of a particular leaf fragment can be cheaply extracted from
the allocator metadata.

Second, there are two main classes of objects during state space exploration:
the first class contains state vectors that are part of the closed set, and will be
reclaimed at the end of the verification run, but not earlier. The second class
contains newly generated successor states that may or may not be duplicates of
states in the closed set – some of those will go on to be added to the closed set
(which may require their re-allocation if compression is enabled) while others
will be deallocated when they are found to be duplicates. In other words, some
objects are short-lived, and some are very long lived – however, there are few,
if any, “in-between” objects. This split would favour a generational allocator –
especially since we often know ahead of time whether a particular object will be
short- or long-lived (at least in the case where compression comes into play – in
other circumstances, the distinction is less clearly cut).

Since compression is such an important ingredient, its requirements need to
be considered in the design of a good memory allocator. The considerations laid
out above lead to a design where memory is allocated in blocks of same-sized
objects. For a number of reasons, it is impractical to reclaim blocks that have
been already claimed for a particular object size for another object size (here,
parallel access is the main reason that an efficient solution is not known to exist).
However, when compression is in use, the state vectors that are allocated during
successor generation (into the open set) only exist for a very short time, since
they are immediately moved into the compressed state store. Consequently, if
the same allocator was to be used for those ephemeral state vectors, a substantial
amount of memory would be claimed but unused. While the amount of memory
so wasted is only proportional to the number of different state vector sizes (and as
such not very large), it can add up to many megabytes. More importantly, this
overhead appears in each thread separately and is therefore also proportional
to the number of execution threads. So while raw speed is not affected much
by a generational approach, memory efficiency can be jeopardised. With those
considerations in mind, when state compression is enabled, ephemeral memory
is obtained from a simple, special-purpose allocator.

3.2 Pointer Representation

There are two basic options on how to represent pointers: either use raw ma-
chine pointers, or use an indirection scheme. The former has a clear advantage
in terms of access speed: dereferencing a raw machine pointer is as fast as it gets
– any other representation will incur additional costs. On the other hand, most
contemporary platforms use pointers that are 64 bits wide – for realistic memory
sizes, this constitutes substantial overhead. Current CPUs can physically address
at most 48-bit memory addresses, while the rest of the pointer representation

52 APPENDIX A. PUBLICATIONS

is unused – that is 16 bits of memory lost for every pointer. Moreover, there
are plenty of places in DIVINE where extra bits packed inside pointers can save
considerable amount of memory: the hash tables, for example, can use (some of)
those 16 bits to store a small part of the hash value to avoid full object com-
parisons and speed up lookups at no extra memory expense. Quite importantly,
the compression algorithm can use a few of those bits for type-tagging pointers,
making it free, in terms of memory use, to distinguish state vector fragments
from state component vectors (cf. Section 2).

Moreover, a custom pointer representation enables the allocator to easily find
the block header for any given pointer, making it possible to obtain object sizes
from pointers to those objects. As explained in previous section, this can save
considerable memory in some cases.

The main downside is that the pointer dereference operation needs to con-
sult a lookup table to reconstruct the raw machine pointer. The lookup tables
can be represented in such a way that this can be implemented using a single
addition instruction, followed by a memory fetch from the lookup table, followed
by another addition instruction. Since the lookup tables are relatively small, we
can hope that they will always be readily available from fast CPU cache. Maybe
more importantly, there will only be very few very hot cache lines in those lookup
tables. In our informal testing, the slowdown from this indirection was in single-
digits percent range, while the memory savings were quite substantial. Based
on this, we have decided to use indirect pointers for storing states and state
fragments.

3.3 Implementation

The considerations laid out in previous sections give us a fairly good guidance on
how to implement an efficient allocator for use in DIVINE. Our implementation
uses a custom pointer type, which is translated to machine pointers on demand,
at the cost of an extra memory fetch (which is expected to be served from cache,
since the indirection table is usually very hot) and a couple of addition instruc-
tions. All data structures in the hot paths of the allocator (object allocation and
deallocation) are thread-local and expensive thread synchronisation only hap-
pens in special circumstances, usually after some threshold is exceeded: either
per-thread freelists have grown too big, or they have become empty; or when
all freelists are empty and no pre-allocated memory is available, in which case
it needs to be obtained from the operating system.

The shared data structures: indirection tables and lists of shared freelist, are
implemented as standard lock-free data structures. Since they are only accessed
comparatively rarely, no special precautions need to be taken to make access
to them more efficient – the indirection table is almost entirely read-only – it
is only written when a new block is allocated. Additionally, a shared counter
is maintained to assign blocks to threads (threads claim 16 blocks at once to
minimise contention on this counter; the blocks are only allocated when they
are needed though).

53

Table 1. Scaling of pthread rwlock LLVM model with and without compression and
with different splitters.

W=1 W=2 W=4 W=8
Configuration time scale time scale time scale time scale

no comp.+eph alloc. 7581 1 3785 2.00 1985 3.82 1009 7.51
tree+none+generic 11094 1 6052 1.83 3000 3.70 1499 7.40
tree+old+generic 11625 1 6230 1.87 3074 3.78 1559 7.46
tree+eph+generic 11332 1 5693 1.99 2981 3.80 1523 7.44
tree+eph+hybrid 11258 1 5677 1.98 2973 3.79 1518 7.42

tree+eph+obj-mono 11227 1 5727 1.96 2972 3.78 1519 7.39
tree+eph+obj-rec 11265 1 5743 1.96 3006 3.75 1540 7.31

4 Measurements

We implemented the aforementioned scheme in DIVINE and evaluated it using
several large C and C++ models translated into LLVM. We also verified general
usability of this scheme by benchmarking a few UPPAAL Timed automata mod-
els. All the models can be found in DIVINE source distribution. In this section
we will give a detailed analysis of our results.

To measure memory requirements, we used DIVINE’s simple statistics output
which allows us to track memory allocation during a verification run. We mea-
sured resident memory usage, either for DIVINE as a whole or divided by number
of states explored; either way, the number in statistics is adjusted by subtract-
ing resident memory used before the model is loaded and before the verification
algorithm starts – this allows us to easily compare numbers between different
configurations of DIVINE, but still includes all the overheads of the algorithm,
such as overhead of thread-local data in a multi-threaded setting. Memory mea-
surements were performed on several computers in a way no memory swapping
could have occurred.

For time measurements, we take wall time from DIVINE’s report. This time
includes the initialisation of the algorithm and the time required to load the
model. Time measurements were performed on server with two Intel Xeon E5-
2630v2 CPUs at 2.60GHz with 128GB of memory.

Besides the detailed measurements presented in the following sections, we
have also measured (using the same set of models) that on average, verifica-
tion with compression generates states at 77% of the speed of uncompressed
algorithm in case of single threaded run, and 73% for 8 workers. We have also
measured the scaling behaviour of various configurations of compression and
memory allocation schemes. The results of those measurements are summarised
in Table 1.

4.1 Allocation schemes

Table 2 shows how memory requirements of DIVINE with tree compression vary
based on the allocation scheme used and the number of worker threads. In this
case we have considered three variations of allocation scheme:

54 APPENDIX A. PUBLICATIONS

Table 2. Memory use of LLVM models with compression depending on memory allo-
cator and number of workers.

Average state memory (B)
Name W=1 W=2 W=4 W=8 W=16

n/a old eph n/a old eph n/a old eph n/a old eph n/a old eph

pt rwlock 105 90 88 106 93 89 106 96 90 106 104 90 109 121 94
pt barrier 60 45 45 65 53 53 64 53 52 63 54 52 63 53 53
collision 252 232 229 253 237 229 253 245 229 257 261 235 265 296 246
elevator2 105 81 81 106 82 82 106 82 82 106 82 82 107 84 83
lead-uni basic 55 45 45 56 47 45 55 48 45 56 52 46 57 59 48
lead-uni peterson 66 57 56 67 59 56 67 61 56 67 67 58 69 79 60
hashset-2-4-2 243 202 191 244 213 191 244 232 192 246 270 194 250 340 198

W=40
hashset-3-1 67 77 47

n/a direct allocator, which uses raw machine pointers, and allocates them using
general purpose allocator (TBB malloc); this scheme stores the size of each
entry directly in the memory of the entry, which increases its overhead;

old indirection allocator from Section 3.3 without ephemeral memory optimi-
sation;

eph indirection allocator from Section 3.3 with ephemeral memory optimisation.

It can be clearly seen that indirection allocator with ephemeral memory
optimisation is the best option, providing best memory efficiency among the
considered options. While the indirection allocator without ephemeral mem-
ory optimisation provides comparable efficiency in single-threaded verification,
it quickly loses to the optimised version as number of workers increase; this
is caused by thread-local overhead of the allocator when allocating short-lived
blocks of different sizes. Furthermore, for sufficient number of workers, overhead
of the per-thread structures of this allocator can outweigh per-state overheads
of the naive solution. These measurements show the importance of an efficient
memory allocation scheme for multi-threaded verification, which was further em-
phasised on hashset-3-1 model with 630 millions of states, which was verified
using 40 worker threads: here, the naive solution has 43 % overhead over our
allocator with ephemeral storage, while the allocator without ephemeral storage
has 64 % overhead over ephemeral storage allocator. This shows that efficient
parallel allocator is a necessary part of memory-efficient parallel verification.

4.2 Compression efficiency

Tables 3 and 4 list overall memory usage and memory usage per state, respec-
tively, including memory usage for various state-vector splitting strategies:

none Verification without compression. For large models (where more than 320
GB RAM was required to finish verification) this value is a lower bound
based on average state size and the number of states as reported by a run

55

Table 3. Total resident memory used for LLVM models, without and with compression
with different splitters.

memory usage (GB)
Name # of compression ratio

states none generic hybrid obj-mono obj-rec best worst

pt rwlock 10.7 M 67.9 0.88 0.93 0.92 0.94 77.2 72.2
pt barrier 128.5 M > 825.4 5.48 9.00 8.98 9.27 150.5 89.0
collision 3.0 M 47.6 0.64 0.63 0.64 0.64 75.3 74.1
elevator2 33.0 M > 342.8 2.50 1.93 1.90 1.90 180.3 137.4
lead-uni basic 19.2 M 232.0 0.81 1.30 1.30 1.30 288.1 178.3
lead-uni peterson 12.2 M 146.4 0.64 1.03 1.03 1.03 229.6 142.2
hashset-2-4-2 6.7 M 133.3 1.20 1.15 1.15 1.16 116.1 111.1
hashset-3-1 626.9 M > 15109.8 27.51 31.96 31.55 31.44 549.1 472.7

Table 4. Total resident memory used for LLVM models, without and with compression
with different splitters.

average state memory (B)
Name # of compression ratio

states none generic hybrid obj-mono obj-rec best worst

pt rwlock 10.7 M 6807 88 92 91 94 77.2 72.2
pt barrier 128.5 M > 6900 45 75 75 77 150.5 89.0
collision 3.0 M 17119 229 227 231 229 75.3 74.1
elevator2 33.0 M > 11130 81 62 61 61 180.3 137.4
lead-uni basic 19.2 M 12966 45 72 72 72 288.1 178.3
lead-uni peterson 12.1 M 12926 56 90 90 90 229.6 142.2
hashset-2-4-2 6.7 M 21283 191 183 184 184 116.1 111.1
hashset-3-1 626.9 M > 25879 47 54 54 53 549.1 472.7

with compression. This bound therefore does not include any overheads of
the verification algorithm.

generic Compression with a generic splitter which decomposes a state vector
into a balanced binary tree with fixed-sized leaves.

hybrid Compression with a splitter that decomposes a state vector according
to the top-level structure of the state vector. The splitter is aware of global
symbols, heap, and thread stacks. These chunks are further split in a generic
way.

obj-mono An extension of the hybrid approach which further decomposes the
state vector, respecting boundaries of smaller objects (individual variables,
stack frames and so on). This splitter does not decompose any large individ-
ual objects.

obj-rec An extension of the obj-mono approach that also allow for decomposi-
tion of large objects (> 40 bytes) in a binary fashion.

From the aforementioned tables, the following conclusions can be drawn: tree
compression offers excellent savings for LLVM models, providing up to several
orders of magnitude decrease in memory requirements. This enables verification

56 APPENDIX A. PUBLICATIONS

Table 5. Total resident memory used for Timed Automata models, without and with
compression.

memory usage (GB) average state memory (B)
Name # of compression compression ratio

states none custom generic none custom generic best worst

fischer9 ltsm 0.56 M 0.86 0.11 0.13 1656 212 249 7.8 6.6
fischer9 0.56 M 0.86 0.11 0.13 1656 211 249 7.8 6.6
fischer10 2.5 M 4.40 0.26 0.26 1892 113 113 16.6 16.6
fischer11 11.1 M 23.2 1.15 1.40 2243 110 135 20.2 16.6
fischer12 48.8 M > 119 4.23 4.23 > 2618 93 93 28.0 28.0
train-gate9 6.5 M 3.26 0.91 1.03 535 149 169 3.6 3.2
train-gate10 65.4 M 36.8 5.94 11.14 604 97 182 6.2 3.3

of models which would be otherwise intractable on any realistic hardware4. Fur-
thermore, with the exception of hashset-3-1, all of the measured compressed
state-spaces can be efficiently verified using a high-end laptop. This is a signifi-
cant improvement over a dedicated multi-socket computer for verification of the
same models that would be needed otherwise (without compression).

Even more significant is the observation that memory requirements per state
decrease as the number of states increases, and that they seem to converge to
approximately the same number independent of state vector size: even though
hashset-3-1 has almost 4 times larger state vector then pthread barrier, its
states are compressed into almost the same size.

Finally, we observe that the effect of advanced splitting algorithms on mem-
ory efficiency is mostly negative for LLVM models, even though the achieved
compression ratios are still very good in those cases.

Table 5 shows compression results for UPPAAL Timed automata models, us-
ing a custom and a generic state vector splitter. The generic version is modelling-
language-agnostic and therefore the same as in case of LLVM models. The custom
splitter uses a technique similar to the hybrid approach in LLVM. For UPPAAL
models, the achieved compression ratios are much lower, but still a significant
reduction is obtained. Furthermore, we can see that in this case a custom splitter
can significantly improve compression ratio.

5 Conclusions

We have presented a scheme for compressing state vectors in an explicit-state
model checker geared towards verification of C and C++ programs. The main
contribution of our work is a very efficient scheme for allocating memory and
its novel combination with a tree compression scheme. Our approach builds on

4 If we extrapolate from the biggest model, hashset-3-1, we can estimate maximum
tractable state space size to be over 40 billion vertices considering high-end server
with 2TB of RAM, this could result in around 950 TB of raw uncompressed state
space.

57

earlier solutions but mitigates many of their limitations. The presented scheme
is very flexible and offers excellent compression ratios (up to 500×) at a very
modest performance penalty. Our tool, building on the presented approach, is
realistically capable of exploring on the order of tens of billions of states using
commercial, off-the-shelf hardware. Moreover, this number discounts the savings
from τ+reduction which alone offers a 50-1000× saving (depending on the model,
larger state spaces usually benefit more), together approaching the equivalent of
1012 unreduced, uncompressed states (or, considering an average state size of 12
kilobytes, the equivalent of 10000 terabytes of memory).

This represents a considerable improvement in our ability to verify real-world
code. With the addition of sufficient parallelism into the mix, very realistic pro-
grams can be model-checked in reasonable time and memory using explicit-state
techniques. Just as importantly, those advances benefit not only verification of
big problem instances on big hardware, but also considerably expands what can
be verified using your laptop. In the course of development of DIVINE itself, we
increasingly rely on model checking the source code of its components to ensure
their correctness. We are quite happy to report that this approach to software
development is quickly becoming viable.

References

1. J. Barnat, L. Brim, V. Havel, J. Havĺıček, J. Kriho, M. Lenčo, P. Ročkai, V. Štill,
and J. Weiser. DiVinE 3.0 – An Explicit-State Model Checker for Multithreaded
C & C++ Programs. In Computer Aided Verification (CAV 2013), volume 8044
of LNCS, pages 863–868. Springer, 2013.

2. S. Blom, B. Lisser, J. van de Pol, and M. Weber. A Database Approach to Dis-
tributed State Space Generation. Electronic Notes in Theoretical Computer Sci-
ence, 198(1):17–32, 2008.

3. J. Geldenhuys, P. de Villiers, and J. Rushby. Runtime Efficient State Compaction
in SPIN. In Theoretical and Practical Aspects of SPIN Model Checking, volume
1680 of LNCS, pages 12–21. Springer, 1999.

4. G. J. Holzmann. State Compression in SPIN: Recursive Indexing And Compression
Training Runs. In The International SPIN Workshop, 1997.

5. G. J. Holzmann, P. Godefroid, and D. Pirottin. Coverage Preserving Reduction
Strategies for Reachability Analysis. In PSTV, pages 349–363, 1992.

6. A. Laarman, J. van de Pol, and M. Weber. Parallel Recursive State Compression
for Free. In SPIN, pages 38–56, 2011.

7. D. Peled. Ten Years of Partial Order Reduction. In Proceedings of the 10th Interna-
tional Conference on Computer Aided Verification, pages 17–28. Springer-Verlag,
1998.

8. P. Ročkai, J. Barnat, and L. Brim. Improved State Space Reductions for LTL
Model Checking of C & C++ Programs. In NASA Formal Methods (NFM 2013),
volume 7871 of LNCS, pages 1–15. Springer, 2013.

9. V. Štill. State Space Compression for the DiVinE Model Checker, 2013. Bachelor’s
thesis, Faculty of Informatics, Masaryk University Brno.

10. J. Ziv and A. Lempel. A Universal Algorithm for Sequential Data Compression.
Information Theory, IEEE Transactions on, 23(3):337–343, May 1977.

58 APPENDIX A. PUBLICATIONS

Weak Memory Models as LLVM-to-LLVM
Transformations?

Vladimı́r Štill, Petr Ročkai??, and Jǐŕı Barnat

Faculty of Informatics, Masaryk University
Brno, Czech Republic

{xstill,xrockai,barnat}@fi.muni.cz

Abstract. Data races are among the most difficult software bugs to dis-
cover. They arise from multiple threads accessing the same memory lo-
cation, a situation which is often hard to discern from source code alone.
Detection of such bugs is further complicated by individual CPUs’ use
of relaxed memory models. As a matter of fact, proving absence of data
races is a typical task for automated formal verification. In this paper,
we present a new approach for verification of multi-threaded C and C++
programs under weakened memory models (using store buffer emulation),
using an unmodified model checker that assumes Sequential Consistency.
In our workflow, a C or C++ program is translated into LLVM bitcode,
which is then automatically extended with store buffer emulation. After
this transformation, the extended LLVM bitcode is model-checked against
safety and/or liveness properties with our explicit-state model checker
DIVINE.

1 Introduction

Finding concurrency-related errors, such as deadlocks, livelocks and data races
and their various consequences, is extremely hard – the standard testing ap-
proach does not allow the user to control the precise timing of interleaved oper-
ations. As a result, some concurrency bugs that occur under a specific interleav-
ing of threads may remain undetected even after a substantial period of testing.
To remedy this weakness of testing, formal verification methods, explicit-state
model checking in particular, can be of extreme help.

Concurrent access to shared memory locations is subject to the so called
memory model of the specific CPU in use. Generally speaking, in relaxed mem-
ory models, the visibility of an update to a shared memory variable may be
postponed or even reordered with other updates to different memory locations.
Unfortunately, most programming and modelling languages were designed to
merely mimic the principles of the underlying sequential computation machine,
and therefore lack the syntactic and semantic constructs required to express

? This work has been partially supported by the Czech Science Foundation grant No.
15-08772S.

?? The contribution of Petr Ročkai has been partially supported by Red Hat, Inc.

59

low-level details of the concurrent computation and the memory model of the
underlying hardware architecture in particular. Moreover, for obvious reasons,
programmers design parallel algorithms with the Sequential Consistency [14]
memory model in mind, under which any write to or read from a shared variable
is instantaneous and immediately visible to all concurrent threads or processes
– an assumption that is far from the reality of contemporary processors.

To protect from inconsistencies due to the reordered or delayed memory
writes in the relaxed memory model architectures, specific low-level hardware
mechanisms, such as memory barriers, have to be used. A memory barrier makes
sure that all the changes done prior the barrier instruction are visible to all other
processes before any other instruction after the barrier is executed. For more
details on how memory barriers work we kindly refer the reader to technical
literature. Naturally, the implementation details of a specific relaxed memory
model depend on the brand and model of a CPU in use [19].

As a result, programs written in programming languages such as C do not
contain enough information for the compiler to emit the code whose behaviour
is both correct with respect to the incomplete specification given by the source
code and at the same time as efficient as possible. A widely accepted com-
promise is that sequential code is guaranteed to be semantically correct, but
any concurrent data access is the responsibility of the programmer. Such access
needs to be guarded with various programming and modelling language addons
such as builtin compiler functions, operating system calls, atomic variables with
(optional) explicit memory ordering specification, or other non-language mech-
anisms. Since the correctness of behaviour depends on a human decision, often
the resulting binary code does not do exactly what it was intended to do by its
developer.

This is exactly where formal verification by model checking can help. The
model checking procedure [7] systematically explores all configurations (states)
of a program under analysis to discover any erroneous or unwanted behaviour
of the program. The procedure can easily reveal states of the program that
are only reachable under a very specific thread interleaving; clearly, such states
may be very hard to reach with testing alone. Examples of explicit-state model
checkers include SPIN [10], DIVINE [4], or LTSmin [12]. Unfortunately, none of
the mentioned model checkers have direct support for model checking programs
under relaxed memory models. Instead, should a user be interested in verification
of a program under relaxed memory model, the program has to be manually (or
semi-manually) augmented to capture relaxed memory behaviour.

The main contribution of our paper is in a new strategy to automate model
checking of C and C++ programs under relaxed memory model without the
need of modification of the interpreter used by the model checker itself. Note
that interpreting C and C++ alone is a challenging task and any extension of the
interpreter towards relaxed memory models would only make it harder. In fact
model checkers do not typically rely on direct interpretation of C or C++ code,
but use some other, syntactically simpler, representation of the original program.

60 APPENDIX A. PUBLICATIONS

The model checker DIVINE, for example, interprets LLVM bitcode, which is an
intermediate representation of the program created by an LLVM-based compiler.

In order to perform verification of C and C++ programs under relaxed mem-
ory model, we suggest to augment the original program and extend it with further
data structures (store buffers and a cleanup thread) to simulate the behaviour
of the original program under relaxed memory model. However, for the same
reasons as above, we avoid direct transformation of C or C++ programs – it
would require to parse the complex syntax of a high-level programming lan-
guage. Instead, we apply the transformation at the level of LLVM bitcode, after
the original program is translated by a C++ compiler, but before the represen-
tation is passed to the model checker for verification. This scenario allows us to
completely separate the weak memory extension from the use of a model checker,
hence, it allows us to use any model checker capable of processing LLVM bitcode
under Sequential Consistency. Our LLVM bitcode to LLVM bitcode transforma-
tion adds store buffer data emulation to under-approximate Total Store Order
(TSO) – a particular theoretical model of a relaxed memory model. The trans-
formation is implemented within the tool called LART (LLVM Abstraction and
Refinement Tool, Section 7.1 in [22]) that is distributed as a part of DIVINE
model checker bundle, under the 2-clause BSD licence.

The rest of the paper is organised as follows. Section 2 lists the most relevant
related work, Section 3 gives all the details of the LLVM transformation, Section 4
describes some relevant but rather technical implementation details, Section 5
gives details on an experimental evaluation of our approach, and finally Section 6
concludes the paper.

2 Related Work

The idea of using model checkers to verify programs under relaxed memory mod-
els has been discussed first in connection with the explicit-state model checker
Murϕ [8]. The tool was used to generate all possible outcomes of small, assem-
bly language, multiprocessor programs using a given memory model [21]. This
was achieved by encoding the memory model and program under analysis in
the Murϕ description language, which is an idea applied in many later papers,
including this one.

To cope with the rather complex situation around memory models, theoreti-
cal models have been introduced to cover as many instances of different relaxed
memory behaviours as possible. The currently most used theoretical models are
the Total Store Order (TSO) [25], Partial Store Order (PSO) [25] and x86-TSO
which is a Total Store Order enriched with interlocking instructions [16]. In those
theoretical models, an update may be deferred for an infinite amount of time.
Therefore, even a finite state program that is instrumented with a possibly infi-
nite delay of an update may exhibit an infinite state space. It has been proven
that for such an instrumented program, the problem of reachability of a partic-
ular system configuration is decidable, but the problem of repeated reachability
of a given system configuration is not [2].

61

A particular technique that incorporates TSO-style store buffers into the
model and uses finite automata to represent the possibly infinite set of possi-
ble contents of these buffers has been introduced in [16]. Since the state space
explosion problem is even worse with TSO buffers incorporated into the model,
authors of [16] extended their approach with a partial-order reduction technique
later on [17].

A different approach has been taken in [11], where the algorithm to be anal-
ysed was transformed into a form where the statements of the algorithm could
be reordered according to a particular weak memory ordering. The transformed
algorithm was then analysed using a model-checking tool, SPIN in that case.

A lot of research has been conducted to actually detect deviation of an execu-
tion of the program on a relaxed memory model architecture from an execution
under Sequential Consistency (SC). An SC deviation run-time monitor using op-
erational semantics [18] of TSO and PSO was introduced in [6], where authors
considered a concrete, sequentially consistent execution of the program, and sim-
ulated it on the operational model of TSO and PSO by buffering stores, as long
as they generated the same trace as the SC execution. Another approach to
detect discrepancies between a sequential consistency execution and real execu-
tions relied on axiomatic definition of memory models and (SAT-based) bounded
model checking [5].

The problem of relaxed memory model computation has been addressed also
in the program analysis community. Given a finite-state program, a safety speci-
fication and a description of the memory model, the framework introduced in [20]
computes a set of ordering constraints that guarantee the correctness of the pro-
gram under the memory model. The computed constraints are maximally per-
missive: removing any constraint from the solution would permit an execution
that violates the specification. To address the undecidability of the problem, an
abstraction from precise memory models has been considered by the BLENDER
tool [13]. The tool employs abstract interpretation to deliver an effective verifi-
cation procedure for programs running under relaxed memory models.

Another program analysis tool, called OFFENCE, was introduced to ensure
program stability [1] by inserting a memory barrier instruction where needed
– an approach also used in [17]. The problem of relaxed memory model and
correct placement of synchronisation primitives is also relevant for the compiler
community [9].

The problem of LTL model checking for an under-approximated TSO memory
model using store buffers was also evaluated in [3], where authors proposed
transformation of the DVE modelling language programs to simulate TSO.

3 Emulation of Relaxed Memory in LLVM Bitcode

We have chosen to provide an under-approximation of the TSO memory model,
both for its simplicity and the fact that it closely resembles the memory model
used by x86 computers. In this memory model, all stores are required to become
visible in the same order as they are executed; however, loads can be executed

62 APPENDIX A. PUBLICATIONS

int x = 0, y = 0;

1 void thread0() {

2 y = 1;

3 cout << "x = " << x << endl;

4 }

1 void thread1() {

2 x = 1;

3 cout << "y = " << y << endl;

4 }

main memory

0x04 0x08

x = 0 y = 0

store buffer for thread 0 store buffer for thread 1

0x08 1 32 0x04 1 32

thread 0

store y 1;

load x;

thread 1

store x 1;

load y;

Fig. 1. In this example, each of the threads first writes into a global variable and
later reads the variable written by the other thread. Under sequential consistency, the
possible outcomes would be x = 1, y = 1; x = 1, y = 0; and x = 0, y = 1, since
at least one write must proceed before the first read proceeds. However, under TSO
x = 0, y = 0 is also possible: this corresponds to the reordering of the load on line 3
before the independent store on line 2, and can be simulated by performing the store
on line 2 into a store buffer. The diagram shows (shortened) execution of the listed
code. Dashed lines represent where given value is read from/stored to.

before independent stores. This situation can be emulated by per-thread store
buffers – stores are performed into store buffers and later flushed into main
memory. Loads then have to first consult their thread’s respective store buffer,
and if it does not contain the address in question, proceed by consulting the
main memory. Loads do not see changes that are recorded only in store buffers
of other threads. We can see an illustration of the TSO memory model, and its
simulation using store buffers, in Figure 1. While in the sequentially consistent
case, the result x = 0, y = 0 would not be possible, under TSO it is a valid output
of the program, and indeed it can be proved reachable by running DIVINE on
the transformed code. Note that store buffers are flushed non-deterministically,
using a dedicated thread; in particular, we run a dedicated flushing thread for
each worker thread.

Note that we deliberately avoid precise (unbounded store-buffer) simulation
of the theoretical TSO memory model, as this could easily result in infinite
state space of the program under verification. However, the store buffer size
can be passed as a parameter to the bitcode transformation. This way, we can
make both reachability and LTL verification decidable and connect it seamlessly
to an existing explicit-state framework. Please note that this approach only

63

under-approximates the set of all TSO behaviours. I.e., when DIVINE finds a
counterexample in the modified model, this counterexample can indeed occur
in some runs of the given program on some real hardware with TSO semantics.
On the other hand, not finding a counterexample does not guarantee error free
execution on machines with store buffers deeper than specified for verification.
Obviously, setting the size of store buffers is a matter of compromise – larger
buffers will result in more precise verification, but also in a larger state spaces.

3.1 Infinite Delay Problem

For safety properties, such as assertion violation and/or memory safety, delaying
writes indefinitely (never flushing them from a store buffer) is not a problem, as
any violation of safety property is witnessed by finite path and for each run with
infinite delay, there also exists (possibly finite) run where each write is eventually
flushed. In infinite runs, however, such as those constructed as counterexamples
to liveness properties, infinite delays could pose a problem. Imagine, for example,
the following two threads:

bool x = false, y = false;

1 void thread0() {

2 y = true;

3 while (!x) { AP(w0) }

4 for (;;) { /* work */ }

5 }

1 void thread1() {

2 x = true;

3 while (!y) { AP(w1) }

4 for (;;) { /* work */ }

5 }

and a liveness property written (using LTL) as FG(¬w0 ∧ ¬w1). Assuming a
separate thread to perform store buffer flushes, it is easy to see that this property
holds only if the buffers are actually flushed on every possible run. However,
since flushing happens non-deterministically, it may actually never happen on
an infinite run. While this can be viewed as theoretically correct, it does not
correspond to any real-world behaviour, where delayed writes will eventually
finish and the program eventually proceeds. To counteract this inconsistency, we
ask our model checker to assume weak fairness [15], where it is guaranteed that
every non-blocking thread has performed infinitely many actions in an infinite
run.

In [3], authors proposed to handle this problem by extending LTL specifi-
cation to include this store buffer fairness criteria. In our case though, we have
chosen to implement our transformation in a way which does not require any
additional specification and store buffer fairness is implied by the standard weak
fairness.

3.2 Invalidated Variable Store Problem

Another issue to deal with are delayed flushes from a store buffer that come at
the time when the object that should be written into does not exist anymore in
the main memory. As both memory allocation and stack depth can change at

64 APPENDIX A. PUBLICATIONS

the run-time, it might happen that an entry in the store buffer points to invalid
location (either given memory chunk was deallocated by the user, or it lived
in a stack frame that has already been abandoned). To solve this problem, we
would need to make sure that inaccessible addresses are evicted from the store
buffers. For dynamic memory, this can be done by overriding the function which
deallocates objects from memory in such a way that it first iterates over all store
buffers and evict entries into the to-be-freed memory before calling the original
deallocate function.

For stack memory, however, the situation is more complicated – it is not
sufficient to evict all the stack-frame-allocated memory from store buffers before
returning from a function, because an exception can cause stack unwinding,
which can also result in invalid references in store buffers. This means that
cleanup handlers [24] need to be added to each function to deal with the situation.

4 Implementation

First of all, let us briefly explain how LLVM bitcode is used by our target model
checker DIVINE to support for C/C++ verification. There are two levels below
the LLVM bitcode of the program to be verified – an interpreter and an LLVM
userspace. The interpreter is used directly by the model checker to generate and
explore the state space graph by executing LLVM instructions. The interpreter
detects errors such as invalid memory dereference, memory leaks, assertion vi-
olations, etc. The interpreter has to be aware of threads and dynamic memory
management, hence, its role is similar to what the CPU and the core of the
operating system do when executing the code natively. The userspace, on the
other hand, corresponds to the runtime of the programming language, that is,
it provides LLVM bitcode for the basic libraries required by the given program-
ming language and/or threading model. The userpsace and interpreter together
provide the user with a standards-compliant interface for user’s programming
language of choice.

While in general, the separation of work between the interpreter and
userspace could be almost arbitrary (one could, for example, include the entire
pthread library in the interpreter), it is advantageous to keep the interpreter as
simple as possible, pushing most of the required functionality into the userspace.
Therefore, DIVINE provides a fairly small set of intrinsic functions (sixteen in to-
tal), which give access to the necessary functionality provided by the interpreter.
The rest is left to userspace.

The support for relaxed memory verification, such as functions that simulate
store buffers, thus need not come separately for every program to be verified
under relaxed memory model, but may actually become a part of the DIVINE
LLVM userspace. However, it is not possible to implement weak memory simula-
tion through addition of userspace functions alone – we need to change the be-
haviour of memory manipulation instructions (such as loads, stores, and fences).
For this reason, we implemented an LLVM to LLVM bitcode transformation pass,
which translates relevant instructions into calls to the relevant userspace func-

65

tions. The actual simulation of the memory model is thus implemented within
the userspace and is separate from the original program. As a result of this de-
sign choice, this transformation can be easily modified to work with other LLVM
model checkers and with different weak memory models.

4.1 Updates to LLVM Userspace

Currently, LLVM userspace provides replacement functions for load, store

and fence. The relevant userspace functions can be identified by their
__lart_weakmem prefix. Store buffers are represented by a thread-local array
with one record for each store – this record contains the address, the value itself
and the bit width of the value. We have chosen to limit a single store to 64
bits, which is the usual size atomically written by modern CPUs and also the
maximal size of standard integer types in C. Each store then pushes a record
into the local store buffer, while loads first consult the local store buffer for an
up-to-date value, and if it is not present proceed to load from memory. A fence
flushes all the entries from the local store buffer.

Note that block memory manipulation functions have to be replaced too, to
protect them from bypassing the store buffers. Hence, the userspace provides
replacements for block memory manipulation functions such as llvm.memmove,
llvm.memcpy, etc.

Further, atomic LLVM instructions, e.g. cmpxchg, are rewritten within the
transformation to use only functions implemented within the userspace. How-
ever, we currently only support sequentially-consistent ordering of atomics
(which is the default ordering for atomic variables in C++11). Further exten-
sions to support all atomic access orderings supported by LLVM/C++11 are
planned.

Finally, attention had to be paid to initialisation of the store buffers. Due to
the nature of global variable constructors in C++ which can run in arbitrary
order, we cannot use non-trivial constructors for store buffers, as this could
cause the constructor to run after some calls to __lart_weakmem_* functions
have already happened. Therefore, the store buffer array is initialised to a null
pointer and allocated in the first call to one of the __lart_weakmem_* functions.

4.2 LLVM to LLVM Transformation

The transformation is implemented as part of the LART tool. It basically iterates
over all the instructions in the original LLVM bitcode and replaces some of them
with calls to the corresponding replacement functions.

To perform this transformation correctly, we had to introduced special LLVM
function attributes: bypass, tso, and sc, denoting in what mode a particular func-
tion should operate. Functions marked bypass are not subject to the transfor-
mation at all, functions marked tso are fully processed by the transformation
as indicated above. In functions marked sc, additional memory barriers are in-
serted at the beginning of the function and after a call to any non-SC function.
Note that it is important that the functions which implement the relaxed weak

66 APPENDIX A. PUBLICATIONS

memory model itself are not transformed; for this reason, all __llvm_weakmem_*
functions are annotated as bypass. The default behaviour of the transformation
on functions that are not annotated with any of the attributes can be set by a
parameter passed to the transformation.

Since LLVM allows loads and stores larger than 64 bits (either large scalar
types, such as 128 bit integers, or aggregate values), we first break these large
loads and stores into chunks of at most 64 bit-wide operations in a separate
transformation pass and only after this is done, we perform the instruction sub-
stitution transformation as outlined above.

Finally, to avoid interference from compiler optimisations, some of the mem-
ory accesses in our functions had to be marked volatile and we had to prevent in-
lining of some of the functions (since inlining would discard function attributes).
Likewise, all the exposed functions had to be marked noinline.

4.3 State Space Reduction

Store buffers substantially increase the size of the state space, hence it is neces-
sary to counteract this growth. DIVINE provides powerful reduction techniques
out of the box, based on analysis of instruction visibility. Those reductions are,
however, rendered less effective by interactions with the store buffer: in particu-
lar, any TSO load or store is treated as visible by the τ+ reduction due to global
variable access within the TSO load/store implementation.

Fortunately, it is possible to reduce the overhead of store buffers by entirely
bypassing their use for memory locations that are private to a particular thread.
However, since the entire logic of TSO stores is handled in the userspace, it
is necessary to expose an additional intrinsic (builtin) function in the model
checker, which, for a given address, decides whether the address is visible from
any other threads.

As far as correctness is concerned, when we realise that from the point of view
of the model checker, store buffers are part of the global memory, the argument
carries over from the analogical construct (store visibility) used in τ+ reduc-
tion [23]. Any pointers currently residing in store buffers – and hence, capable of
revealing new memory locations to foreign threads – are treated as global; hence,
a delayed write of such a pointer cannot incorrectly hide intervening stores (into
locations that were previously thread-private but revealed by the pointer living
in a store buffer).

5 Evaluation

We evaluated our approach on a few models, all of which can be found in ex-
amples in source distribution of DIVINE1. Descriptions of the models used can
be found in Table 1. All measurements were performed on a laptop with In-
tel Core i7-3520M, running at 3.4 GHz, with 8 GB of memory. DIVINE used

1 online: https://divine.fi.muni.cz/trac/browser/examples/llvm/weakmem/

67

Table 1. Models used for evaluation

simple sc Model based on figure 1, SC, asserting that x = 0, y = 0.
simple mtso Same model, but manually modified to use TSO for relevant variables.
simple stso Same model, workers are auto-transformed to TSO, the rest is SC.
simple tso Same model, fully transformed to TSO.

peterson sc Peterson’s mutual exclusion algorithm.
peterson tso The same, automatically transformed to TSO.

fifo sc First-in, first-out, lockless inter-thread queue, as used in DIVINE.
fifo tso Automated TSO transform of fifo sc above.

4 threads for verification and never depleted available memory (loss-less state
space compression was enabled).

5.1 Results

The results of verification with DIVINE can be seen in Table 2. In all cases,
Context-Switch-Directed Reachability [26] was used, as it performed much faster
than regular reachability for the TSO simulation case. From the results, we can
see significant increase of state space size when store buffers are enabled. This is
due to two factors – one of them is that the store buffers themselves increase the
state space size, as they can be flushed non-deterministically anywhere between
the given store and the nearest memory barrier. The other issue is the interfer-
ence with τ+ reduction mentioned in Section 4.3. As can be seen in the case of
peterson sc and peterson tso with store buffers of size 0 (in this case value
is stored into store buffer and immediately flushed out within one transition in
the state space), this effect is quite strong.

As for the differences between different versions of the simple model, the
state space size is clearly dependent on how many of the loads and stores are
treated as TSO – in case of full TSO transformation all library functions are also
in TSO, therefore state space size is increased far more. The difference between
simple mtso and simple stso is more subtle: in the case of simple stso our
transformation adds memory barriers into SC functions, at their beginning and
after any call to non-SC function. While the second case is rarely present in
our model, the first case makes any function call observable, as a flush will be
considered observable by τ+ reduction (due to an accesses to the store buffer).

6 Conclusion

We have introduced an LLVM to LLVM transformation that extends a program
with relaxed memory simulation and we have shown that such an extended
program can be passed to a model checker to perform verification of C/C++
programs under a relaxed memory model. A key attribute of our approach is
that no updates to the model checker (which is based on sequential consistency)
are needed. The preliminary experiments show the approach as such is feasible,

68 APPENDIX A. PUBLICATIONS

Table 2. Results of divine verify for our examples.

model store buffer assertion # of reduced memory time
size violated states # states [GB] [s]

simple sc N/A no 205 N/A 0.16 1
simple mtso 1 yes 6.89 k N/A 0.17 3
simple stso 1 yes 10.7 k 10.7 k 0.17 6
simple tso 1 yes 24.7 M 537.2 k 3.18 20318

peterson sc N/A no 1.68 k N/A 0.16 1
peterson tso 0 no 55.9 k N/A 0.17 38
peterson tso 2 yes 2.86 M 95.7 k 0.79 990
peterson tso 3 yes 4.70 M 129.9 k 1.21 1610

fifo sc 0 no 6951 N/A 0.73 20
fifo tso 1 no – 44 M – –

even though the growth of the state space is significant. Finally, the verification
of the fifo tso model is, in itself, a valuable result, as the code in question is
sensitive to memory ordering and until now we were only able to verify it under
the assumption of sequential consistency.

As our future work we intend to improve the implementation and also im-
plement support for weaker memory models, such as Partial Store Order. As a
research goal, we want to extend LART to automatically annotate some func-
tions as SC, whenever it can be statically decided that such an annotation has no
influence on the verification result, counteracting the growth of the state space.
Further improvements of reductions supported by DIVINE and their interaction
with store buffer simulation, and thread-local memory in general, could also
significantly reduce the state space.

References

1. J. Alglave and L. Maranget. Stability in weak memory models. In Proceedings of
the 23rd international conference on Computer aided verification, CAV’11, pages
50–66, Berlin, Heidelberg, 2011. Springer.

2. M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi. On the verifica-
tion problem for weak memory models. In Proceedings of the 37th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, POPL
’10, pages 7–18, New York, NY, USA, 2010. ACM.

3. J. Barnat, L. Brim, and V. Havel. LTL Model Checking of Parallel Programs
with Under-Approximated TSO Memory Model. In Application of Concurrency to
System Design (ACSD), pages 51–59. IEEE, 2013.

4. J. Barnat, L. Brim, V. Havel, and J. Havĺıček et al. DiVinE 3.0 – An Explicit-State
Model Checker for Multithreaded C & C++ Programs. In CAV, volume 8044 of
LNCS, pages 863–868. Springer, 2013.

5. S. Burckhardt and M. Musuvathi. Effective program verification for relaxed mem-
ory models. In CAV, volume 5123 of LNCS, pages 107–120. Springer, 2008.

6. J. Burnim, K. Sen, and C. Stergiou. Sound and Complete Monitoring of Sequential
Consistency in Relaxed Memory Models. Technical Report UCB/EECS-2010-31,
EECS Department, University of California, Berkeley, March 2010.

69

7. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT press, 1999.
8. D. Dill. The Murphi Verification System. In Computer Aided Verification, volume

1102 of LLNC, pages 390–393. Springer, 1996.
9. X. Fang, J. Lee, and S. P. Midkiff. Automatic fence insertion for shared memory

multiprocessing. In International Conference on Supercomputing (ICS’03), pages
285–294. ACM, 2003.

10. G. J. Holzmann. The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley, 2004.

11. B. Jonsson. State-space exploration for concurrent algorithms under weak memory
orderings: (preliminary version). SIGARCH Comput. Archit. News, 36:65–71, June
2009.

12. G. Kant, A. Laarman, J. Meijer, J. van de Pol, S. Blom, and T. van Dijk. LTSmin:
High-Performance Language-Independent Model Checking. In Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS), volume 9035 of
LNCS, pages 692–707. Springer, 2015.

13. M. Kuperstein, M. Vechev, and E. Yahav. Partial-coherence abstractions for
relaxed memory models. In Programming language design and implementation
(PLDI’11), pages 187–198. ACM, 2011.

14. L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. Comput., 28(9):690–691, September 1979.

15. D. J. Lehmann, A. Pnueli, and J. Stavi. Impartiality, Justice and Fairness: The
Ethics of Concurrent Termination. In Automata, Languages and Programming
(ICALP), volume 115 of LNCS, pages 264–277. Springer, 1981.

16. A. Linden and P. Wolper. An Automata-Based Symbolic Approach for Verifying
Programs on Relaxed Memory Models. In Model Checking Software, volume 6349
of LNCS, pages 212–226. Springer, 2010.

17. A. Linden and P. Wolper. A verification-based approach to memory fence inser-
tion in relaxed memory systems. In Proceedings of the 18th international SPIN
conference on Model checking software, pages 144–160, Berlin, Heidelberg, 2011.
Springer.

18. S. Mador-Haim, R. Alur, and M. M. K. Martin. Specifying relaxed memory mod-
els for state exploration tools. In (EC)2: Workshop on Exploting Concurrency
Eficiently and Correctly, 2009.

19. P. E. Mckenney. Memory Barriers: a Hardware View for Software Hackers, 2009.
20. M.Kuperstein, M. T. Vechev, and E. Yahav. Automatic inference of memory fences.

In Formal Methods in Computer-Aided Design, pages 111–119. IEEE, 2010.
21. S. Park and D. Dill. An executable specification and verifier for relaxed memory

order. IEEE Trans. on Computers, 48(2):227–235, 1999.
22. P. Ročkai. Model Checking Software. Disertation thesis, Masaryk University, Fac-

ulty of Informatics, 2015.
23. P. Ročkai, J. Barnat, and L. Brim. Improved State Space Reductions for LTL

Model Checking of C & C++ Programs. In NFM, volume 7871 of LNCS, pages
1–15. Springer, 2013.

24. P. Ročkai, J. Barnat, and L. Brim. Model Checking C++ with Exceptions. Auto-
mated Verification of Critical Systems, 70, 2014.

25. CORPORATE SPARC International, Inc. The SPARC architecture manual (ver-
sion 9). Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1994.

26. V. Štill, P. Ročkai, and J. Barnat. Context-Switch-Directed Verification in DI-
VINE. In Mathematical and Engineering Methods in Computer Science MEMICS
2014, volume 8934 of LNCS, pages 135–146. Springer, 2014.

70 APPENDIX A. PUBLICATIONS

Using Off-the-Shelf Exception Support Components
in C++ Verification

Vladimı́r Štill
Faculty of Informatics,

Masaryk University
Brno, Czech Republic

Email: xstill@fi.muni.cz

Petr Ročkai
Faculty of Informatics,

Masaryk University
Brno, Czech Republic

Email: xrockai@fi.muni.cz

Jiřı́ Barnat
Faculty of Informatics,

Masaryk University
Brno, Czech Republic

Email: barnat@fi.muni.cz

Abstract—An important step toward adoption of formal meth-
ods in software development is support for mainstream pro-
gramming languages. Unfortunately, these languages are often
rather complex and come with substantial standard libraries.
However, by choosing a suitable intermediate language, most of
the complexity can be delegated to existing execution-oriented
(as opposed to verification-oriented) compiler frontends and
standard library implementations. In this paper, we describe
how support for C++ exceptions can take advantage of the
same principle. Our work is based on DiVM, an LLVM-derived,
verification-friendly intermediate language.

Our implementation consists of 2 parts: an implementation of
the libunwind platform API which is linked to the program
under test and consists of 9 C functions. The other part is
a preprocessor for LLVM bitcode which prepares exception-
related metadata and replaces associated special-purpose LLVM
instructions.

Index Terms—Model Checking, Exceptions, C++, Unwinder

I. INTRODUCTION

Today, formal verification methods are not commonly used
in software development, even though they are superior to
traditional testing approaches in many respects. One particular
example is model checking, which can be used to control
non-determinism in programs, especially when it arises from
parallelism. Formal methods can also be used to extend testing
coverage (e.g. via systematic fault injection), verification of
liveness properties or verification of global safety properties
(such as global assertions). However, to make those advantages
actually available to software developers, verification tools
must be easy to integrate into existing workflows. If the use
of verification tools requires substantial effort (as compared
to testing), the costs associated with formal methods can
outweigh the savings they provide. This is especially true
for modern development processes (especially in commodity
software), where there is little time for a separate modeling
and design phases.

For this reason, both the academic and industrial commu-
nities [2] increasingly seek to develop and use tools which
work with mainstream programming languages. However,
support for these programming languages – especially when
compared to special-purpose modelling formalisms – brings

This work has been partially supported by the Czech Science Foundation
grant No. 15-08772S and by Red Hat, Inc.

new complexity to verification tools. Programs written in such
languages are usually more complex and on a lower level of
abstraction than models specifically built for analysis tools.
Additionally, many programming languages contain features
with no counterparts in a typical modeling language, such as
dynamic memory, run-time type information and introspection
(RTTI), exception handling, or template instantiation. More-
over, programs written in these languages usually make use
of extensive standard libraries. Therefore, the verifier either
has to include all of the language and library functionality as
primitives, or it has to provide an implementation which is
added to the verified program just like a traditional library.

The paper is structured as follows: the remainder of Sec-
tion I gives motivation, context and contribution of this work.
Section II describes the mechanisms that C++ implementations
typically use in order to support exceptions. The following
Section III then details how LLVM is interpreted in DIVINE
4, in particular the parts relevant to exception handling, such
as the stack layout. Section IV and Section V discuss the
new components: the LLVM transformation and the unwinder,
respectively. Section VI surveys the related work and finally,
in Section VII, we evaluate our approach and we summarise
our findings in Section VIII.

A. Motivation

In many cases, it is impractical to re-implement the entire
programming language and its support libraries. Verification
tools can, however, take advantage of existing compilers or
libraries to deal with some of the complexity. For example,
verification can be substantially simplified by translating the
source code into an intermediate representation (IR) using an
existing compiler frontend. If the compiler in question can
emit intermediate representation after it has been optimised,
the verification result is independent of the correctness of the
(complex and error-prone) optimiser: any problems introduced
by the optimiser will be caught by the verification tool.

In case of C++, a suitable frontend is the clang compiler,
which uses LLVM as its IR. Since LLVM can optimise the IR
and produce executable code on many platforms from a single
optimised IR file, the verification effort does not need to be
repeated for each target platform separately. Of course, the
code generator (which is comparatively simple when compared

71

to the platform-neutral optimiser) still needs to preserve the
semantics of the program – otherwise, it would invalidate the
verification result.

As an alternative to re-using finished, execution-oriented
components, one could only support a subset of a pro-
gramming language (i.e. exclude the parts that are hard to
support in a verification tool). However, this weakens the
case for supporting mainstream programming languages: it
prevents developers from verifying production code. This is
especially true for standard libraries, as programming without
them requires the programmer to implement everything from
scratch. Finally, the standard library is often implemented in
the programming language it is part of, and is therefore an-
other good candidate for sharing code with execution-oriented
implementations of the language. Unfortunately, upstream im-
plementations of standard libraries usually make extensive use
of advanced language features. Consequently, in order to re-
use existing standard library implementations, more complete
language support is required in the verifier.

Exceptions are among the features that are both widely used
(including by the standard library) and tricky to implement.
Their use is, however, also common outside of the standard
library: libraries like boost and application-level code of-
ten take advantage of this capability. This is natural, since
exceptions simplify error handling and usually require less
boilerplate code than any of the alternatives. Furthermore, even
though many C++ standard library implementations can be
built without exception support1, this change can significantly
affect its behaviour (and as such, validity of the verification
result). Finally, error handling paths, including exception prop-
agation, are an important target for analysis by verification
tools, as they are both hard to test by more conventional means
and likely to contain errors – this naturally arises from the fact
that their purpose is to handle unlikely side cases which can
be hard to accurately reproduce with testing. A model checker,
on the other hand, can take advantage of its built-in support
for non-determinism to rigorously explore error paths.2

B. Component Re-Use

Unfortunately, off-the-shelf components from execution-
oriented language kits do not provide a complete toolbox
that would allow verification tool developers to simply con-
centrate on verification. The difficulties roughly fall into two
categories: first, the components interact with each other and
with the system for which they were originally designed and
second, it is often not at all obvious which components are
suitable for re-use and which are not. When a component C

1There are cases where not using exceptions makes sense: if the end-user
code makes no use of them but the standard library is compiled with exception
support, the requisite metadata tables only serve to increase the size of the
compiled program.

2This is a form of fault injection. When using a model checker, it is only
necessary to modify the function where the error may arise (e.g. the malloc
function may be modified to return a NULL pointer non-deterministically).
The model checker will then take care of exploring all possible combinations
of succeeding and failing memory allocations in the program.

is re-used, all the interfaces it uses must be provided as well.
There are 3 basic ways in which this can be arranged:

1. re-use another component, D, which provides this inter-
face; this is only possible if all interfaces D uses are
already available or can be provided

2. modify component C to avoid its dependency on the
interface in question

3. re-implement the interface as a new, possibly tool- or
verification-specific component

C. Contribution

The main contribution of this paper is twofold: first, we
identify the components that are best re-used and those which
are best re-implemented and show that this decision crucially
depends on the underlying intermediate language. Second, we
provide implementations of the components which cannot be
re-used in a form that is easy to integrate into both existing
and future verification tools. One of the components works
as an LLVM transformation pass, and could be used with
any LLVM-based tool. The other component targets the DiVM
language [14] specifically, and will therefore only work with
tools which understand this language.3

The goal of this paper, especially in the context of our previ-
ous work on the topic of C++ exceptions in verification [13], is
to aid authors of verification tools to minimise costs and effort
associated with inclusion of exception support. Depending on
the characteristics of the tool, either the approach described
in [13] or the one in this paper might be more suitable.
Overall, in a verifier which can handle the DiVM language
or equivalent, the approach given in this paper is simpler to
implement and more robust. A more detailed comparison of
the two approaches is given in Section VII-B.

All source code related to this paper, along with more
detailed benchmark results and other supplementary material,
are available online under a permissive open-source licence.4

D. Implementation

Our primary implementation platform is the DIVINE model
checker [1]. The C++ support in DIVINE has several compo-
nents: first, DIVINE uses clang to translate C++ into LLVM
IR. As outlined above, the verifier does not need to han-
dle complex syntactical features of C++ this way. A few
verification-specific transformations are done on the LLVM IR
before it is converted into the DiVM language for execution in
DIVINE’s Virtual Machine. The VM executes instructions and
performs safety checks, such as bound checking. Alone, these
components provide basic support for C++. In order to support
features such as RTTI and exceptions, it is also necessary
to provide a runtime support library and an implementation
of the standard library. These libraries in turn rely on a C
standard library and on a threading library (pthreads on
POSIX compatible systems). Those libraries are provided by

3DiVM is a relatively small extension of the LLVM IR, therefore extending
tools which work with pure LLVM to also support DiVM may be quite easy.

4https://divine.fi.muni.cz/2017/exceptions

72 APPENDIX A. PUBLICATIONS

DiOS, a small, verification-oriented operating system which
runs inside DiVM.

As discussed above, building those libraries into the verifier
is impractical due to cost and time constraints. There is,
however, another important reason why these should be kept
out of the verification core: any extension of the verifier
increases risks of implementation errors, and the more com-
plex these extensions are, the higher are the associated risks.
Moreover, any such errors in the verifier can lead to incorrect
verification results. For this reason, DIVINE ships source code
implementing these libraries as separate modules; this source
code is later compiled into LLVM IR and linked to the verified
program. This way, the libraries are subject to the same error
checking as user code, and any errors in their implementation
that are exposed by the user program will be detected by the
verifier.

Additionally, whenever off-the-shelf components are re-
used, it is preferable to keep verification-specific changes at
minimum. The standard C library in DIVINE is based on
PDCLib, a small, portable, public domain C library. The
copy of PDCLib in DIVINE includes a few modifications
(the C library interfaces directly with the operating system
in many cases, therefore it is necessary to port it to work
with the verifier, much like it would be necessary to port it
to a new operating system). For threading support, DIVINE
ships with a custom implementation of the pthread library
(so far, no existing implementation of the pthread interface
which could be re-used has been identified). For C++ support,
libc++abi (the runtime library) and libc++ (the standard
library) are used. Both of these libraries are maintained by the
LLVM project and work on many Unix-like systems.

program.cpp clang program.bc LLVM

libc++abi program.o

libunwind linker

*program

Fig. 1. Components involved in exception support in the standard clang/LLVM
stack. Under the scheme proposed in this paper, the highlighted elements are
shared between verification and execution environments.

E. Components for Exception Support

Unlike other features of C++, exceptions are neither handled
by the standard or runtime libraries alone, nor delegated to
the C standard library (as C has no support for exceptions).
Instead, libc++abi provides exception support with the help
of a platform-specific unwinder library which is responsible
for stack introspection and unwinding (removal of stack frames
and transfer of control to exception-handling code). The inter-
action of these components is illustrated in Figure 1.

For this reason, DIVINE has to either provide an unwinder
implementation compatible with libc++abi, or modify

program.cpp clang program.bc transform

libc++abi

libunwind

preproc.bc

DiVM

valid?

Fig. 2. Components involved in exception support in the DIVINE 4 C++
verification stack. The solid-filled elements are re-used without modification
from the execution-oriented clang/LLVM stack (cf. Figure 1). The hatch-filled
components are the additions described in this paper.

libc++abi to use custom code for exception handling. In
DIVINE 3, the latter approach was used, as it was deemed
easier at the time [13]. However, while basic exception support
was easier to achieve this way, the approach also had its
disadvantages. First, the LLVM interpreter in DIVINE 3 had
special support for exception-related functionality. Second, the
libc++abi code for exception handling was replaced, which
had 2 important consequences: first, the replacement code
was not comprehensive enough5 and second, this meant that
the replaced part of libc++abi was not taken into account
during verification.

In this paper, we instead take the first approach: re-use
libc++abi in its entirety and provide the interfaces it
requires. Therefore, we have implemented the libunwind
interface used by libc++abi for stack unwinding and
an LLVM transformation which builds metadata tables that
libc++abi needs to decide which exceptions should be
caught, how they should be handled and which functions on
the stack need to perform cleanup actions. The situation is
illustrated in Figure 2.

Using the original libc++abi code means that all fea-
tures of the C++ exception system are fully supported and
verification results also cover the low-level exception support
code. That is, this portion of the code is identical in both
the bitcode which is verified and in the natively executing
program.6 Finally, the proposed design is easier to extend to
other programming languages.

F. Other Components in Use

In line with the principles outlined so far, the implemen-
tation of the C and C++ standard libraries (and the C++
runtime library) used in DIVINE are third party code with only
minimal modifications. The C standard library implementation
(PDCLib) consists of approximately 38 thousand lines of code,
while the C++ runtime library (libc++abi) and the C++
standard library (libc++) contain 8 and 12 thousand lines of
code, respectively.

5That is, some of the less frequently used features of C++ exceptions
were handled either incorrectly or not at all. That is to say, the size of
the libc++abi portion that would have needed to be re-implemented was
initially underestimated.

6Clearly, the libunwind implementation is different in those two envi-
ronments, and therefore correctness of the platform-specific implementation
of libunwind must be established separately.

73

Standard libraries inevitably contain platform-specific code,
and this is also true of the implementations bundled with
DIVINE. The modifications due to the porting effort were,
however, quite minimal, since DiOS already provides a very
POSIX-like interface. The C library was, unsurprisingly, af-
fected the most: changes in memory allocation, program
startup- and exit-related functions and in handling of the
errno variable were required. In libc++, however, the
changes were limited to platform configuration macros and
the only change in libc++abi was a DiOS-specific tweak
in allocation of thread-local storage for exception handling.

Since user programs and libraries alike rely on the POSIX
threading API (also known as pthread), this API is provided
by DiOS and is implemented in about 2000 lines of C++. The
libunwind implementation introduced in this paper brings
in additional 350 lines of code (the implementation is done in
exception-free C++). Likewise, the C library and everything
above also depends on low-level filesystem access routines
provided by the operating system. In DiOS, this IO and
filesystem layer (VFS7) is implemented in about 5500 lines of
C++ code and uses exceptions heavily for error propagation.

So far, all the components mentioned in this section are
linked with the user program to form the final bitcode file for
verification. For comparison, the verification core of DIVINE
(the DiVM evaluator, memory management and the verifica-
tion algorithm), amounts to roughly 6 thousand lines of C++.
Finally, there is about 2500 lines of code which implement
various transformations on the LLVM bitcode. Out of these
2500 lines, less than 300 are part of the exception-related
extension described in this paper.

II. EXCEPTIONS IN C++

Throwing an exception requires removal of all the stack
frames8 between the throwing and catching function from the
stack (unwinding). Therefore, exception handling is closely
tied to the particular platform and is described by ABI9 for
the platform. Commonly, exception handling is split into two
parts, one which is tied to the platform (the unwinder library
which handles stack unwinding) and one which is tied to the
language and provided by the language’s runtime library.10

These two parts cooperate in order to provide exception
handling for a given language; however, this communication
is not standardised in any cross-platform fashion. For this
reason, we will now focus on zero-cost exceptions based on the

7Short for Virtual File System, since in a verification environment, the
system under test must not access the real filesystem or any other part of the
outside environment.

8The execution stack of a (C++) program consists of stack frames, each
holding context of a single entry into some function. It contains local variables,
a return address and register values which need to be restored upon return.

9Application Binary Interface, a low-level interface between program
components on a given platform.

10There are many implementations of the C++ runtime library, which,
besides exception support code, provides additional features such as RTTI.
Each implementation is usually tied to a particular C++ standard library.
Commonly used implementations on Unix-like systems are libsupc++,
which comes with libstdc++ and the GCC compiler, and libc++abi,
which is tied to libc++ used by some builds of clang and by DIVINE.

Itanium ABI, an approach which is used across various Unix-
like systems on x86 and x86_64 processor architectures and
is the preferred basis for LLVM exceptions. Nevertheless, it is
possible to generalize our results to other implementations.

A. Zero-Cost Exceptions

The so-called zero-cost exceptions are designed to incur no
overhead during normal execution, at the expense of relatively
costly mechanism for throwing exceptions. This in particular
means that no checkpointing is possible. Instead, when an
exception is thrown, the exception support library, with the
help of unwind tables, finds an appropriate handler for the
exception and uses the unwinder to manipulate the stack so
that this handler can be executed. The search for the handler
is driven by a personality function, which is provided by the
implementation of the particular programming language.

The personality function is responsible for deciding which
handler should execute (the handler selection can be complex
and language-specific). In general, there are two types of han-
dlers, cleanup handlers, which are used to clean up lexically
scoped variables (and call their destructors, as appropriate) and
catch handlers, which contain dedicated exception-handling
code. The latter typically arise from catch blocks. Another
major difference between those two types of handlers is that
catch handlers stop the propagation of the exception, while
cleanup handlers let propagation continue after the cleanup is
performed. While cleanup handlers are usually run uncondi-
tionally, the catch handler to be executed, if any, is determined
by the personality function.11 In C++, the personality function
selects the closest catch statement which matches the thrown
type (the match is determined dynamically, using RTTI). The
personality function consults the unwind tables, in particular
their language-specific data area (LSDA), to find information
about the relevant catch handlers.

When an exception is thrown, the runtime library of the
language creates an exception object and passes it to the
unwinder library. The actual stack unwinding is, on platforms
which build on the Itanium ABI, performed in two phases.
First, the stack is inspected (without modification) in search
for a catch handler. Each stack frame is examined by the
relevant personality function.12 If an appropriate catch handler
is found in this phase, unwinding continues with a second
phase; otherwise, an unwinder error is reported back to the
throwing function. Unwinder errors usually cause program
termination. In the second phase, the stack is examined again,
and a personality function is invoked again for each frame. In
this phase, cleanup handlers come into play. If any handler is
found (cleanup or catch), this fact is indicated to the unwinder,
which performs the actual unwinding to the flagged frame.
Once the control is transferred to the handler, it can either
perform cleanup and resume propagation of the exception, or,

11In fact, the personality function can also decide to skip cleanup handlers,
but this is not common.

12Different personality functions can be called for different frames, for
example if the program consists of code written in different languages with
exception support.

74 APPENDIX A. PUBLICATIONS

if it is a catch handler, end the propagation of the exception.
If exception propagation is resumed, the unwinder continues
performing phase 2 from the point of the last executed handler.
This is facilitated by storing the state of the unwinder within
the exception object.

B. Unwind Tables

As mentioned in Section II-A, both the unwinder library and
the language runtime depend on unwind tables for their work.
The unwinder uses these tables to get information about stack
layout in order to be able to unwind frames from it, and for
detection which personality function corresponds to a frame.
The personality function then uses the language-specific data
area (LSDA) of these tables in its decision process.

While the unwinder part of the tables is unwinder- and
platform-specific (it depends on stack layout), the LSDA is
platform- and language-specific. For these reasons, unwind
tables are not present in the LLVM IR; instead, they are gener-
ated by the appropriate code generator for any given platform,
based on information in the landingpad instructions, and
the personality attribute of functions. On Unix-like systems,
the unwind tables are in the DWARF13 format.

III. EXECUTION OF LLVM PROGRAMS

In this section, we will look at how LLVM bitcode is
executed by a model checker and how this execution is
affected by addition of exception support. Unlike previous
approaches, the technique described in this paper does not
require any exception-specific intrinsic functions or hypercalls
to be supported by the verifier. The exception-specific LLVM
instructions can be implemented in the simplest possible way:
invoke becomes equivalent to a call instruction followed
by an unconditional branch. The landingpad instruction
can be simply ignored by the verifier and resume instruc-
tions and calls of the llvm.eh.typeid.for intrinsic are
both removed by the transformation described in Section IV.
Moreover, the metadata required by libc++abi are likewise
generated by the LLVM transformation and this process is
completely transparent to the verifier.

In addition to support for LLVM, the unwinder (described
in more detail in Section V) requires the ability to traverse
and manipulate the stack and read and write LLVM registers
associated with a given stack frame. Finally, it needs access
to a representation of the bitcode for a given function. All
those abilities are part of the DiVM specification [14] and are
generally useful, regardless of their role in exception support.

The DiVM implementation in DIVINE 4 handles execution
of LLVM instructions, LLVM intrinsic functions and DiVM-
specific hypercalls.14 Hypercalls exist to allocate memory,
perform nondeterministic choice or to set DiVM’s control

13DWARF is a standard for debugging information designed for use with
ELF executables. It is used on most modern Unix-like systems.

14Intrinsic functions are provided by LLVM as a light-weight alternative to
new instructions. Such functions are recognized and translated by LLVM itself,
as opposed to “normal” functions that come from libraries or the program.
Likewise, DiVM provides hypercalls, which are functions that are, in addition
to LLVM intrinsics, recognized by DiVM.

registers (which contain, among other, the pointer to the
currently executing stack frame). Additionally, DiVM performs
safety checks, such as memory bound checking, and detects
use of uninitialised values. However, DiVM hypercalls are
intentionally low-level and simple and do not provide any
high-level functionality, such as threading or standard C library
functionality. Instead, those are provided by the DIVINE
Operating System (DiOS) and the regular C and C++ standard
libraries.

The most important purpose of DiOS is to provide threading
support. To this end, DiOS provides a scheduler, which is
responsible for keeping track of threads and their stacks
and for (nondeterministically) deciding which thread should
execute next. This scheduler is invoked repeatedly by the
verifier to construct the state space. The scheduler fully
determines the behaviour (or even presence) of concurrency
in the verified program: while DiOS provides asynchronous,
preemptive parallelism typical of modern operating systems,
it is also possible to implement cooperative or synchronous
schedulers instead.

A. Stack Layout and Control Registers

A DiVM program can have multiple stacks, but only one of
them can be active at any given time (a pointer to the active
stack is kept in a DiVM control register). The active stack
is normally either the kernel stack or the stack that belongs
to the active thread which was selected by the scheduler.
Switching of stacks (and program counters) is performed by
the control hypercall which manipulates DiVM control
registers.

Traditionally, stack is represented as a continuous block of
memory which contains an activation frame for each function
call. In DiVM, the stack is not continuous; instead, it is a
singly-linked list of activation frames, each of which points
to its caller. This has multiple advantages: first, it is easy to
create a stack frame for a function, for example when DiOS
needs to create a new thread; additionally, the linked-list-
organized stack is a natural match for the graph representation
of memory which DiVM mandates, and therefore can be saved
more efficiently [14]. Additionally, this way the stack may
be nonlinear, and the unwinder can use this feature to safely
transfer control to a cleanup block while the unwinder frame
is still on the stack. Later, the handler can return control to the
unwinder frame and the unwinder can continue its execution.
This would be impossible with a continuous stack since
cleanup code is allowed to call arbitrary functions and frames
of those functions would overwrite the frame of the unwinder.
For this reason, on traditional platforms, the unwinder needs
to store its entire state in the exception object, while in DiVM,
it can simply retain its own activation frame. An illustration
of how the stack looks while the unwinder is active is shown
in Figure 3.

IV. THE LLVM TRANSFORMATION

The C++ runtime library (libc++abi in our case), needs
access to the LSDA section of unwind tables (a pointer

75

VM registers

Unwinder StackProgram Stack

... frame PC ...

close()

caller

pc = ...

...

_start()

caller = NULL

pc = call main

...

main()

caller

pc = call ~File()

...

exception

...

exception

exception class = 0x...

...

private_2

...

C++ exception object

~File()

caller

pc = call close

...

__cxa_throw()

caller

pc = call _Unwind_RaiseException

...

_Unwind_RaiseException()

caller

pc = ...

...

Fig. 3. In this figure we can see a stack of a program which is running cleanup
block in the main function. The cleanup block calls the destructor of File
structure, which in turn calls the close function (which is the current active
function). Furthermore, the cleanup handler can access the exception object
which contains a pointer to the stack of the unwinder. This pointer is used by
the implementation of the resume instruction to jump back to the unwinder
and continue phase 2 of the unwinding.

to this metadata section is accessible through the unwinder
interface). This section contains DWARF-encoded exception
tables, which are normally generated together with the exe-
cutable by the compiler backend (code generator). Unfortu-
nately, the generator of DWARF exception tables in LLVM
is closely tied to the machine code generator and cannot
be used to generate DWARF-formatted exception tables for
verification purposes. For this reason, we have implemented a
small LLVM transformation which processes the information
in landingpad instructions and generates LLVM constants
which contain the DWARF-formatted LSDA data. A reference
to one such constant is attached to each function in the bitcode
file.

To improve efficiency, LLVM does not directly use RTTI
type info pointers within the landing blocks to decide which
exception handlers should run. RTTI objects are special C++
objects which are used to identify types at runtime and
are emitted by the C++ frontend as constants. Due to the
complexities of C++ type system, matching RTTI types against

Function Description

SetGR Store a value into a general-purpose register
GetGR Read a value from a general-purpose register
SetIP Stora a value into the program counter
GetIP Read the value of the program counter
RaiseException Unwind the stack
Resume Continue unwinding the stack after a cleanup
DeleteException Delete an exception object
GetLSDA Obtain a pointer to the LSDA
GetRegionStart Obtain a base for relative code pointers

TABLE I
A LIST OF C FUNCTIONS PROVIDED BY LIBUNWIND . IN C, ALL THE

FUNCTIONS ARE PREFIXED WITH _UNWIND_ TO PREVENT NAME
CONFLICTS WITH USER CODE AND OTHER LIBRARIES (I.E. THE C NAME

OF SETGR IS _UNWIND_SETGR).

each other is expensive: a search in a pair of directed acyclic
graphs is required. Moreover, since the RTTI matching must
be already done in the personality function to decide which
frames to unwind, the personality can also pre-compute a
numerical index for the landing pad. This index, also called a
selector value is then used as a shortcut to run an appropriate
catch clause within the landing block, instead of re-doing
the expensive RTTI matching. Since the catch handler is
typically expressed in terms of typeinfo pointers, it needs to
efficiently obtain the selector value from a type info pointer.
For this purpose, LLVM provides a llvm.eh.typeid.for
intrinsic, which obtains (preferably at compile time) the selec-
tor value corresponding to a particular type info pointer.

Therefore, besides generating the LSDA data, the trans-
formation statically computes the values which correspond
to llvm.eh.typeid.for calls and substitutes them into
the bitcode. Since the purpose of llvm.eh.typeid.for
is to translate from RTTI pointers to selector values, it is only
required that the integer selector value chosen for a particular
RTTI object is in agreement with the personality function. In
our implementation, this is ensured by computing the selector
values statically for both the LSDA (which is where personal-
ity function obtains them) and for llvm.eh.typeid.for
at the same time.

Finally, the transformation rewrites all uses of the resume
instruction to ordinary calls to Resume, a function which is
part of libunwind (see also Table I).

V. THE UNWINDER

The unwinder in DIVINE is designed around the interface
described in the Itanium C++ ABI documentation,15 adopted
by multiple vendors and across multiple architectures. The
implementation is part of the runtime libraries shipped with
DIVINE.16 The unwinder builds upon a lower-level stack
access API which is provided by DiOS under sys/stack.h.

Due to the stack layout used in DiVM (a linked list of
frames, see also Section III-A), our unwinder is much simpler
than usual. The main task of unwinding is handled by the

15https://mentorembedded.github.io/cxx-abi/abi.html
16runtime/libc/functions/unwind.cpp

76 APPENDIX A. PUBLICATIONS

RaiseException function, which is called by the language
runtime when an exception is thrown. This function performs
the two phase handler lookup described in Section II-A and it
adheres to the Itanium ABI specification, with the following
exceptions:

i. it checks that an exception is not propagated out of
a function which has the nounwind attribute set, and
reports verification error if this is the case;

ii. if the exception is a C++ exception and there is no
handler for this exception type, the unwinder chooses
nondeterministically whether it should or should not
unwind the stack and invoke cleanup handlers.

The purpose of the first deviation is to check consistency of
exception annotations (arising, for example, from a nothrow
function attribute as available in GCC and in clang). The
second modification allows DIVINE to check both allowed
behaviours of uncaught exceptions in C++: the C++ standard
specifies that it is implementation-defined whether the stack
is unwound (and destructors invoked) when an exception is
not caught.17 Since the program may contain errors which
manifest only under one of these behaviours, it is useful to be
able to test both of them.

A. Low-Level Unwinding

The primary function of the unwinder described above is to
find exception handlers; for the actual unwinding of frames, it
uses a lower-level interface provided by DiOS. This interface
consists of two functions: __dios_jump, which performs a
non-local jump, possibly affecting both the program counter
and the active frame, and __dios_unwind, which removes
stack frames from a given stack. __dios_unwind is de-
signed in such a way that it can unwind any stack, not
only the one it is running on, and is not limited to the
topmost frames (effectively, it removes frames from the stack’s
singly-linked list, freeing all the memory allocated for local
variables that belong to the unlinked frames, along with the
frames themselves18). The unwinder identifies values as local
variables by looking at the instructions of the active function
– the results of alloca instructions are exactly the addresses
of local variables.

B. Unwinder Registers

When an exception is propagating, a personality function
has to be able to communicate with the code which handles the
exception. In C++, the communicated information includes the
address of the exception object and a selector value which is
later used by the handler. On most platforms, these values are
passed to the handler using registers, which are manipulated
using unwinder’s SetGR function. This function can either set
the register directly (if it is guaranteed not to be overwritten
before the control is transferred to the handler), or save the
value in a platform-specific way and make sure it is restored
before the handler is invoked.

17Section 15.5, paragraph 9 of the C++ standard [5]
18When a function returns normally (due to a ret instruction), DiVM takes

care of freeing the frame and its local variables (alloca memory).

In LLVM (and hence in DiVM), there is no suitable coun-
terpart to the general purpose registers of a CPU; instead, the
values set by the personality function should be made available
to the program in the return value of the landingpad
instruction. This, however, requires the knowledge of the
expected semantics of these registers. Currently, all users of
the unwinder are expected to use the same registers as the
C++ frontend in clang. That is, register 0 corresponds to the
exception object and register 1 corresponds to a type index.
This also directly maps to the return type of landingpad
instructions and therefore the register values can be saved
directly into the LLVM register corresponding to the particular
landingpad that is about to be executed.

Registers other than 0 and 1 are currently not supported.
In LLVM, in line with the above observation about clang and
C++, there is a convention that SetGR indices correspond to
indices into the result tuple of a landingpad instruction. As
long as this convention is preserved by a particular language
frontend and its corresponding runtime library (personality
function), it is very easy to extend our unwinder to support
this language. Finally, if a language frontend were instead to
emit calls to GetGR in the handler, registers of this type can
be stored in the unwinder Context directly.

C. Atomicity of the Unwinder

The unwinder performs rather complex operations and
therefore throwing an exception can create many states, even
when τ reduction [12] is enabled. However, many of these
states are not interesting from the point of view of verification,
as the operations performed by the unwinder are mostly
thread-local and only the exception handlers (and possibly
personality function) can perform globally visible actions. For
this reason, the unwinder uses DiVM’s atomic sections to hide
most of its complexity.

Since an atomic section is implemented as an interrupt
mask (i.e. a single flag indicating that an atomic section is
executing) in DiVM, it is necessary to correctly maintain the
state of this flag. In particular, it is required that the unwinder
behaves reasonably even if it is called when the program is
already in an atomic section. Consequently, care must be taken
to restore the state of the atomic mask when the unwinder
transfers control to a personality function or an exception
handler. When the unwinder is first called, it enters an atomic
section and saves the previous value of the interrupt mask. This
will be the value the flag will be restored to when a personality
function is first invoked. The mask is later re-acquired after
the personality function returns and it is restored once more
when the first handler is invoked. When the exception handler
resumes (using the resume instruction), the atomic section is
re-entered and its state saved so its state before the resume can
be restored again for the next call to a personality function.
This way, it is possible to safely throw an exception out of an
atomic section, provided that the atomic section is exception-
safe (that is, it has an exception handler which ends the atomic
section if an exception is propagated out of it).

77

D. longjmp Support

Using the low-level unwinder interface described in Sec-
tion V-A, it is easy to implement other mechanisms for
non-local transfer of control. The functions longjmp and
setjmp, specified as part of C89, are one such example.19

The setjmp function can be used to save part of the state of
the program, so that a later call to longjmp can restore the
stack to the state it was in when setjmp was called. This
way, longjmp can be used to remove multiple frames from
the stack. When longjmp is called, the program behaves as
if setjmp returned again, only this time it returns a different
value (provided as an argument to longjmp).

The DIVINE implementation of setjmp saves the program
counter and the frame pointer of the caller of setjmp. The
longjmp function then uses this saved state, along with
access to the text of the program, to set the return value of the
call instruction corresponding to the setjmp. Afterwards,
it unwinds the stack using the low-level stack access API from
sys/stack.h and transfers control to the instruction right
after the call to setjmp.

VI. RELATED WORK

Primarily, we have looked at existing tools which support
verification of C++ programs. Existence of an implementation
is, to a certain degree, an indication that a given approach is vi-
able in practice. We have, however, also looked at approaches
proposed in the literature which have no implementations (or
only a prototype) available.

A number of verification tools are based on LLVM and
therefore have some support for C++. LLBMC [15] and
NBIS [6] are LLVM-based bounded model checkers which
target mainly C and have no support for exceptions or the
C++ standard library. VVT [7] is a successor of NBIS which
uses either IC3 or bounded model checking and has limited
C++ support, but it does not support exceptions. Furthermore,
KLEE [3] and KLOVER [9] are LLVM-based tools for test
generation and symbolic execution. KLOVER targets C++ and
according to [9] has exception support, but it is not publicly
available. On the other hand, KLEE focuses primarily on C
and its C++ support is rather limited and it has no exception
support.

Both CBMC [4, 8] and ESBMC [11] bounded model check-
ers support C++ (but neither appears to support the standard
library) and they include support for exceptions. However,
in CBMC, the support for exceptions is limited to throwing
and catching fundamental types.20 In our survey of tools for
verification of C++ programs, ESBMC has by far the best
exception support: the latest version can deal with most, but

19Implemented in runtime/libc/includes/setjmp.h and
runtime/libc/functions/setjmp/.

20A simple test which throws and tries to catch an exception object crashes
CBCM 5.6.

not all21, types of exception handlers and even with exception
specifications. Finally, DIVINE 3 [13] also comes close to
full support for exceptions, but lacks support for exception
specifications. Overall, this survey suggests that all current
implementations of C++ exceptions in verification tools are
incomplete and confirms that using an existing, standards-
compliant implementation in a verification tool is indeed quite
desirable.

Finally, it is also possible to transform a C++ program
with exceptions into an equivalent program which only uses
more traditional control flow constructs. This approach was
taken in [10], with the goal of re-using existing analysis tools
without exception support. While this approach is applicable
to a wide array of verification tools, it is also incompatible
with re-use of existing exception-related runtime library code.
As such, it offers a very different set of tradeoffs than our
current approach. Moreover, the translation cost is far from
negligible, and also affects code that does not directly deal
with exceptions (i.e. it violates the zero-cost principle of
modern exception handling). Unfortunately, we were unable
to evaluate this approach, since there are no publicly available
tools which would implement it.

VII. EVALUATION

In order to asses the viability of our approach, we have
executed a set of benchmarks in various configurations of
DIVINE 4. The benchmarks were executed on quad-core Xeon
5130 clocked at 2 GHz and with 16GB of RAM. We have
measured the wall time, making all 4 cores available to the
verifier.

A. Benchmark Models

The set of models we have used for this comparison consists
of 831 model instances, out of which we picked the 794 that
do not contain errors. The reason for this is that the execution
time is much more variable when a given program contains
an error, since the model checking algorithm works on the fly,
stopping as soon as the error is discovered.

Majority of the valid models (777) are C++ programs of
varying complexity, while the 17 models in the svc-pthread
category are concurrent programs written in plain C with
pthreads. Since our implementation of the pthread API is done
in C++, the impact of exception support on verification of C
programs is also relevant. The “alg” category includes sequen-
tial algorithmic and data structure benchmarks, the “pv264”
category contains unit tests for student assignments in a C++
course, the “iv112” category contains unit tests for concurrent
data structures and other parallel programs (again assignment
problems in a C++ course), “libcxx” contains a selection of the
libc++ testsuite (with focus on exception support coverage),
“bricks” contains unit tests for various C++ helper classes,

21ESBMC 3.0 is unable to determine that an exception ought to be caught
when the catch clause specifies a type which is a virtual base class in a
diamond-shaped hierarchy and the object thrown is of the most-derived type
of the diamond. This suggests that ESBMC uses its own implementation of
RTTI support code, which is somewhat incomplete, compared to production
implementations.

78 APPENDIX A. PUBLICATIONS

category #mod time (D4) time (D3) states (D4) states (D3)

alg 9 3:52 3:51 543.3 k 543.3 k
pv264 13 1:34 1:32 183.0 k 183.0 k
iv112 11 25:58 25:57 3743 k 3743 k
libcxx 425 42:15 42:09 2182 k 2182 k
bricks 292 3:04:25 2:56:55 6271 k 6251 k
divine 3 6:20 6:18 1040 k 1040 k
cryptopals 3 0:01 0:01 1943 1943
llvm 12 36:36 36:27 3865 k 3865 k
svc-pthread 17 16:47 16:41 1685 k 1685 k
total 794 5:21:44 5:13:49 20.1 M 20.0 M

TABLE II
COMPARISON OF THE NEW EXCEPTION CODE WITH A DIVINE-3-STYLE

VERSION.

including concurrent data structures, “divine” contains unit
tests for a concurrent hashset implementation used in DIVINE,
“cryptopals” contains solutions of the cryptopals problem
set22, the “llvm” category contains programs from the LLVM
test-suite23 and finally, the “svc-pthread” category includes
pthread-based C programs from the SV-COMP benchmark
set. In most of the programs, it was assumed that malloc
and new never fail, with the notable exception of part of the
“bricks” category unit tests. The tests where new failures are
allowed are especially suitable for evaluating exception code,
in particular where multiple concurrent threads are running at
the time of the possible failure.

B. Comparison to Builtin Exception Support

In addition to the approach presented in this paper, we have
implemented the approach described in [13] in the context of
DIVINE 4. This allowed us to directly measure the penalty
associated with the present approach, which is more thorough
and less labour-intensive at the same time. Our expectation was
that this would translate to slower verification, since the off-
the-shelf code is more complex than the corresponding hand-
tailored version used in [13]. In line with this expectation, we
set the criterion of viability: we would consider a slowdown
of at most 10 % to be an acceptable price for the improved
verification fidelity, and convenience of implementation. Since
other resource consumption (especially memory) of verifica-
tion is typically proportional to state space size, we have used
the number of states explored as an additional metric. The
expected effect on the shape (and, by extension, size) of the
state space should be smaller than the effect on computation
time (most of the additional complexity is related to computing
a single transition). We believe that an acceptable penalty in
this metric would be about 2 % increase.

As can be seen in Table II, the time penalty on our chosen
model set is very acceptable – just shy of 2.6 % – and the
state space size is within 1 % of the older approach [13]. We
believe that this small penalty is well justified by the superior
verification properties of the new approach.

22http://cryptopals.com
23http://llvm.org/svn/llvm-project/test-suite/trunk/SingleSource/

Benchmarks/Shootout

category #mod time (D4) time (stub) states (D4)

alg 9 3:52 3:52 543.3 k
pv264 13 1:34 1:34 183.0 k
iv112 11 25:58 26:00 3743 k
libcxx 392 41:56 41:54 2179 k
bricks 192 35:30 35:21 2378 k
divine 3 6:20 6:19 1040 k
cryptopals 3 0:01 0:01 1943
llvm 12 36:36 36:28 3865 k
svc-pthread 17 16:47 16:43 1685 k
total 661 2:52:30 2:52:08 16.2 M

TABLE III
COMPARISON OF THE NEW EXCEPTION CODE AGAINST STUBBED

EXCEPTIONS. COMPARED TO TABLE II, IN THIS CASE 133 MODELS FAILED
DUE TO THE STUBS. STATE COUNTS ARE IDENTICAL FOR ALL MODELS.

C. Comparison to Stub Exceptions

The second alternative approach is to consider any thrown
exception an error, regardless of whether it is caught or
not. This can be achieved much more easily than real sup-
port for exceptions, since we can simply replace the entire
libunwind interface with stubs which raise an error and
refuse to continue. This approach only works for models which
do not actually throw any exceptions during their execution.
The results of this comparison are shown in Table III –
the verification time is nearly identical and the state spaces
are entirely so. This is in line with expectations: in those
models, catch blocks are present but never executed. Since
the proposed approach does not incur any overhead until an
exception is actually thrown, we would not expect a substantial
time difference.

D. Comparison to No Exceptions

Finally, the last alternative is to disable exception support
in the C++ frontend entirely. In clang, this is achieved by
compiling the source code with the -fno-exceptions flag.
In this case, the LLVM bitcode contains no exception-related
artefacts at all, but many programs fail to build. Additionally, a
number of programs in the “bricks” category contain exception
handlers for memory allocation errors24 and therefore exit
cleanly upon memory exhaustion. Even though some of those
programs can be compiled with -fno-exceptions, they
now contain an error (a null pointer dereference) which is
not present when they are compiled the standard way. Those
programs were therefore excluded from the comparison. The
summary of this comparison can be found in Table IV –
the time saved for models where -fno-exceptions is
applicable is again quite small, less than 13 %. In this case, the
difference is due to the changes in control flow of the resulting
LLVM bitcode. Since call is not a terminator instruction

24In this case, the handler is installed using std::set_terminate,
which is available even when -fno-exceptions is given. The situa-
tion would be similar if only parts of the program were compiled with
-fno-execptions. In particular, the problem is that the standard library,
if compiled with -fno-exceptions, cannot throw, and must therefore
behave differently in those scenarios, affecting the behaviour of the user
program.

79

category #mod time (D4) time (nxc) states

alg 1 0:24 0:23 34.2 k
pv264 1 0:00 0:00 57
iv112 10 23:58 22:06 3571 k
libcxx 393 41:57 40:44 2180 k
svc-pthread 17 16:47 15:42 1685 k
total 423 1:23:33 1:19:21 7504 k

TABLE IV
COMPARISON OF THE NEW EXCEPTION SUPPORT AGAINST A CASE WHERE

-FNO-EXCEPTIONS WAS USED TO COMPILE THE SOURCES AND
LIBRARIES. IN THIS CASE, IT WAS ONLY POSSIBLE TO VERIFY 423
MODELS FROM THE SET (I.E. 371 MODELS ARE MISSING FROM THE
COMPARISON). STATE COUNTS ARE IDENTICAL FOR ALL MODELS.

(unlike invoke), the local control flow in a function is
negatively affected by the presence of invoke instructions:
more branching is required, and this slows down the evaluator
in DiVM. While it is easy to see if a given program can
be compiled with -fno-exceptions, it is typically much
harder to ensure that its behaviour will be unchanged. For this
reason, we do not consider the time penalty in verification of
this type of programs a problem.

E. Re-usability

As outlined in Section I-F, the two components directly
involved in exception support are comparatively small and
well isolated. The LLVM transformation is fully re-usable with
any LLVM-based tool. The unwinder, on the other hand, relies
on the capabilities of DiVM. However, there is no need for
hypercalls specific to exception handling and therefore, the
implementation work is essentially transparent to DiVM. The
capabilities of DiVM required by the unwinder are limited to
the following: linked-list stack representation, runtime access
to the program bitcode and 2 hypercalls: __vm_control and
__vm_obj_free. More details about DiVM can be found
in [14].

Finally, adding support for a new type of exceptions is also
much simpler in this approach – no modifications to DiVM
(or any other host tool) are required: only the two components
described in this paper may need to be modified.

VIII. CONCLUSION

In this paper, we have discussed an approach to extending
an LLVM-based model checker with C++ exception support.
We have found that re-using an existing implementation of the
runtime support library is a viable approach to obtain com-
plete, standards-compliant exception support. A precondition
of this approach is that the verification tool is flexible enough
to make stack unwinding possible. The DiVM language, on
which the DIVINE model checker is based, has proven to be
a good match for this approach, due to its simple and explicit
stack representation, along with a suitable set of control flow
primitives.

We also performed a survey of tools based on partial or
complete reimplementations of C++ exception support rou-
tines and found that in each tool, at least one edge case is not

well supported. In contrast to this finding, with our approach,
all those edge cases are covered “for free”, that is, by the virtue
of re-using an existing, complete implementation. Contrary
to the prediction made in [13], we have found that with a
suitable target language, implementing a new unwinder can be
relatively simple. The unwinder implementation described in
this paper is only about 350 lines of C++ code, while it would
be impossible to implement without verifier modifications in
DIVINE 3. Therefore, we can conclude that with the advent
of the DiVM specification [14] and its implementation in DI-
VINE 4, re-implementing the libunwind API and re-using
libc++abi became a viable strategy to provide exception
support.

REFERENCES

[1] Jiřı́ Barnat, Luboš Brim, Vojtěch Havel, Jan Havlı́ček, Jan
Kriho, Milan Lenčo, Petr Ročkai, Vladimı́r Štill, and Jiřı́
Weiser. DiVinE 3.0 – an explicit-state model checker for
multithreaded C & C++ programs. In CAV, volume 8044
of LNCS, pages 863–868. Springer, 2013.

[2] Dirk Beyer. Reliable and Reproducible Competition
Results with BenchExec and Witnesses Report on SV-
COMP 2016. In TACAS, pages 887–904. Springer,
2016. ISBN 978-3-662-49673-2. doi: 10.1007/
978-3-662-49674-9 55.

[3] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler.
KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs. In 8th
USENIX Symposium on Operating Systems Design and
Implementation, (OSDI 2008), pages 209–224. USENIX
Association, 2008.

[4] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A
Tool for Checking ANSI-C Programs. In TACAS, pages
168–176. Springer, 2004. ISBN 978-3-540-24730-2. doi:
10.1007/978-3-540-24730-2 15.

[5] ISO C++ Standards Committee. Standard for Program-
ming Language C++. Working Draft N4296. Technical
report, ISO IEC JTC1/SC22/WG21, 2014.

[6] Henning Günther and Georg Weissenbacher. Incremental
Bounded Software Model Checking. In SPIN. ACM,
2014.

[7] Henning Günther, Alfons Laarman, and Georg Weis-
senbacher. Vienna verification tool: IC3 for parallel
software - (competition contribution). In TACAS, pages
954–957, 2016. doi: 10.1007/978-3-662-49674-9 69.

[8] Daniel Kroening and Michael Tautschnig. CBMC –
C bounded model checker. In TACAS, pages 389–
391. Springer, 2014. ISBN 978-3-642-54862-8. doi:
10.1007/978-3-642-54862-8 26.

[9] Guodong Li, Indradeep Ghosh, and Sreeranga P. Rajan.
KLOVER: A Symbolic Execution and Automatic Test
Generation Tool for C++ Programs. In CAV, volume
6806 of LNCS, pages 609–615. Springer, 2011. ISBN
978-3-642-22109-5.

[10] Prakash Prabhu, Naoto Maeda, Gogul Balakrishnan,
Franjo Ivančić, and Aarti Gupta. Interprocedural excep-

80 APPENDIX A. PUBLICATIONS

tion analysis for C++. In ECOOP, volume 6813 of LNCS,
pages 583–608. Springer, 2011. ISBN 978-3-642-22654-
0.

[11] Mikhail Ramalho, Mauro Freitas, Felipe Sousa, Hendrio
Marques, Lucas Cordeiro, and Bernd Fischer. SMT-
Based Bounded Model Checking of C++ Programs. In
ECBS, pages 147–156. IEEE Computer Society, 2013.
ISBN 978-0-7695-4991-0.

[12] Petr Ročkai, Jiřı́ Barnat, and Luboš Brim. Improved state
space reductions for LTL model checking of C & C++
programs. In NASA Formal Methods, volume 7871 of
LNCS, pages 1–15. Springer, 2013.

[13] Petr Ročkai, Jiřı́ Barnat, and Luboš Brim. Model check-
ing C++ programs with exceptions. Science of Computer
Programming, 128:68 – 85, 2016.

[14] Petr Ročkai, Vladimı́r Štill, Ivana Černá, and Jiřı́ Barnat.
DiVM: Model checking with LLVM and graph memory.
2017. URL https://arxiv.org/abs/1703.05341. Preliminary
version.

[15] Carsten Sinz, Florian Merz, and Stephan Falke. LLBMC:
A bounded model checker for LLVM’s intermediate rep-
resentation. In Tools and Algorithms for the Construction
and Analysis of Systems, volume 7214 of LNCS, pages
542–544. Springer, 2012. ISBN 978-3-642-28755-8. doi:
10.1007/978-3-642-28756-5 44.

81

Model Checking of C and C++ with DIVINE 4?

Zuzana Baranová, Jǐŕı Barnat, Kataŕına Kejstová, Tadeáš Kučera,
Henrich Lauko, Jan Mrázek, Petr Ročkai, Vladimı́r Štill

Faculty of Informatics, Masaryk University
Brno, Czech Republic

divine@fi.muni.cz

Abstract. The fourth version of the DIVINE model checker provides
a modular platform for verification of real-world programs. It is built
around an efficient interpreter of LLVM code which, together with a small,
verification-oriented operating system and a set of runtime libraries, en-
ables verification of code written in C and C++.

1 Introduction

Building correct software is undoubtedly an important goal for software devel-
opers and we firmly believe that formal verification methods can help in this
endeavour. In particular, explicit-state model checking promises to put forth a
deterministic testing procedure for non-deterministic problems (such as parallel
programs or tests which use fault injection). Moreover, it is quite easy to in-
tegrate into common test-based workflows. The latest version of DIVINE aims
to make good on these promises by providing an efficient and versatile tool for
analysis of real-world C and C++ programs.

2 DIVINE 4 Architecture

The most prominent feature of DIVINE 4 is that the runtime environment for the
verified program (i.e. support for threads, memory allocation, standard libraries)
is not part of the verifier itself: instead, it is split into several components,
separated by well-defined interfaces (see Figure 1). The three most important
components are: the DIVINE Virtual Machine (DiVM), which is an interpreter
of LLVM code and provides basic functionality such as non-determinism and
memory management; the DIVINE Operating System (DiOS), which takes care
of thread management and scheduling; and finally libraries, which implement
standard C, C++ and POSIX APIs. The libraries use syscalls to communicate
with DiOS and hypercalls to communicate with DiVM.

The verification core below DiVM is responsible for verification of safety
and liveness properties and uses DiVM to generate the state space of the (non-
deterministic) program.

? This work has been partially supported by the Czech Science Foundation grant No.
15-08772S and by Red Hat, Inc.

82 APPENDIX A. PUBLICATIONS

User’s program + libraries

C/C++ standard libraries, pthreads

DiOS

DiVM

Verification core

hypercalls

syscalls

DIVINE

Fig. 1. Overview of the architecture of DIVINE 4. The shaded part consists of LLVM
code which is interpreted by DiVM.

2.1 DIVINE Virtual Machine (DiVM)

The basic idea of DiVM is to provide the bare minimum required for efficient
model checking of LLVM-based programs. To this end, it executes instructions,
manages memory, implements non-deterministic choice, and (with the help of
program instrumentation) keeps track of visible actions performed by the pro-
gram. To the verification core, DiVM provides support for saving and loading
snapshots of the program state and for generating successors of a given program
state.

When the user program is executed in DiVM, it will be typically supported
by a runtime environment (which itself executes on top of DiVM). This environ-
ment is expected to supply a scheduler, a procedure invoked by DiVM to explore
the successors of a given program state. The scheduler’s primary responsibility is
thread management. It can, for example, implement asynchronous thread inter-
leaving by managing multiple stacks and non-deterministically choosing which
to execute. This design allows DiVM to be small, minimising the space for errors
in this crucial part of the verifier. Moreover, it allows for greater flexibility, since
it is usually much easier to program for DiVM then to change DiVM itself.

DiVM uses a graph to represent the memory of a program: nodes correspond
to memory objects (e.g. results of allocation, global variables) and edges to point-
ers between these objects. Each program state corresponds to one such graph.
When exploring the state space, those graphs are stored, hashed and compared
directly (i.e. they are not converted to byte vectors). This graph representation
allows DiVM to handle programs with dynamic heap allocation efficiently.

Out of the box, memory access in DiVM is subject to sequentially consistent
semantics. Nevertheless, analysis under relaxed memory semantics can be added
to DIVINE by the means of program transformations on the level of LLVM, as
outlined in [7].

More details about DiVM, including an experimental evaluation, can be found
in [6].

2.2 DIVINE Operating System (DiOS)

DiOS supplies both a scheduler, which is invoked by DiVM, and a POSIX-like
environment for the libraries and the user program. To this end, DiOS exposes

83

a syscall interface to libc, in a manner similar to common operating systems.
Currently, DiOS implements asynchronous parallelism with threads and supports
syscalls which cover an important subset of the POSIX file system interface
(provided by the integrated virtual file system). Additional syscalls make thread
management and DiOS configuration possible.

2.3 State Space Reductions

To be able to verify nontrivial C or C++ programs, DIVINE 4 employs heap
symmetry reduction and τ reduction [5]. The latter reduction targets parallel
programs and is based on the observation that not all actions performed by
a given thread are visible to other threads. These local, invisible actions can
be grouped and executed atomically. In DIVINE, actions are considered visible
if they access shared memory. As DiVM has no notion of threads, the shared
status of a memory object is partially maintained by DiOS. However, DiVM
transparently handles the propagation of shared status to objects reachable from
other shared objects.

It is desirable that threads are only switched at well-defined points in the
instruction stream: in particular, this makes counterexamples easier to process.
For this reason, DIVINE instruments the program with interrupt points prior to
verification. DiVM will then only invoke the scheduler at these explicit interrupt
points, and only if the program executed a shared memory access since the
previous interrupt. To ensure soundness, these interrupt points are inserted such
that there cannot be two accesses to shared memory without an interrupt point
between them.

To further reduce the size of the state space of parallel programs, DIVINE
performs heap symmetry reduction. That is, heaps that differ only in concrete
values of memory addresses are considered identical for the purpose of verifi-
cation. On top of that, DIVINE 4 also employs static reductions which modify
the LLVM IR. However, it only uses simple transformations which are safe for
parallel programs and which cause minimal overhead in DiVM.

2.4 C and C++ Language Support

For practical verification of C and C++ code, it is vital that the verifier has
strong support for all language features and for the standard libraries of these
languages, allowing the user to verify unmodified code. DIVINE achieves this by
integrating ported implementations of existing C and C++ standard libraries.
Additionally, an implementation of the POSIX threading API was developed
specifically for DIVINE. These libraries together provide full support for C99
and C++14 and their respective standard libraries.

As DiVM executes LLVM instructions and not C or C++ directly, the pro-
gram needs to be translated to LLVM IR and linked with the aforementioned
libraries. This is done by an integrated compiler, based on the clang C/C++
frontend library. How a program is processed by DIVINE is illustrated in Fig-
ure 2. The inputs to the build are a C or a C++ program and, optionally, a

84 APPENDIX A. PUBLICATIONS

C++ code property and options

compiler

runtime

LLVM IR instrumentation DiVM IR

verification core

ValidCounterexample

divine verify

Fig. 2. Verification workflow of the divine verify command when it is given a C++
file as an input. Boxes with rounded corners represent stages of input processing.

specification of the property to be verified. The program is first compiled and
linked with runtime libraries, producing an LLVM IR module. This module is
then instrumented to facilitate τ reduction (see Section 2.3) and annotated with
metadata required for exception support [8]. The instrumented IR is then passed
to the verification algorithm, which uses DiVM to evaluate it. Finally, the ver-
ification core (if provided with sufficient resources) either finds an error and
produces a counterexample, or concludes that the program is correct.

2.5 Property Specification

DIVINE 4 supports a range of safety properties: detection of assertion violations,
arithmetic errors, memory errors (e.g. access to freed or otherwise invalid mem-
ory), use of uninitialised values in branching, and pthreads locking errors.

The libraries shipped with DIVINE can simulate memory allocation failures
and spurious wake-ups on pthreads conditional variables. The allocation failure
simulation can be disabled on DIVINE’s command line.

Monitors and Liveness More complex properties can be specified in the form
of monitors, which are executed synchronously by DiOS every time a visible
action (as determined by τ reduction) occurs. This allows such monitors to ob-
serve globally visible state changes in the program, and therefore to check global
assertions or liveness properties (using a Büchi accepting condition). Moreover,
it is also possible to disallow some runs of the program, i.e. the monitor can
specify that the current run of the program should be abandoned and ignored.

In order to check LTL properties in DIVINE, the LTL formula has to be
translated to a Büchi automaton encoded as a monitor in C++. This translation
can be done automatically by an external tool, dipot,1 which internally uses
SPOT [1] to process the LTL formula.

1 available from https://github.com/xlauko/dipot

85

2.6 Interactive Program Simulator

Model checkers traditionally provide the user with a counterexample: a trace
from the initial state to the error state. However, with real-world programs, the
presentation of this trace is critical: the user needs to be able to understand
the complex data structures which are part of the state, and how they evolve
along the error trace. To help with this task, DIVINE now contains an interactive
simulator that can be used to perform the steps of the program which led to the
error and to inspect values of program variables at any point in the execution [4].

2.7 Major Changes Compared to DIVINE 3

Compared to DIVINE 3, the new version comes with several improvements. From
architectural point of view, the most important changes are the introduction of
DiVM and DiOS and the graph-based representation of program memory [6].
From user perspective, the most important changes include better support for
C++ and its libraries, an improved compilation process which makes it easier
to compile C and C++ programs into LLVM IR, an interactive simulator of
counterexamples, and support for simulation of POSIX-compatible file system
operations.

3 Usage and Evaluation

DIVINE is freely available online2, including source code, a user manual, and
examples which demonstrate the most important features of DIVINE. In addition
to the source code, it is also possible to download a pre-built binary for 64bit
Linux (which also works on Windows Subsystem for Linux), or a virtual machine
image with DIVINE installed (available in 2 formats, OVA for VirtualBox, and
VDI for QEMU and other hypervisors). If you choose to build DIVINE from
source code, please refer to the user manual3 for details.

3.1 Using DIVINE

Consider the code from Figure 3 and assume it is saved in a file named test.cpp.
Assuming that DIVINE is installed4, the code can be verified by simply executing
divine verify test.cpp. DIVINE will report an invalid write right after the
end of the x array. You can observe that the output of printf is present in the
error trace part of DIVINE’s output. Moreover, toward the end, the output
includes stack traces of all running threads. In this case, there are two threads,
the main thread of the program and a kernel thread, in which the fault handler
is being executed.

2 https://divine.fi.muni.cz/2017/divine4/
3 https://divine.fi.muni.cz/manual.html
4 the binary has to be in a directory which is listed in the PATH environment variable

86 APPENDIX A. PUBLICATIONS

#include <cstdio>

#include <cassert>

void foo(int *array) {
for (int i = 0; i <= 4; ++i) {

printf("writing at %d\n", i);

array[i] = 42;

}
}

int main() {
int x[4];

foo(x);

assert(x[3] == 42);

}

Fig. 3. Example C++ code which creates an array x of size 4 (on the stack) and then,
in function foo, writes into this array. foo does, however, attempt to write one element
past the array, which would normally overwrite the next entry on the stack but not
cause an immediate program failure. In DIVINE, this error is detected and reported.

If we wanted to inspect the error state in more detail, we could use DIVINE’s
simulator. First, we need a way to identify the error state: the counterexample
contains a line which reads choices made: 0^182; the sequence of numbers after
the colon is a sequence of non-deterministic choices made by DIVINE. We can now
run divine sim test.cpp and execute trace 0^182 (replacing the sequence of
choices with the ones actually produced by divine). This makes the simulator
stop after the last non-deterministic choice before the error. The error location
can be inspected by executing stepa, which tells DIVINE to perform a single
atomic step (unless an error occurs, in which case it stops as soon as the error is
reported). It is now possible to examine the frame of the error handler, although
it is more useful to move to the frame which caused the error by executing the
up command. At this point, local variables can be inspected by using show.

Please consult the user manual for more detailed information on using DI-
VINE. Additionally, divine help and the help command in the simulator pro-
vide short descriptions of all available commands and switches.

3.2 Evaluation

We have evaluated DIVINE 4 on a set of more than 900 benchmarks from various
sources, including parallel and sequential tests of parts of C and C++ standard
libraries, the pthread library, part of the SV-COMP pthread benchmark set,
and programs from various programming courses. We have compared DIVINE 4
to DIVINE 3 (an older version of DIVINE, also an explicit-state model checker)
and ESBMC 4.1 [3] (an SMT-based symbolic model checker).

From our benchmark set, DIVINE 3 was able to process 457 benchmarks in
7 hours, while DIVINE 4 processed the same 457 benchmarks in 1 hour and
5 minutes. ESBMC was only able to process 60 benchmarks, mostly due to
limitations of its C++ support and worse performance on threaded benchmarks.
ESBMC took 2 hours 43 minutes, while DIVINE 4 only took 10 minutes on the
same subset. In all cases, there was a timeout of 2 hours and benchmarks which
timed out were not included in the results. More details are available online.5

5 https://divine.fi.muni.cz/2017/divine4/

87

Overall, DIVINE 4 showed substantial improvement over DIVINE 3, both in
terms of speed as well as C++ support. Compared to ESBMC, DIVINE 4 has
again the advantage of better C++ support (partially due to usage of clang
compiler whereas ESBMC has custom C++ frontend) and additionally better
performance on programs with threads.

4 Conclusion and Future Work

In this paper, we have introduced DIVINE 4, a versatile explicit-state model
checker for C and C++ programs, which can handle real-world code using an
efficient LLVM interpreter which has strong support for state space reductions.
The analysed programs can make use of the full C99 and C++14 standards,
including the standard libraries.

In the future, we would like to take advantage of the new program represen-
tation and versatility of DiVM to extend DIVINE with support for programs with
significant data non-determinism, taking advantage of abstract and/or symbolic
data representation, building on ideas introduced in SymDIVINE [2]. We would
also like to add support for verification of concurrent programs under relaxed
memory models, based on [7].

References

1. Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud Michaud,
Étienne Renault, and Laurent Xu. Spot 2.0 — a framework for LTL and ω-automata
manipulation. In Automated Technology for Verification and Analysis (ATVA 2016),
volume 9938 of LNCS, pages 122–129. Springer International Publishing, October
2016.

2. Jan Mrázek, Petr Bauch, Henrich Lauko, and Jǐŕı Barnat. SymDIVINE: Tool for
Control-Explicit Data-Symbolic State Space Exploration. In Model Checking Soft-
ware (SPIN 2016), pages 208–213. Springer International Publishing, 2016.

3. Mikhail Ramalho, Mauro Freitas, Felipe Sousa, Hendrio Marques, Lucas Cordeiro,
and Bernd Fischer. SMT-Based Bounded Model Checking of C++ Programs. In
Engineering of Computer Based Systems (ECBS), pages 147–156. IEEE Computer
Society, 2013.

4. Petr Ročkai and Jǐŕı Barnat. A Simulator for LLVM Bitcode. Preliminary version,
ArXiv: 1704.05551, 2017.

5. Petr Ročkai, Jǐŕı Barnat, and Luboš Brim. Improved State Space Reductions for
LTL Model Checking of C & C++ Programs. In NASA Formal Methods (NFM
2013), volume 7871 of LNCS, pages 1–15. Springer, 2013.

6. Petr Ročkai, Vladimı́r Štill, Ivana Černá, and Jǐŕı Barnat. DiVM: Model Checking
with LLVM and Graph Memory. Preliminary version, ArXiv: 1703.05341, 2017.

7. Vladimı́r Štill, Petr Ročkai, and Jǐŕı Barnat. Weak Memory Models as LLVM-to-
LLVM Transformations. In Mathematical and Engineering Methods in Computer
Science (MEMICS 2015), volume 9548 of LNCS, pages 144–155. Springer, 2016.

8. Vladimı́r Štill, Petr Ročkai, and Jǐŕı Barnat. Using Off-the-Shelf Exception Support
Components in C++ Verification. In IEEE International Conference on Software
Quality, Reliability and Security (QRS 2017) (to appear), 2017.

88 APPENDIX A. PUBLICATIONS

	Introduction
	Relaxed Memory Models
	Description of Memory Model Semantics
	Formalized Memory Models
	Memory Models and Compilers

	Analysis Techniques for Memory Models
	Decidability and Complexity
	Robustness Checking
	Direct Analysis Techniques

	Aim of the Work
	Objectives and Expected Results
	Time Plan

	Achieved Results
	Published Papers

	Bibliography
	Publications
	Techniques for Memory-Efficient Model Checking of C and C++ Code
	Weak Memory Models as LLVM-to-LLVM Transformations
	Using Off-the-Shelf Exception Support Components in C++ Verification
	Model Checking of C and C++ with DIVINE 4

