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Abstract 

We extend a widely used concept of rewrite systems with a mechanism 
for computing with partial information in a form similar to the one used 
in concurrent constraint programming. We present how this extension 
changes the expressive power of rewrite systems classes which are included 
in Mayr 's PRS hierarchy [May97b]. The new classes (fcBPA, fcBPP, fcPA, fc-
PAD, fcPAN, fcPRS) are described and inserted into the hierarchy. 
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Chapter 1 

Introduction 

Various principles of communication between processes and sharing infor­
mation in general, are traditional fields of study in theoretical computer 
science. Computing with partial information in connection with the idea 
of concurrency is an extensively studied problem in this research area as it 
corresponds to many situations occurring in a real word. 

One of the most successful applications of the ideas of concurrency and 
computing with partial information has led to Concurrent Constraint Pro­
gramming (CCP) presented by Saraswat [Sar89] and consequently studied 
also by Rinard, Panangaden, de Boer, Palamidessi and others (see Bibliog­
raphy for more details). In CCP processes work concurrently with a shared 
store, which is seen as a constraint on the values that variables can repre­
sent. In any state of the computation, the store is given by the constraint 
established until that moment. CCP provides two primitive operations to 
deal with the store, tell and ask. The execution of the tell operation adds a 
constraint to the current store (tell can be executed under the condition that 
the store remains consistent, i.e. there must exist some valuation of vari­
ables which satisfies the constraint in the store). The ask action can be seen 
as a test on the store - it can be executed only if the current store is strong 
enough to entail a specified constraint. If this is not the case, then the pro­
cess suspends (waiting for the store to accumulate more information by 
contributions of the other processes). The execution of ask itself leaves the 
store unchanged, while the execution of tell action can only add informa­
tion to the store. Thus the store evolves monotonically during the compu­
tation, i.e. the set of possible values for variables shrinks. 

Operational semantics of concurrent systems is traditionally modelled 
by labelled transition systems. For CCP such an operational semantics was 
given by Saraswat in [Sar89]. Caucal [Cau92] presents an elegant classi­
fication of transition systems using families of sequential rewrite systems 
defined by restrictions on rewrite rules related to Chomsky hierarchy. Cau-
cal's classification has been generalised by Moller [Mol96] to both parallel 
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and sequential rewrite transition systems. Moller's approach was gener­
alised by Mayr [May97b], he defines the dynamics for rewrite systems us­
ing sequential and parallel composition together. The resulting model is 
called process rewrite systems. 

We transfer some principles of CCP to process rewrite systems. Previ­
ously, we have introduced an analogous modification of purely sequential 
and purely parallel rewrite systems in [StrOOa, StrOOb]. In both cases, the 
aim is to characterise the changes of expressive power of these systems. 
The mechanism of rewrite systems is extended with the store, which can 
contain some partial information. We keep talking about constraints (as 
the theory around CCP) although we do not specify the shape of partial 
information as sharply as CCP does. We add two constraints to every stan­
dard rewrite rule. The rule can be applied only if the actual store is strong 
enough to entail the first constraint. The second constraint is added to the 
store when the extended rule is used (the rule is applicable under condi­
tion that the store keeps consistent). After application of the rule the store 
contains the same or more information, thus we say that the store is mono-
tonic. Extended process rewrite systems are called process rewrite systems 
with finite constraint systems. 

The comparison between the original process rewrite systems and pro­
cess rewrite systems with added finite constraint system gives some inter­
esting results. At first, the expressive power of finite state systems, push­
down processes, and Petri nets does not change by adding the store. A 
more interesting result is that the expressive power of process rewrite sys­
tems corresponding to transition systems of classes BPA, BPP, PA, PAD, 
and PAN strictly increases, hence some new classes of transition systems 
are obtained in this way. 

1.1 Plan of the thesis 

The rest of the thesis is structured as follows. The next chapter recalls var­
ious definitions widely used in concurrency theory. In Chapter 3 we sum­
marise Mayr's results, especially the definition of process rewrite system 
and we also present the hierarchy of such systems obtained by imposing 
various restrictions on the form of rewrite rules. In Chapter 4 we define 
the notion of process rewrite systems with finite constraint systems and 
we present the fcPRS-hierarchy. The new classes fcBPA, fcBPP, fcPA, fc-
PAD, fcPAN, and fcPRS are introduced in this chapter. The strictness of 
the fcPRS-hierarchy is proven in Chapter 5 focused on the new classes. The 
thesis closes with a chapter summarising our results and pointing out some 
directions for future research. 
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Chapter 2 

Basic definitions 

In this chapter we recall the notions of labelled transitions systems, lan­
guage generated by such system, and bisimulation equivalence. 

2.1 Labelled transition systems 

Concurrent systems are traditionally modeled as edge-labelled directed 
graphs, whose nodes represent the states which can be entered by a sys­
tem, and whose edges are labelled with atomic actions. An edge leading 
from a node s\ to a node s 2 that is labelled with an action a represents the 
fact that if the system is in the state a\, then it can do action a and will be in 
the state S2 afterwards. 

A precise definition is given below. 

Definition 2.1. A labelled transition system (LTS) C is a tuple (S, Act, —> 
,ato), where 

• S is a set of states or processes, 

• Act is a set of atomic actions or labels, 

• —>C S x Act x S is a transition relation, written a 
(a,a,ß) e—>, 

• cto £ S is a distinguished initial state. 

A state a G S is terminal (or deadlocked, written a —/-*) if there is no a G Act 
and ß G S such that a - % ß. 

Our notion of a labelled transition system differs from the standard def­
inition of a (nondeterministic) finite-state automaton (as for example the 
one given in [HU79]) in two aspects. First, both the set of states and the set 
of actions can be infinite. Second difference is an absence of final states as 
we do not distinguish between successful and unsuccessful termination. 

ß instead of 
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The transition relation —> can be homomorphically extended to finite 
sequences of actions a G Act* so as to write a —> a and a —» ß whenever 
a —» 7 —^ /3 for some state 7. The set of states a such that ao —> a for 
the initial state ao and some a G Act* is called the set of reachable states. 

If an LTS is finite then it can be finitely described. In computer science 
and also in other domains, there are many situations corresponding to infi­
nite transition systems (e.g. algorithms working on arbitrarily large natural 
numbers). Formal models like Petri nets, pushdown automata and process 
algebras are able to describe certain classes of infinite transition systems in 
a finite way. As we shall see in Chapter 3, the class of transition systems de­
finable by process rewrite systems is even larger than all mentioned classes. 

2.2 Language equivalence and bisimilarity 

An important question in the realm of concurrency theory is to determine 
when two transition systems are to be considered "the same". It turned 
out that the isomorphism is a too strong equivalence. A plethora of finer 
eqlvalences was defined by many people in eighties, an overview of these 
equivalences was compiled by van Glabbeek [vG90]. We define just two of 
them, language equivalence and bisimulation equivalence. 

Given a labelled transition system C with the initial state ao, we can 
define its language L(C) to be the language generated by its initial state ao, 
where the language generated by a state is defined in the usual way as the 
set of all sequences of labels associated with transitions leading from the 
given state to a terminal state. 

Definition 2.2. The language generated by the labelled transition system L is 
the set L(C) = L(a0), where 

L (a) = {w G Act* j a —t ßfor some terminal state ß}. 

States a and ß of the system L are language equivalent, written a ~ L ß, iff they 
generate the same language, i.e. L(a) = L(ß). 

Language equivalence is generally taken to be too coarse in the frame­
work of concurrency theory. The second presented equivalence, bisimu­
lation equivalence, is perhaps the finest behavioural equivalence studied. 
Bisimulation equivalence was defined by Park [Par81] and used by Mil-
ner [Mil80, Mil89] in his work on CCS. Its definition is as follows. 

Definition 2.3. A binary relation 1Z on states of labelled transition system is a 
bisimulation iff whenever (a, ß) E Ti we have that 

• if a -£•* a' then ß -̂ -> ß' for some ß' with (a', ß') G Ti, 
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• if ß —* ß' then a —^ a1 f or some a! with (a1, ß') £ TZ. 

a and ß are bisimulation equivalent or bisimilar, written a ~ ß,iff (a, ß) € % 
for some bisimulation TZ. 

This definition can be extended to states in different transition systems 
by putting them "side by side" and considering them as a single transition 
system. The binary relation ~ defined above is called bisimulation equiva­
lence as it is an eaquivalence and even the largest bisimulation. 

Bisimulation equivalence has an elegant characterisation in terms of 
certain two-player games presented by Stirling [Sti95]. 
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Chapter 3 

Process rewrite systems (PRS) 

In this chapter we summarise (and slightly modify) the first part of Mayr's 
paper titled "Process Rewrite Systems" [May97b]. 

The process rewrite systems represent a very general term rewriting 
formalism that covers many widely known models like Basic Parallel Pro­
cesses (BPP), context-free processes (BPA), pushdown processes, process 
algebras (PA), Petri Nets, and provides an unified view of these models. 

3.1 Process terms 

The process terms are the cornerstone of process rewrite systems. They 
correspond to states of transition systems described by process rewrite sys­
tems. 

Definition 3.1. Let Const = {X, Y,Z,---}bea countably infinite set of pro­
cess constants. The process terms that describe states of the system have the 
form <y 

t = £ | X | Í1.Í2 I -̂111 ̂ 21 

where e is the empty term, X e Const is a process constant (used as an atomic 
process in this context), "\\" means parallel composition, and "." means sequential 
composition. Let T be the set of process terms. 

We always work with equivalence classes of terms modulo commuta-
tivity and associativity of parallel composition and modulo associativity of 
sequential composition. Also we define that e.t = t = t.e and i||e = t. 

Although we have declared that sequential composition is associative, 
when we look at terms we think of it as left-associative. So when we say 
that a term t has the form tifat w e mean that Í2 is either a single constant 
or a parallel composition of process terms. 



Definition 3.2. The size of a process term is the number of occurrences of con­
stants in it plus the number of occurrences of operators in it. 

size(e) = 0 
size(X) = 1 

size{t\.ti) = size(t\) + size(t2) + 1 
size(ti\\t2) = size(t\) + size(t2) + 1 

Definition 3.3. The set Const(t) is the set of all constants that occur in a process 
term t. 

Const(e) = 0 
Const(X) = {X} 

Const{t\.t2) = Const(ti)UConst(t2) 
Const{ti\\t2) = Consŕ(íi) U Const(t2) 

3.2 Definition of PRS 

Now we are ready to introduce the syntax of process rewrite systems. The se­
mantics will be explicitly given a bit later, when we show how to associate 
a labelled transition system to each process rewrite system. 

Definition 3.4. Let Act = {a, b, • • • } be a countably infinite set of atomic ac­
tions. A process rewrite system (PRS) A is a pair (R, i0), where 

• R is afinite set of rewrite rules, which are of the form t\ —t Í21/ where 
t\, Í2 € T are process terms and a E Act is an atomic action, 

• to ET is an initial state. 

Slightly abusing our notation, we usually write (ti —> t2) G A instead 
of (ii - % t2) G R, where A = (R, t0). 

For a given A with the initial state to, the set Const(A) is naturally 
defined as the set of all constants that occur in rewrite rules or initial state. 

Const(A) = Const(t0) U | J (Consí(íi) U Const{t2)) 
(íi-2+í2)6A 

Similarly, the set Act (A) is the set of all actions that occur in rewrite rules 
of A. 

Aci(A) = ( J {a} 
( t l - ^ t 2 ) £ A 

1There is an ambiguity around the expression ii —* ti as it can be seen as a rewrite 
rule as well as an element of a transition relation. Fortunately, the actual meaning is always 
determined by the context. 
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Due to the finiteness of A, the sets Const(A) and Act(A) are both finite. 

Each process rewrite system induces an unique labelled transition sys­
tem that represents its dynamics. A formal definition follows. 

Definition 3.5. Let A = (R, i0) be a process rewrite system. The LTS Ĺ induced 
by A has the form (S, Act (A), —•, to), where 

• S = {t e T I Constat) C Const(A)} is the set of states, 

• transition relation —> is defined as the least relation that satisfies the infer­
ence rules 

where ti,t2,t[ e T, 

Since the set of rewrite rules in A is finite, the generated LTS is finitely 
branching. (For some classes of systems (e.g. Petri nets) the branching-
degree is bounded by a constant that depends on A. For other classes (e.g. 
PA) the branching-degree is finite at every state, but it can get arbitrarily 
large.) On the other hand, the generated transition system can be infinite. 

We often speak about "process rewrite system" meaning "labelled tran­
sition system generated by process rewrite system". 

The definition of process rewrite systems is more general than the def­
inition of rewrite systems presented by Caucal [Cau92] which takes into 
account only systems with sequential composition; and also than the one 
given by Moller [Mol96] which takes into account only purely sequential 
and purely parallel rewrite systems and which was also used to form the hi­
erarchy of standard process classes. Process rewrite systems provide a gen­
eral and unifying framework which naturally subsumes all of the above-
mentioned formalisms. 

3.3 PRS-hierarchy 

Many common models of systems fit into the scheme of process rewrite sys­
tems. In this section we characterise some interesting subclasses of rewrite 
systems. At first, we need to define some classes of process terms. 

Definition 3.6. We distinguished four classes of process terms. 

"1" Terms consisting of a single process constant like X. 
2Note that parallel composition is commutative and, thus, the inference rule for parallel 

composition also holds with či and ti exchanged. 
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"S" Terms consisting of a single constant or a sequential composition of process 
constants like X.Y.Z. 

"Y" Terms consisting of a single constant or a parallel composition of process con­
stants like X\\Y\\ Z. 

"G" General process terms with arbitrarily nested sequential and parallel compo­
sitions like (X.(Y\\Z))\\W. , i 

We also let eeS,P, G, but e£l. 

The relationship between these classes of process terms is easy to see: 
1 S 5, 1 C P, S C G, and P C G. S and P are incomparable and S n P = 
lC{e}. 

The expressiveness of a rewrite system depends on what kind of terms 
are on the left-hand side and the right-hand side of rewrite rules in A. Thus 
the subclasses of process rewrite systems are characterised by the classes of 
terms allowed on the left-hand and the right-hand side of the rewrite rules. 

Definition 3.7. Let a, ß G {1, S, P, G}. A process rewrite system A = (R, to) is 
an (a, /3)-PRS if to G ß and for every rewrite ride (l —t r) G A the term I is in 
the class a and I ^ e and the term r is in the class ß (and can be e iff ß ^ 1). A 
(G, G)-PRS is simply called PRS. 

It does not have much sense to consider those (a, /3)-PRS where a is 
more general than ß or incomparable to ß (for example, a = G and ß = S), 
because the rule t\ —» ti can generate a transition from a state t only if the 
term ii is a subterm of t. But when the initial state io is taken from the same 
class as terms which appear at right sides of rewrite rules, the reachable 
states are of the class ß. Only those rules whose left-hand side is taken 
from the class ß (or some subclass) are applicable to reachable states. Thus, 
we restrict our attention to such (a, /3)-PRS where a C ß. 

Without the loss of generality it can be assumed that the initial state 
io of a (a, /?)-PRS is a single constant. There are only finitely many terms 
ti,Ů2)• • • »in such that to —^ ŕj. If io is not a single constant then we can 
achieve this by introducing a new constant XQ and new rules XQ —^ U and 
declaring XQ to be the initial state (the modified system is still (a, /3)-PRS). 

If a system A belongs to a class [a, /3)-PRS (where a C ß), then the set 
of states of LTS generated by A consists only of process terms t of the class 
ß that satisfy Const(t) C Const(A). 

Figure 3.1 shows a graphical description of the hierarchy of (a, /3)-PRS, 
simply called PRS-hierarchy. Many of these (a, /3)-PRS correspond to widely 
known models like Petri nets, pushdown processes, context-free processes, 
and others. 

• 
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PRS (G, G) 

PAD (S, G) PAN (P, G) 

PDA (S, S) PA(1,G) PN (P, P) 

BFA (1,5) BPP(1,P) 

PS (1,1) 

Figure 3.1: The PRS-hierarchy 

1. (1,1)-PRS are equivalent to finite-state systems (FS). Every process 
constant corresponds to a state and the state space is bounded by 
\Const(A)\. Every finite-state system can be encoded as a (1,1)-PRS. 

2. (1,5)-PRS are equivalent to Basic Process Algebra processes (BPA) 
defined in [BK85], which are the transition systems associated with 
Greibach normal form (GNF) context-free grammars in which only 
left-most derivations are allowed. 

3. It is easy to see that pushdown automata can be encoded as a sub­
class of (5*, S)-PRS (with at most two constants on the left-hand side 
of rules). Caucal [Cau92] showed that any unrestricted (S, S^-PRS can 
be presented as a pushdown automaton (PDA), in the sense that the 
transition systems are isomorphic up to the labelling of states. Thus 
(S, 5)-PRS are equivalent to pushdown processes (which are the pro-
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cesses described by pushdown automata). 

4. (P, P)-PRS are equivalent to Petri nets (PN). Every constant corre­
sponds to a place in the net and the number of occurrences of a con­
stant in a term corresponds to the number of tokens in this place. This 
is because we work with classes of terms modulo commutativity of 
parallel composition. Every rule in A corresponds to a transition in 
the net. 

5. (1,P)-PRS are equivalent to communication-free nets, the subclass 
of Petri nets where every transition has exactly one place in its pre­
set [BE97]. This class of Petri nets is equivalent to Basic Parallel Pro­
cesses (BPP) [Chr93]. 

6. (1, G)-PRS are equivalent to PA-processes, Process Algebras with se­
quential and parallel composition, but no communication (see [BK85] 
for details). 

7. (P, G)-PRS are called PAN-processes in [May97a]. It is the smallest 
common generalisation of Petri nets and PA-processes and it strictly 
subsumes both of them (e.g., PAN can describe all Chomsky-2 lan­
guages while Petri nets cannot). 

8. (S, G)-PRS is the smallest common generalisation of pushdown pro­
cesses and PA-processes. They are called PAD (PA + PDA) in [May98]. 

9. The most general case is (G, G)-PRS (here simply called PRS). PRS 
have been introduced in [May97b]. They subsume all of the previ­
ously mentioned classes. 

From our point of view, standard process classes like FS, BPA, BPP, 
PDA, and PN are considered more generally then for example in [Mol96]. 
The difference corresponds to the different definition of labelled transi­
tion system. For us, every terminal state is successful ("final" in the terms 
of [Mol96]) and we do not assume that the set of final states is finite. 

3.4 Intuition behind the PRS-hierarchy 

In this section we explain the intuition behind the design of (a, /3)-PRS rules 
and the respective restricted subclasses of PRS. 

If parallel composition is allowed on the right-hand side of rules, then 
there can be rules of the form t —> íi||Í2- This means that it is possible to 
create processes that run in parallel. The rule can be interpreted that, by 
action a, the process t splits into two independent processes t\ and t%. 
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If sequential composition is allowed on the right-hand side of rules, 
then there are rules of the form t —> t\±2- The interpretation is that the 
process t calls a subroutine ii and behaves like the process t^. It resumes 
its execution after the subroutine t\ terminates. 

If arbitrary process terms are allowed on the right-hand side of rules 
then both parallelism and subroutines are possible. 

If parallel composition is allowed on the left-hand side of rules, then 
there are rules of the form t\ p2 —> t. This can be interpreted as synchroni­
sation or communication of the parallel processes t\ and Í2- This is because 
this action can only occur if both t\ and Í2 change in a certain defined way. 

If sequential composition is allowed on the left-hand side of rules, then 
there can be rules of the form í':.Í2 —> ť a n d ť[.12 —> t". The intuition 
is that the process t called a subroutine ii and behaves like Í2 by a rule 
t —> Í1.Í2- I n its computation the subroutine may reach a state t[ or t'[. 
Now one of these rules is applicable. This means that the result of the 
computation of the subroutine affects the behaviour of the caller when it 
becomes active again, since the caller can become ť or t". The interpretation 
is that the subroutine returns a value to the caller when it terminates. 

If arbitrary process terms are allowed on the left-hand side of rules then 
both synchronisation and value-passing by subroutines are possible. 

3.5 Strictness of the PRS-hierarchy 

There is a natural question about the strictness of the PRS-hierarchy. With 
respect to language expressibility this is not the case. For example, both 
BPA and PDA define exactly the (e-free) context-free languages. The sit­
uation is different if we ask about strictness with respect to bisimulation 
equivalence. 

It has been proven by Burkart, Caucal, Steffen, and Moller [BCS96, 
Mol96] that the classes FS, BPP, BPA, PDA, PA, and PN are all different 
with respect to bisimulation equivalence. For PAD, PAN, and PRS it was 
demonstrated by Mayr [May97b] using the two rewrite systems below. 

Example 3.8. Consider the following PDA system given as (S, S)-PRS with ini­
tial state U.X. 

U.X -- ^ U.A.X U.A - ^ U.A.A U.B - a • U.A.B 
U.X -A U.B.X U.A A U.B.A U.B - b t • U.B.B 
U.X --Uv.x U.A - ^ V.A U.B • c •V.B 
U.X --^w.x U.A - A W.A U.B - d •W.B 
V.X --^v V.A-^V V.B - b V 

w.x Aw W.A^W W.B b >w 

v 

r 
• 
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The system described in Example 3.8 can produce a sequence a G {a, b}* 
and then either c followed by a in the reversed order and finally action e, 
or d followed by a in the reversed order and finally action / . Such a system 
cannot be bisimilar to any PAN system. 

Example 3.9. Consider following Petri net given as (P, P)-PRS with initial state 
X\\A\\B. 

X-Ux\\A\\B Y\\A-±>Y 

X ^ Y Y\\B-^Y 

X\\A^Z Y\\A^Z 

X\\B -U Z Y\\B -*• Z 

The system shown in Example 3.9 can do the action g n-times (n > 0), 
then the action c followed by an arbitrary sequence a G {a, b}* such that 
the action a occurs (n + 1)-times in a and so does the b. From every non­
terminal state the system can also do the action d leading to a deadlocked 
state. This Petri net cannot be described by any PAD process with respect 
to bisimulation equivalence. 

The systems given by previous two examples prove that the classes 
PAN and PAD are incomparable. The strictness of the PRS-hierarchy is 
now obvious. 
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Chapter 4 

PRS with finite constraint 
systems (fcPRS) 

In this chapter we extend the process rewrite systems with finite constraint 
systems. This extension of rewrite systems provides a way of keeping a sort 
of global information which is accessible to all parallel threads. It is quite 
surprising that this extension (which is not so powerful as an extension 
with a general finite-state control unit which gives Turing power even to 
PA class) increases the expressive power of classes like PAN and PAD. 

The extension is inspired by the idea of common store used in Concur­
rent Constraint Programming. \ ** « 

4.1 Constraint systems 

The state space and possible evolution of the store used by PRS with finite 
constraint system are described by a constraint system, i.e. a set of con­
straints with a structure of an algebraic lattice. 

Definition 4.1. A constraint system is a bounded lattice (C, <, A, tt,jf), where 
C is the set of constraints, < is an ordering on this set, A is the lub operation, and 
tt (true), ff (false) are the least and the greatest elements of C (tt y^ffl. 

In algebra, the symbol A usually denotes the gib (the greatest lower 
bound) operation, while lub (the least upper bound) operation is rather 
marked with symbol V. We adopted the notation used in the framework 
of CCP, where the lub operation (marked with A) corresponds to logical 
conjunction. 

Following the terminology and the notation used in CCP, instead of < 
we refer to its inverse relation, denoted by h and called entailment. Formally 

Vm, n G C : m h n <=> n <m. 
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We say that a constraint m is consistent with a constraint nitím An ^ff. 
The state of the store cannot bej^ as we require the consistency of the store 
initialised to tt. We use CQ to denote C \ {ff}. 

Two following examples show two constraint systems heavily used in 
the rest of this thesis. 

Example 4.2. Let C = {tt,ff}, < = {(tt,ff), (tt, tt), (ff,ff)}. Then CE is the trivial 
constraint system (C, <, A, tt,ff) depicted in Figure 4.1. 

ff 

tt 

Figure 4.1: Constraint system Ce 

Example 4.3. Let C = {tt, m, n,ff}, < = {(tt,ff), (tt, m), (tt, n), (m,ff), (n,ff)}U 
{(o, o) | o G C}. Then Cmn = (C, <, A, tt,ff) is the constraint system depicted in 
Figure 4.2. 

m n 

tt 

Figure 4.2: Constraint system Cmn 

We add one more example which can provide a better illustration of the 
relation between partial information, a constraint system and an evolution 
of the store. 

Example 4.4. The Herbrand constraint system on {a, b} with variables x, y is 
diagrammatically represented in Figure 4.3. 

4.2 Definition of fcPRS 

At first we define the syntax of PRS with finite constraint system. Simi­
larly to the definition of PRS, the semantics will be given later by a precise 
definition of LTS generated by fcPRS. 
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Figure 4.3: Herbrand constraint system on {a, b} with variables x, y 

Definition 4.5. A PRS with finite constraint system A is a tuple (C,R,to), 
where 

• C = (C, <, A, tt,ff) is afinite constraint system describing the store; the 
elements of C represent the states of the store, 

• R is afinite set of rewrite rules, which are of the form (ti —t t2,m,n), 
where ti,t% £Tare process terms, a G Act is an atomic action, and m,n £ 
C° are constraints, 

• to is a distinguished initial process term. 

Again, instead of (t\ —t Í2, m,n) E R where A = (C, R, to), we usually 
write (ii —> t2,m,n) G A. 

The definitions of Const(A) (which is the set of process constants used 
in rewrite rules) and Act(A) (the set of actions occurring in rewrite rules) 
for a given fcPRS A with initial process term to are very similar to those 
which were used for PRS. 

Const(A) = Const(t0) U ( J (Const(ti) U Const{t2)) 

(ti—>t2,m,n)eA 

Act(A) = (J {a} 
( í l—>Í2,m,n)eA 

Again, the sets Const(A) and Act(A) are both finite because of the finite-
ness of A. 

The next definition exactly describes the labelled transition system de­
fined by a PRS with finite constraint system. 
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Definition 4.6. Let A = (C, R, to) be a PRS with finite constraint system C = 
(C,<,A,tt,ff). The labelled transition system C induced by A has the form 
(S, Act (A), —•, a0), where 

• S = {t G T I Const(t) C Const(A)} x C° is í/ie set of states, 

• transition relation —• is defined as the least relation that satisfying the 
inference rides 

(tl^t2,m,n)EA ifo h m m d o A n ^ff 
( i i ,o)-^(i 2 ,oAfi) ' ^JJ' 

( t l , 0 ) ^ ( t » 
(*1 \\t2,0)-^W\t3J,)' 

{tl,o)^{t\,p) 

{tl.t2,o)^{t\.t2,py 

where ti,t2,t[ G T and m, n, o,p G C°, 

• ao = (*0) tt) /s ŕ/ze initial state. c , i o^-
Two importarft conditions contained in the first inference rule are very 

close to principles used in Concurrent Constraint Programming (CCP). The 
first one (o h m) ensures that the rule (ii —y Í2,m,n) G A can be used 
only if the actual state of the store o entails the constraint m (it is similar 
to ask(m) in CCP). The second condition (o A n ^ ff) guarantees that the 
store keeps consistent after application of the rule (analogous to consistency 
requirement when processing tell(n) action in CCP). If these two conditions 
are satisfied, the meaning of inference rules is the same as in the case of 
standard process rewrite systems. 

An important observation is that the state of the store (starting at tt) can 
move in a lattice C only in one direction, from tt upwards. This can be easily 
seen from the fact that the actual state of the store o can be changed only by 
applying some rewrite rule (t\ —> Í2, m, n) G A and after this application 
the new state of the store o An always entails the old state o. Intuitively, the 
partial information can only be added to the store, not retracted. We say 
the store has a monotonie behaviour, or simply that the store is monotonie. 

Note that when the system (with o on the store) executes a transition 
generated by a rewrite rule (t\ —> Í2, m, n) G A then for every subsequent 
state of the store p both conditions, p h m and p An ^ ff are satisfied. The 
first condition p h m comes from the monotonie behaviour of the store. 
The second condition comes from the fact that the constraint n in the rule 
changes the store only in the first application of the rule provided o does not 
entail n ( o A n / o ) . All subsequent applications of this rule do not change 
the store (again thanks to its monotonie behaviour), i.e. for each subsequent 
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state p of the store p An = p holds. A corollary of this observation is the 
satisfaction of consistency condition as p ^ ff- In other words, once the 
information presented by n is added to the store, each subsequent attempt 
to add the same information to the store does not change the store and thus 
the store keeps consistent. 

On the other hand, the fact that some rule is applicable (hence entail­
ment and consistency are satisfiable) does not imply that this rule is appli­
cable forever. The insidious point is the consistency requirement. The store 
can evolve to a state inconsistent with the second constraint from the rule. 

4.3 Intuition behind fcPRS 

The intuition behind process rewrite systems with finite constraint systems 
will be demonstrated on one small example. 

Let A be a fcPRS given below with initial term X||Y||Z. 

(X - ^ X, tt, tt) 

(Y - ^ Y, tt, tt) 

(X —> e,tt,m) 

(Y-^Y,tt,n) 

(Z - ^ Z, o, tt) 

tt 

At the beginning, the process X can perform the a action without changing 
the store. The process Y can perform b, also without any changes on the 
store. The process Z is deadlocked as the rule (Z —> Z, o, tt) is applicable 
only if information on the store implies o. Furthermore, the process X can 
also perform x, put an information m on the store (and terminate). The 
process Y can do y and put n on the store. The process Y can do y again 
and again, but the information on the store increases only after performing 
the first y. This naturally corresponds to the fact that if one writes on the 
blackboard the same statement twice, the information written there is not 
doubled. When constraints m and n have been added to the store (it does 
not depend what constraint was written to the store first), the store is in the 
state o corresponding torn An. Then the process Z can start to perform e's. 

As you can see, the meaning of constraints in rewrite rules together with 
the shape of used constraint system can be translated to a human language 
in a very straightforward way. 

ff 

rn n 
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4.4 Relationship between PRS and fcPRS 

The first information about the relationship between PRS with finite con­
straint system and standard PRS is provided by the following lemma. 

Lemma 4.7. Labelled transition systems defined by PRS A' = (R',to) and by 
fcPRS A = (C£,R,t0) are isomorphic on the assumption that R' = {t± - % t2 \ 
{h -^t2,tt,tt)eR}. 

Proof. Let C be the transition system corresponding to the fcPRS A. The 
state of the store is tt in every state of L due to the shape of the trivial 
constraint system C£ (defined in Example 4.2). 

Further, for each rewrite rule (ii —> t2, tt, tt) the two conditions in the 
first inference rule are always satisfied (tt h tt and tt Att = tt ^ ff). 

Now we know that the transition system L is of the form (S, Act(A), —> 
,(to,tt)), where S = {(t,tt) | Const(t) C Const(A)} and the transition 
relation —> can be alternatively defined as (t, tt) —y (ť, tt) iff there is a 
transition rule (ri -̂ -> t2, tt, tt) e A such that the transition t —+ ť can be 
derived from the rewrite rule t\ —> t2 using the inference rules given in 
Definition 3.5. 

If we remove tt from the states of C, we get an isomorphic system C! 
which corresponds to the rewrite transition system A'. D 

Roughly speaking, the lemma says that the trivial constraint system 
cannot hold any significant information and thus such a fcPRS is isomor­
phic to the corresponding standard process rewrite system. The lemma can 
be used in both directions, for proving that any fcPRS of the specified form 
has an equivalent PRS as well as for constructing a fcPRS equivalent to an 
arbitrary given PRS. 

The following lemma defines another situation when an added con­
straint system cannot increase expressive power of a process rewrite sys­
tem. 

Lemma 4.8. For every fcPRS A = (C,R,ÍQ) with the rewrite rules of the form 
(ti —> Í2, tt, tt), there is an (effectively constructible) PRS A' with the transition 
system isomorphic to the transition system of A. 

Proof. We may assume that C ^ C£ (if C = C£ then the lemma is a direct 
corollary of Lemma 4.7). 

A crucial step is to observe that the state n of the store cannot be changed 
by any application of a rewrite rule of the form (ri —> t2,tt,tt) as n Att = n. 
This means that there is no transition between states (t, n) and (ť, m) for 
any í, ť G T and m, n G C°, m ^ n. 

Another important observation says that applicability of rewrite rules 
of the specified form does not depend on the current state of the store as 
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necessary conditions are always satisfied because every m G C entails tt 
and every n G C° is consistent with tt (n A tt = n ^ ff). Thus, if there is a 
transition (ŕ, tt) —• (ť, tí) then there is also a transition (ŕ, m) —> {ť, m) 
for every m G C°. 

The conclusion is that the transition system defined by A can be split 
into | C°j1 isolated isomorphic parts. Let Cm denote the part with m on 
the store for every m G C°. It is easy to see that if we change the con­
straint system in A to Ce/ the modified fcPRS describes exactly £ff. From 
the Lemma 4.7 it follows that we can construct a standard PRS A'(ř with 
a transition graph isomorphic to Ctt (i.e. isomorphic to every Cm). The 
desired process rewrite system A' consists of |C°| copies of A'tt. D 

Intuitively, the lemma says that if the power of the store is not employed 
by the rules (we do not add any information to the store), then (without any 
assumptions on the structure of constraint system) the PRS with constraint 
system is isomorphic to some standard PRS. The proof also says that the 
reachable part of the transition system defined by such a fcPRS consists of 
states with tt on the store. 

Although adding a finite constraint system looks like quite weak exten­
sion, in the following we will demonstrate that this mechanism can increase 
expressibility of standard classes of process rewrite systems. 

4.5 fcPRS-hierarchy 

There are several possibilities how to build the hierarchy of process rewrite 
systems with finite constraint systems. We can divide fcPRS systems into 
classes with respect to their constraint systems, rewrite rules (placing re­
strictions on the form of process terms on the left-hand side and the right-
hand side of the rules, conditions on the first and the second constraint 
in rules), or with respect to some combination of these aspects. We have : t~\& 
chosen a combination of the two .criterions. ^-Q ff ( I. 

The first criterion is the same as for PRS-hierarchy presented in Sec­
tion 3.3, i.e. the classes of process terms allowed on the left-hand side and 
the right-hand side of rewrite rules used in fcPRS. 

Definition 4.9. Let a,ß G {1,5, P, G] and C be a constraint system. AfcPRS 
A = (C, R, to) is (a, /3)-fcPRS if the initial term to G ß and for every rewrite rule 
((/, m) -2-> (r, n)) G A the term I is in the class a and I ^ e and the term r is in 
the class ß (and can be e). A (G, G)-fcPRS is simply called fcPRS. 

As in the case of standard PRS, we can make some additional assump­
tions. We consider only such (a, /3)-fcPRS classes where ß is more general 

:We use \M\ to denote cardinality of the set M. 
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than (or equal to) a. Also, without the loss of generality it can be assumed 
that the initial term io of an (a, /3)-fcPRS is a single constant. 

If a system A belongs to a class (a, /3)-PRS (where a C ß), then the set 
of states of LTS generated by A consists only of pairs (í, m), whose process 
terms t are of the class ß and satisfy Constat) C Const(A). 

The second criterion for dividing fcPRS systems is a constraint system 
used by fcPRS. We distinguish only between rewrite systems with the triv­
ial constraint system CE and rewrite systems with an arbitrary constraint 
system. 

Lemma 4.7 says that any class of (a, /3)-fcPRS systems with the trivial 
constraint system defines the same class of labelled transition systems (up 
to isomorphism) as (a, /3)-PRS class. That is the reason why we can appre­
hend all (a, /3)-PRS classes as classes of fcPRS systems and include them 
into fcPRS-hierarchy. 

We use human-readable abbreviations fcFS, fcBPA, fcBPP, fcPA, fcPDA, 
fcPN, fcPAD, fcPAN, and fcPRS for classes (1, l)-fcPRS, (1, ^-fcPRS, (1, P)-
fcPRS, (l,G)-fcPRS, (S,S)-fcPRS, (P,P)-fcPRS, (S,G)-fcPRS, (P,G)-fcPRS, 
and (G, G)-fcPRS respectively. 

Figure 4.4 shows the hierarchy of fcPRS classes, simply called fcPRS-
hierarchy. The relations depicted in the hierarchy partly result from the 
definition of classes. The rest of this section elucidates three equalities in 
the hierarchy (fcFS = FS, fcPDA = PDA, and fcPN = PN). The principle of 
the proofs lies in various mechanisms of stowing the content of the store in 
the process terms. 

As the PRS-hierarchy is not strict with respect to the language equiva­
lence, the fcPRS-hierarchy also cannot be strict on the language expressibil-
ity level. However, the fcPRS-hierarchy is strict with respect to the bisim-
ulation equivalence (with one exception in the relation between PRS and 
fcPRS classes, where the situation is not clear). To prove the strictness, we 
need to show that the new classes differ from each other and also from the 
classes in PRS-hierarchy. It will be demonstrated in the next chapter which 
is focused on new classes. 

Theorem 4.10. Let A be a (1, l)-fcPRS. There exists (1, l)-fcPRS A' with the 
trivial constraint system C£, isomorphic to A. 

Proof. Each state of an arbitrary fcFS consists of exactly one process con­
stant and one constraint. Thus the actual state of the store can be held as a 
part of such a constant. 

Let A be of the form {C, R, X0), where C = (C, <, A, tt,ff). A new fcFS 

A' is constructed as (CS,R',XQ '), where C£ is the trivial constraint system, 

XQ ' is the initial variable holding the initial state of the store. In R' we 
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fcPRS 

fcPAD 

PAD 

fcPDA=PDA 

fcBPA 

fcPAN 

PAN 

fcPN=PN 

fcBPP 

BPA BPP 

fcFS=FS 

Figure 4.4: The fcPRS-hierarchy 

replace every rewrite rule 

(Y -2-» Z,m,n) E R 

by the set of rules 
(Y(o) - ^ z(°An\ tt, tt) e R' 

for every o 6 C° which satisfies the entailment condition o h m and the 
consistency condition o A n ^ ff. In other words, the entailment and consis­
tency conditions are always satisfied in A', but the power of checking for 
these conditions is not lost, just moved to the new set of rules. The system 
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A' is isomorphic to A in the way, that each state (Y (m>, ŕŕ) of A' corresponds 
to the state (Y, m) of A. D 

The equation fcFS = FS is a corollary of above theorem which gives fcFS 
C FS and Lemma 4.7. 

Theorem 4.11. Let A be a (S, S)-fcPRS. There exists (S, S)-fcPRS A' with the 
trivial constraint system C£, isomorphic to A. 

Proof. The idea of the proof is based on the fact that we can add special 
process constants corresponding to the actual states of the store, one to each 
state of fcPDA. Then the content of the store will be stored in such special 
constants, when the store keeps unused (permanently set to ŕŕ). 

Let A = (C,R,to), where the constraint system C is of the form (C, < 
,A,tt,ff). Let S = {S^ | m G C°} be the set of special process con­
stants such that S n Const(A) = 0. A new fcPDA A' is constructed as 
(Ce, R', SW.to), where CE is the trivial constraint system, S^tt\to is the ini­
tial term with the special constant holding the initial state of the store. In 
R' we replace every rewrite rule 

(ii —• t2,m,n) G R 

by the set of rules 

(5(o).ŕi -As ( o A n ) . ŕ 2 , ŕ ŕ , ŕ ŕ ) e i ť 

for every o £ C ° which satisfies the entailment condition o h m and the 
consistency condition o An ^ff. The new rules are constructed to abide by 
the entailment and consistency conditions connected with original rules. 
The isomorphism of A and A' is obvious as every state (S^m>.t,tt) of A' 
corresponds exactly to the state (t, m) of the system A. D 

Again, the equality fcPDA = PDA is a corollary of the previous theorem 
and Lemma 4.7. The equality fcPN = PN arises from the same lemma and 
the following theorem. 

Theorem 4.12. Let A be a (P, P)-fcPRS. There exists (P, P)-fcPRS A' with the 
trivial constraint system CE, isomorphic to A. 

Proof. The proof is the same as the previous one if we replace every sequen­
tial composition "." by the parallel composition "\\". D 

The intuitive reasons why similar tricks cannot be done for other classes 
are of two kinds. 

In the case of fcBPA, fcBPP, or fcPA the reason is the restriction that only 
process constants can occur on the left-hand side of the rules. Thus we 
cannot add any special process constant to every process term in states, as 
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we cannot have two constants on the left-hand side of any rule. The content 
of the store also cannot be held as a part of some "original" constant Y (like 
in case of finite-state systems) as such a constant can be lost by a rule of the 
form (Y -l+e,tt,tt). 

In the case of fcPAN, fcPAD, and fcPRS we can add new process con­
stants holding the content of the store. However, there is another problem. 
The size of a process term is unlimited and there can be more rules which 
are applicable on different (and far-away from each other) subterms of the 
process term. In fcPDA case all subterms which can be rewritten immedi­
ately are at the beginning of the term, in fcPN case we can assume the same 
(thanks to the commutativity of parallel composition). Thus the problem 
is that we do not know where this constant should be placed in a process 
term as we do not know which subterm will be rewritten by next transition. 
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Chapter 5 

New classes in fcPRS-hierarchy 

This chapter describes new classes of transition systems defined by the 
(a, /3)-fcPRS formalism. The proofs that these classes differ from surround­
ing classes in fcPRS-hierarchy are included. The fcBPA and fcBPP classes 
were defined (a bit differently) in [StrOOa, StrOOb]. 

5.1 fcBPA class 

This section is devoted to the class of the transition systems which can be 
defined by (l,5)-fcPRS systems. The abbreviation fcBPA corresponds to 
BPA with finite constraint system. 

The fact that BPA is a subclass of fcBPA follows from Lemma 4.7. The 
witness of the strictness can be found in the example bellow. 

Example 5.1. Let A be afcBPA of the form (Cmn, R, A), where Cmn is the con­
straint system from Example 4.3 and R contains the following rewrite rules. 

(A - A AX, tt, tt) {X - A Y, m, tt) 

(A-Ue,tt,m) {Y-^e,m,tt) 

(A-^e,tt,n) (X-±>E,n,tt) 

Behaviour of this system is represented in Figure 5.1. 

The transition graph depicted on Figure 5.1 is not alphabetic (as it is 
not of finite multiplicity - see [CM90] for the proof and terminology). Thus 
this transition systems cannot be described by any BPA as the class of BPA 
corresponds to rooted alphabetic rewrite systems. 

Another argumentation can be based on the fact proved in [BCS96], that 
factorisation of any BPA with respect to the bisimulation equivalence is a 
regular graph (i.e. there exists some graph grammar generating the graph). 
Figure 5.2 represents a non-regular factorisation of the transition system 
depicted on Figure 5.1. 
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(e, m) J- {Y, m) ^— {X, m) ^ - {Y.X, m) ^— (X.X, m) -

(A,tt) 

b 

( e , n ) -

-^ [A.X, tt) 

b 

— (X,n)« 

{A.X.X, tt) 

b 

(X.X,n)*-

Figure 5.1: Transition system described in Example 5.1 

Figure 5.2: Bisimulation collapse of transition graph in Figure 5.1 

It can be seen from the definition of (a, /3)-fcPRS and Theorem 4.11 that 
fcBPA is a subclass of PDA. A PDA transition system which cannot be de­
scribed up to bisimilarity by any fcBPA is presented in Example 5.2. 

Example 5.2. The PDA given by the following rewrite rules and the initial state 
qX describes the transition system represented in Figure 5.3. 

qX -^ qAX 

qA - ^ qAA 

qA^q 

qX 

qA 

rX 

r A • 

+ qX i > qAX » qAAX ~ *• 
6 6 6 

r -e rX < r AX -* 

Figure 5.3: Transition system described in Example 5.2 

To see that there is no fcBPA bisimilar to the transition system pre­
sented in Figure 5.3, suppose that we have such a fcBPA A. Let M C 

26 



V. 

Const(A) x C° be the set of states such that (X, m) G M if and only if 
there is a reachable state of the form (X.t, m). We can assume that for every 
process constant X G Const(A) there is a m G C° such that (X, m) G M. 
Let s be defined as 

s = max s(X,m) 
{X,m)eM 

where s(X, m) be the length of the longest word in L((X, m)) n {b, c}*. The 
number s is finite as every sequence (possible in our system) consisting 
of {b, c}* is finite. Let (t, m) be the state of A bisimilar to qAs X, where 
s' = sConst^ + 1. Due to bisimilarity with qAs'X, the state (t,m) can do 
an arbitrary sequence of the form blcbs ~l (0 < i < s'). From the definition 
of s' follows that the term t consists of more than \Const(A)\ constants and 
thus some process constant X occurs twice between the first | Const(A) | + 1 
constants in t, i.e. t = t1-X.t2-X.t3 (či,Í2>Í3 can be e). A very important 
fact is that every sequence of the form blcbs ~l will erase at least the first 
\Const(A)\ process constants from the state (t,m). Now, we can make 
transitions under b* from [t\.X.t2.X.t$,m) to the state (X.t2-X.tz,n) and 
then we can make other transitions (X.t2.X.t$,ri) —> (X.Í3,o). The state 
(X.t3,o) is bisimilar to the state rAlX of PDA for appropriate i. The only 
one possible transition from the state rAlX is the transition with the label 
b. But in the set of possible transitions from the state (X.ts, o) there is also 
the transition with the label c corresponding to the rule used for the first 

cb* 

transition of the previous derivation sequence {X.t^-X.t^^n) —> (X.t^^o) 
as the entailment and consistency conditions are satisfied forever after the 
first application of the rule. It is the contradiction with the bisimilarity of 
(X*3,o) and rAlX. 

We have demonstrated that fcBPA class has strictly greater expressive 
power than classic BPA and strictly lower expressive power than PDA, both 
with respect to the bisimulation equivalence. On the language expressibil-
ity level, all three classes are equal due to the known fact L(BPA) = L(PDA) 
and the demonstrated relation BPA C fcBPA C PDA. 

5.2 fcBPP class 

This section presents some basic facts around the class of the transition 
systems which can be defined by a (l,P)-fcPRS. The abbreviation fcBPP 
corresponds to BPP with finite constraint system. 

We have already demonstrated that BPP is a subclass of fcBPP, the strict­
ness follows from the example given below which offers a fcBPP transition 
system which is not in the BPP class. 
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Example 5.3. Let A be afcBPP of the form (Cmn,R, A), where Cmn is the con­
straint system from Example 4.3 and R contains the following rewrite rules. 

(A -=-> A\\X,tt,tt) 
b 

(A —> e,tt,m) 
(A - ^ e, tt, n) 

Behaviour of this system is presented in Figure 5.4 

(X —> e, m, tt) 

{X -?->e,n,tt) 

(e, m) -<-^— (X, m) -*—— (X\\X,m) +± 

(e,n) (X,n) 

+ {A,tt)—±iA\\X,tt)—±(A\\X X, tt) — 

(X\\X,n) 

Figure 5.4: Transition system described in Example 5.3 

-.n—lun „n—l„n The language generated by this system L(A) = {an 16n,a'" *c" n > 
1} cannot be generated by any BPP due to the Pumping Lemma presented 
by Christensen [Chr93] in the following form. 

Lemma 5.4 (Pumping Lemma for BPP). Let L be any language of L(BPP). 
There exists a constant m such that if u is a word of L and the length of u (written 
\u\) is greater than m, then there exist x,y,z G E* such that 

• u = xz, 

• \y\ > I 

• Vi > 0 : xy*z e L. 

The definition of (a, /3)-fcPRS classes and proved fact fcPN=PN imply 
that the fcBPP class is a subclass of PN. These classes differ, even with re­
spect to the language equivalence. The language L = {anbcndenf | n > 0} 
is an instance of a language generated by PN, which cannot be described 
by any fcBPP Example 5.5 shows a PN describing the language L, while 
Pumping Lemma presented in the following subsection gives the argument 
that there is no fcBPP generating the language L. 

Example 5.5. Let A = (i?, W) be a (P, P)-PRS with rewrite rides as below. 

W - i 

X\\A 

w 
X 

X 

Y 

Y\\B 

YA 
ZU-
Z\\B 

^ Y 

Z 

•Vzp 
±*Z\\B 
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5.2.1 Pumping Lemma for fcBPP 

The pumping lemma for fcBPP is formulated and proved in this subsec­
tion. The proof is similar to the one presented by Christensen for BPP case 
[Chr93] thanks to the fact that every possible sequence of actions contains 
a finite number of transitions which change the state of the store due to 
finiteness of a constraint system. 

Let A = (C, R, t0) be a fcBPP. For every process constant X G Const(A) 
and every constraint m G (7°, let Sm{X) denote the set 

Sm(X) = {Y(E Const{A) \3teP: (X,m) —>+ (Y\\t,m)}\ 

i.e. the set of process constants Y which can be derived from (X, m) with­
out changes on the store. We extend this definition to parallel terms in 
obvious manner, thus 

Sm(A1||A2||...||A/)= (J Sm(Ai). 
ie{i,2,...,j} 

Lemma 5.6. Let A = (C, R, to) be a fcBPP. If there exists some derivation of 
a word u = u\U2 • • • uk G L(A) of the form 

(to,tt) = (t0,m0) - ^ (h,mi) - ^ . . . - ^ {tk,mk)-^ 

such that Vi G {0,1 ,2 , . . . , fc}, VX G U it holds X £ Smi (X), then \u\ < h, 
where h is a constant depending only on A. 

Proof. At first we focus on maximum "flat" parts of the above derivation, 
which are of the form 

(4- \ Ui+l (J. \ Ui + ? Ui+Í (J. \ 
(ti,mi) —> (ti+i,mi+i) —> ... —> {ti+j,mi+j), 

where the state of the store (in following marked as m) keeps unchanged 
(m = mi = rrii+i — • • • = rrii+j), i = 0 or m^-i ^ m, and i + j = k 
o r m / rrii+j+i. We denote u' = Ui+iUi+2 • • • Ui+j. From this flat part we 
deduce another derivation sequence 

M \ " i . I II \ "2 . VP. i M \ 

s0,m) —> (ri | |si ,m) —> ... —> (rp\\sp,m), 
where vi, «2, • • •, vp G Act+, ro\\so = t{, in ro there are all constants from ti 

which are rewritten in the derivation sequence (ťj, m) —> (ij+j, m), and in 
so there are constants which do not actively participate in this derivation 
sequence. Now rj||sj (I = 1,2,... ,p) rises from rj_i ||sj_i by one rewriting 

1The relation —>+ (resp. —•*) is apprehended as usual, i.e. (ti,m) —>+ (Í2,n) 
(resp. (íi, m) —>* (<2, n)) iff there exists w e Act+ (resp. w G Acť) such that {ti, m) -^-> 
(í2 ,n) . 
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of each constant from rj_i in the same way as a constant has been rewritten 
in the original flat derivation sequence (thus |u;| = |n_i|) and still it holds 
that 77 contains constants, which are rewritten in the original flat deriva­
tion sequence, while s; contains the other constants (thus s;_i C s(). We 
finish rewriting when 77 is empty (thus rp = e and sp = ti+j). It is clear 
that v = «1^2 • • • Vp is a permutation of u', especially \v\ = \u'\. By re­
placing (ti,m) —> (ti+j,m) with (ro\\so,m) -—> (rp\\sp,m) in the original 
derivation we get a correct derivation of the word u\... UÍVUÍ+J+I... un of 
the length k. Further, for each X in rj (I — 0 ,1 ,2 , . . . ,p) there exists tz 

(i < z <i + j) such that X E tz. 
Now we show that Sm(ri-i) 2 Sm(ri) for each 1 < I < p. 

"D" It comes directly from the fact that each constant from 77 has an ances­
tor in n_i . 

"Ý" Let us assume that for some 1 < I < p we have 5TO(r;_i) = Sm(ri). For 
each X Eri (77 ^ e) it holds that X G Sm(ri-i) and thus X e Sm(rj). 
From the premise X £ Sm(X) follows that there exists some Y G 77, 
ľ / I such that X e Sm(Y). Analogous reasoning as for X can be 
done for Y, i.e. from Y G 77 it follows that Y G Sm(ri-i) = Sm(ri) 
and Y £ Sm(Y), Y $ Sm(X). In conclusion we get Y G Sm(ri) and 
Y £ Sm(X\\Y). Again, there exists Z € n, Z $ {X,Y} such that 
Y G Sm{Z) and thus also {X,Y} C Sm{Z). We know Z G 77 and 
Z g Sm(Z), hence we get Z G Sm(n) and Z ^ Sm(X\\Y\\Z). We can 
continue in this fashion to the point where we have the contradiction 
WeSm(ri) and W<$Sm(n). 

Hence we have 

\Const(A)\ > \Sm{r0)\ > \Sm{ri)\ > .. . > \Sm{rp-i)\ > 0. 

This implies \Const(A)\ > p — 1. Further, for each 1 < I < pit holds that 

H = | n - l | < ko|a '_ 1 < \ro\aP-1 < |r0|alConsť(A)l, 

where a is a maximum number of constants in right sides of rewrite rules 
in A. Now we restrict the length of v! 

\u'\ = \v\ 
1=1 1=1 

\u'\ < p|r0|alConsi(A)l < (|Const(A)| + l)\U\a}Conat^\. 

In conclusion we get the restriction on the length of flat parts of the original 
derivation 

\u'\ < \ti\b, 
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where b = {\Const(A)\ + l)0lConat(A)l. 
In general it holds that each sequence of derivation steps consists of 

non-flat steps and flat derivation sequences. The number of "unflat" steps 
(ti, mi) —4 (ťj+i, TTij+i), where ra$ ^ mj+i, is limited by |C°| — 1. The cardi­
nality of the set C also constrains the number of flat parts to |C°|. Therefore 

|c°l 
|u|< 10*1-1 + ̂ 1^16, 

i=i 

where (£',m') is the first state of the j - th flat derivation sequence, i.e. m'-
is the j-th different state of the store used in the original derivation and 
(ťj,m'j) is the first state in this derivation with the constraint m'- in the store. 
Hence (*;, mi) = (r0,tt)-

The last step is to restrict the length of £ for j > 1. We can deduce a 
restriction 

l*Sl<l<5-il + («-i)(|í5-il6+i) 
thanks to the facts that each application of a rewrite rule cannot add more 
than a — 1 constants to the string of constants in the actual state and that 
the number of these applications is limited by the length of the previous flat 
string plus one (the unflat derivation step). The previous inequality can be 
modified in the following way. 

|«}-il +adrift+ 1) 
l*5-il(1 + o6+a) 
{tWil + ab + ay-1 

{toKl + ab + ay-1 

By summarisation we get 

|C«| 

|u| < \C°\ - 1 + 6|r0| 5^(1 + ab + ay-1, 
i=i 

where b = (\Const(A)\ + i)a\
Cmst(A)\. The sum on the right side of the 

previous inequality can be modified as it is an geometric progression. The 
final form of desired h is then 

h = \n-i+b\t/1+ab+a)lc°l-\ 
ab + a 

where a is the maximum number of constants in right sides of rewrite rules 
in A and b = {\Const{A)\ + l)0lConst(A)l. ' D 

The pumping lemma formulated below is a simple consequence of the 
previous lemma. 

«I < 
W < 
l̂ l < 
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Lemma 5.7 (Pumping Lemma for fcBPP). Let L be a language of L(fcBPP). 
There exists a constant h such that if u is a word of L and \u\ > h then there exist 
x,y,z,w G Act* such that 

• u = xz, 

• \y\ > h 

• Vi > 0 : xylzw% G L. 

Proof. Given L we have a fcBPP A such that L = L(A). It follows from 
Lemma 5.6 that each derivation 

{t0,tt) = {t0,m0) - % (ii ,mi) - ^ . . . - ^ {tk,mk)-h 

of the word u = u\u<i... uk G L(A), \u\ > h contains some state (tj,rrij) = 
(X\\t'j,mj), where X G Smj(X). The definition of Smj(X) says that there 
exist í G P and y G Act+ such that {X, m f) -̂ -> (X\\t,mj). Further, let 
w G Act* be a word in L((í,mfc)), i.e. there exists a terminal state (i',n) 
such that (í, m k) —> (ť, n). Now the derivation 

(*o,íř) —• (tj,mj)—> [tjt ,mj) —> (t\mk)—>{t,n)-^ 

is the correct one for all i > 0. To make the proof complete we should add 
that x — u\... Uj and z = Uj+i... uk- • 

5.3 fcPA, fcPAD, fcPAN classes 

From the Lemma 4.7 follows that PA is a subclass of the fcPA class, PAD is 
a subclass of fcPAD, and PAN is a subclass of fcPAN. To prove that men­
tioned PRS classes are strict subclasses of corresponding fcPRS classes, we 
present two fcPRS systems. The first is a fcBPA system which is not bisim-
ilar to any PAN system. The second will be fcBPP system which is not 
bisimilar to any PAD system. 

Example 5.8. Let us consider afcBPA system given as an (1, S)-fcPRS with the 
constraint system Cm,n introduced in Example 4.3 and the initial process term 
U.X. 

(U -^ U.A, tt, tt) (A -^ e, tt, tt) 
{U - ^ U.B, tt, tt) {B A e, tt, tt) 
(U—> e,tt,m) (X—> e,m,tt) 
(U-Ue,tt,n) (X-?-> e,n,tt) 

The fcBPA system given above is bisimilar to the pushdown system de­
fined in Example 3.8, which is not bisimilar to any PAN system. Hence 
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this fcBPA system is not bisimilar to any PAN, and as corollary we get 
PA C fcPA and PAN C fcPAN. 

We will prove that there is no PAD system bisimilar to fcBPP system 
given by the example below. 

Example 5.9. Let us consider afcBPP system given as an (1, P)-fcPRS with the 
constraint system depicted below and the initial state (X, tt). 

ff (X - A X\\A,tt,tt) 

J (X - ^ X\\B,tt,tt) 
I (X-^e,tt,o) 

(A -^ e, o, tt) 

tt {B -^ e, o, tt) 

Lemma 5.10. If there is a PAD system bisimilar to thefcBPP system from Exam­
ple 5.9, then there is also a PDA system bisimilar to thisfcBPP. 

Proof. Let A be a PAD with the initial state Q (we can assume that the initial 
state is a single constant) such that Q ~ (X, tt). As on the left-hand side of 
rewrite rules A only sequential composition can occur, some part of parallel 
composition t\ ||Í2 can influence the behaviour of such system only if there 
is a reachable state of the form {t\ P2) -̂ 3 where £3 can be e. If there is no such 
a state, we can remove all parallel compositions from the rules and we get a 
PDA system bisimilar to A and thus also bisimilar to the considered fcBPP 
process. 

Another situation arises if there is a reachable state of A of the form 
(h ||*2)-*3/ where Í3 can be e. Let us assume that during the derivation of the 
state (*i ||*2) -*3 from Q there is no other state of the form (*i ll*2)-*3 (*3 can be 
e). As Q is a single process constant and any parallel composition s\ \\s2 in a 
termp.(si||s2).p' cannot be changed by any rewriting until p is e, there must 
be some rewrite rule (t —t Z.(íi||Í2)-'") G A (I, r can be e, x G {a, b, c, d, e}) 
such that íi ||Í2 is the mentioned parallel composition. There are two cases. 

1. The state (íi||Í2)-Í3 was derived from Q under a word w G {a,b}*. 
We show that t\ or t% is then deadlocked. With respect to the defi­
nition of PAD, which does not provide any form of communication 
or synchronisation between processes in a parallel composition, just 
one component of *x ||*2 can enable the action e, let us assume that it 
is Í2- Then t\ is deadlocked - it cannot do neither the actions a or b 
(as these actions are disabled after the action e) nor the actions c or 
d (as these actions are disabled before e). Nevertheless, the term t\.ť 
is not necessarily deadlocked for some term ť. Hence, the parallel 
composition íi | | í2 in the rule (t -^-> Z.(íi||Í2).r) 6 A can be changed 
to the sequential composition t2-^i- We should insert some separator 

33 



between t% and t\ (resp. I and t2) to keep the impossibility of com­
munication between parts of parallel composition (resp. between I 
and part of the following parallel composition). Thus we replace the 
rule (t - ^ i.(íi||í2).r) G A by the rule t -^f l.X.t2.X.tx.r (resp. 
t —> t2.X.t\.r if / = e), where X £ Const(A) is a new constant, 
and we add new rewrite rule X.s —> s' to A for every rewrite rule 
s - ^ s' G A (if we already have the rules of the form X.s —> s' in 
modified A, we do not need to add them again in the future). These 
changes do not affect the behaviour of A. 

2. The action e occurs during the derivation of the state (*i ||*2)-*3 from 
Q. The state (*i||*2)-*3 is thenbisimilar to a state (An\\Bm,o)2 of con­
sidered fcBPP and thus every possible sequence of actions performed 
by the process (*i||Í2)-*3 is finite, as well as every possible sequence 
performed by the term *i ||*2- We construct a finite labelled (acyclic) 
transition graph where the vertices are processes reachable from the 
parallel composition t\ ||Í2 (which is the root of the graph) and edges 
naturally correspond to actions (resp. applications of rewrite rules). 
Now we assign a fresh process constant to each vertex of the graph 
which has some parallel composition inside (the vertices without any 
parallel composition keep unchanged). We replace the rule (t —*• 
l.(ti\\t2).r) G A by the rule t - ^ l.Z.r, where Z £ Const(A) is a pro­
cess constant assigned to t\ \\t2. For every edge of the graph from the 
vertex A (where A is a fresh constant) to the vertex v we add a rule 
A —> v (where x is the label of the edge) to A. The behaviour of A 
is still unchanged thanks to the fact that if (ti \\t2).t3 —-> ť-h then the 
term í3 can be changed by the following transition only if there is no 
parallel composition in ť, and the fact that the vertices without any 
parallel composition are unchanged. 

In both cases, the number of parallel compositions in rewrite rules has de­
creased (with one exception - when we add rules of the form X.s —^ s', 
then the number of parallel compositions can be doubled, but it does not 
matter as we make it only once). If there is still a reachable state of the form 
(h ||*2) -*3 in modified A, we can use the same method again. As the number 
of parallel compositions in rewrite rules is finite, after finite number of steps 
we get a PAD system without any reachable state of the form (íi||Í2)-Í3, 
which is the situation discussed at the beginning of this proof. D 

The class of context-free languages (i.e. the class of languages generated 
by PDA processes) is closed under intersection with regular languages. The 

2The expression A" is an abbreviation for n copies of process constant A in parallel 
composition. The abbreviation Bm has an analogous meaning. 
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language L generated by the fcBPP system from Example 5.9 is not context-
free, as its intersection with the regular language a*b*ec*d* is the language 
L n a*b*ec*d* = {anbmecndm \ m,n > 0} which is not context-free. Thus 
there is no PDA process bisimilar to fcBPP from Example 5.9 and from the 
Lemma 5.10 follows that there is no PAD process bisimilar to considered 
fcBPP. The direct corollary is the inequality PAD C fcPAD. 

It has been proven that PA, PAD and PAN classes are strict subclasses 
of corresponding (a, /3)-fcPRS classes. It is obvious from the definition that 
fcPA is a subclass of fcPAD and fcPAN. It remains to show that fcPA is a 
strict subclass of fcPAN and fcPAD and that fcPAN differs from fcPAD. To 
prove it, we introduce a PDA process which is not bisimilar to any fcPAN 
process, and a PAN process which is not bisimilar to any fcPAD process. 

Example 5.11. Let us consider the pushdown process described in Example 3.8 
with added rewrite rules below. 

V - ^ U.X W - i+ u.x 
V -?-> z w -A z 

This system behaves like the one defined in Example 3.8, but when the 
original system terminates, the enhanced system can choose between ter­
mination under the action z and restart under the action x. 

Lemma 5.12. If there is afcPAN system bisimilar to the PDA process from Ex­
ample 5.11, then there is a PAN process bisimilar to the PDA system from Exam­
ple 3.8. 

Proof. Let A be a fcPAN system bisimilar to the PDA process defined in Ex­
ample 5.11. From the finiteness of the constraint system used in A follows 
that there exists a non-terminal reachable state (t, o) of A such that every 
non-terminal state reachable from (t, o) has also o on the store (the contrary 
implies the infiniteness of the constraint system). As (t, 6) is non-terminal, 
there exist a word w G {a, b, c, d, e, / } * such that (t, o) —> (s, o), where 
(s,o) is bisimilar to the state U.X of the PDA process from Example 5.11. 
To summarise, (s, o) is a fcPAN process bisimilar to U.X and every non­
terminal state reachable from (s,o) has o on the store (terminal states are 
reachable only under the action z). 

If we remove from A the rules labelled by actions x, z and consider the 
state (s, o) to be the initial, we obtain the system with reachable states with 
o on the store, bisimilar to the pushdown process from Example 3.8. 

Now, let A' be a PAN system with the initial state s and with the set of 
rewrite rules consisting of rules / —> r, where (I —> r, m,n) G A, o h m, 
o A n = o and v G {a, b, c, d, e, / } . It is clear from above arguments that this 
PAN system A' is bisimilar to the PDA system defined in Example 3.8. D 
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Mayr in [May97b] has proved that there is no PAN process bisimilar to 
the PDA process from Example 3.8, thus there is no fcPAN process bisimilar 
to the pushdown process described by Example 5.11. Hence, fcPA is a strict 
subclass of fcPAD and the classes fcPAN, fcPAD are different. To check 
that fcPA is also a strict subclass of fcPAN, we show that there is a PAN 
process which cannot be described by any fcPAD process with respect to 
bisimulation equivalence. 

Example 5.13. Let Abe a PAN process with the initial state (X\\A\\B).W and 
the following rewrite rules. 

X-Ux\\A\\B Y\\A^Y X ^ e 
X ^ Y Y\\B-^Y Y ^ e 
X\\A^Z Y\\A^Z Z ^ e 
X\\B - ^ Z Y\\B -U Z A ^ e 

B ^ e 
W - A {X\\A\\B).W 
W ~^D 

The first two columns of rewrite rules include the same rules as Petri net 
given by Example 3.9. Also the initial state of that PN is very similar to the 
one of PAN system above. This PAN system can behave as mentioned Petri 
net (it can deviate from the behaviour of PN only under action y) and states 
corresponding to terminal states of considered PN can perform a sequence 
of actions y* to reach the state W. The state W can perform the action z 
leading to deadlock, or the action x restarting the PAN system. 

Lemma 5.14. If there is afcPAD system bisimilar to the PAN process from Exam­
ple 5.13, then there is a PAD process bisimilar to the PN system from Example 3.9. 

Proof. The proof is made in the same fashion as the previous one. Let A 
be a fcPAD system bisimilar to the PAN process defined in Example 5.13. 
From the finiteness of constraint system used in A follows that there ex­
ists a non-terminal reachable state (ŕ, o) of A such that every non-terminal 
state reachable from (ŕ, o) has also o on the store (the contrary implies the 
infiniteness of the constraint system). As (í, o) is non-terminal, there ex­
ist a word w G y* such that (t,o) -^4 (s,o), where (s,o) is bisimilar to 
the state pf||A||.B).W of the considered PAN process. To summarise, (s, o) 
is a fcPAD process bisimilar to (JC||A||J5).W and every non-terminal state 
reachable from (s, 6) has o on the store (terminal states are reachable only 
under action the z). 

If we remove from A the rules labelled by actions y,x,z and consider 
the state (s, o) as the initial, we obtain the system with reachable states with 
o on the store, bisimilar to the Petri net from Example 3.9. 
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Now, let A' be a PAD system with the initial state s and with the set of 
rewrite rules consisting of rules I —> r, where (I —> r,m,n) G A, o h m, 
o An = o and v G {g, a, b, c, d}. It is clear from above arguments that this 
PAD system A' is bisimilar to the Petri net system defined in Example 3.9. 

D 

Again, Mayr in [May97b] has showed that the Petri net described by 
Example 3.9 is not bisimilar to any PAD system. Hence, the PAN sys­
tem from Example 5.13 is not bisimilar to any fcPAD system and we have 
proved that fcPA is a strict subclass of the class of fcPAN processes. We also 
have demonstrated that the difference between classes fcPAD and fcPAN is 
"symmetric". 

5.4 fcPRS class 

At the beginning of this section, we should explain why the edge between 
PRS and fcPRS classes in the fcPRS-hierarchy (depicted on Figure 4.4) is 
dotted while other edges are not. The reason is that we have no proper 
proof (yet - as we hope) that the fcPRS class has strictly bigger expressibil-
ity than the PRS class. It is obvious from the definitions that PRS C fcPRS, 
but we can provide only intuition for PRS C fcPRS. The assumed witness 
of the inequality can be found in the fcPA below. 

Example 5.15. Let A be afcPA system with the initial process term X\\Y and the 
following constraint system and rewrite rules. 

(X -2-> X.A, tt, tt) 
(X - A X.B, tt, tt) 
(Y -U Y.C, tt, tt) 
(X^E,tt,p) 
(Y^e,p,o) 
(A -̂ -> e, o, tt) 
(B^Ue,o,tt) 
(C -Ae ,o , ř ř ) 

The behaviour of A defined in the example above is as follows. At the 
beginning, the process X can perform some actions a, b and remember the 
order of the actions, while the process Y can perform just the action c and 
count the number of performed actions c. The process X can also perform 
the action x, make a remark p on the store about this action and termi­
nate. Thereafter, the process Y can perform the action y, make a remark o 
on the store and terminate. When both processes X and Y are terminated 

/ / 

o 

P 

tt 
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(i.e. there is p Ao = o on the store), actions a', b', d can be performed. The or­
der (and the count) of actions a', b' corresponds in reversed order to actions 
a, b produced before termination of the process X. The count of actions c' 
is the same as the count of actions c performed before termination of the 
process Y. 

We can approve that this fcPA system is not bisimilar to any PAD pro­
cess. For the proof we consider the fcPA process without rules labelled by 
the action b (if we assume that there is a PAD process bisimilar to the orig­
inal fcPA, then there is also a PAD system without b action bisimilar to the 
fcPA without b action). Then the behaviour of our system is very similar 
to the behaviour of fcBPP from Example 5.9, which is not bisimilar to any 
PAD process. The proof is very similar too. 

We can also approve that the considered fcPA process is not bisimilar to 
any Petri net. The argumentation is based on the fact, that if we remove the 
rules labelled by c from the fcPA system, then we get a system describing 
the language L = {w.x.y.wR \ w G {a, b}*}. The proof that there is no Petri 
net generating the language L, can be found in [Pet81]. 

Now we try to explain (on very intuitive level) why we think that there 
is no PRS process bisimilar to the considered fcPA. Let us assume that A is 
such a bisimilar PRS system. We know this PRS cannot be described by any 
PAD process. Thus, there must be reachable state with some parallel com­
position. As the use of the parallel composition must be "non-removable", 
the information about performed actions a,b,c should be stored in some 
components of this parallel composition. There should be one parallel 
component (let us call it p) which saves the information about the order 
of actions a, b (and thus p is a sequential composition, at least at the top-
level), and another parallel component (let us call it q) which remembers 
the number of performed actions c (the information about the count of ac­
tions c cannot be mixed with the information about the order of actions 
a, b, because after the action y we need a "random access" to the count of 
actions c). As the sequence of actions a, b can be arbitrary long, the size of 
corresponding parallel component p is "unbounded" (i.e. for every n > 0, 
there is a reachable state where size(p) > n). Let m be the maximum size 
of left-hand sides of rewrite rules in A. Further, consider the state of the 
form (p|M|s)-r, where size(p) > m and process terms s,r can be e. Then 
there is no rule, which can change p together with some other part of the 
term. In other word, there is no way how can q or s provide an information 
to p. We need such kind of communication for the transition labelled by y, 
which allows to perform actions a',b',c'. One possible way how to enable 
these actions at the same time, is to add some term / in front of the parallel 
composition and enable the action by removing /. But any application of a 
rewrite rule on the process term of the form Z.(p||g||s).r cannot modify the 
process term p if p is large enough. Thus we cannot add information about 
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next possibly performed actions a, b to p (as well as I cannot be generated 
by p after the action a; if p is large enough). In other words, the problem is 
that a very large parallel component (which is an sequential composition at 
the top-level) cannot get any information from other parallel components. 

We should note that we already know that both, fcPAD and fcPAN 
classes, are strict subclasses of fcPRS with respect to bisimilarity. This fol­
lows directly from the fact, that fcPAD and fcPAN are incomparable sub­
classes of the fcPRS class. 

39 



Chapter 6 

Conclusion 

We have enriched process rewrite systems with the mechanism related to 
computing with partial information in the form used in widely studied con­
current constraint programming. In the case of process rewrite systems, 
this mechanism can be effectively used to provide some information to ev­
ery part of the process term. 

It has been proven that the enriching the classes of finite systems, push­
down processes, and Petri nets with the finite constraint system does not 
change their expressibility with respect to the bisimulation equivalence and 
even with respect to isomorphism of generated labelled transition systems. 
On the contrary, the process rewrite systems of classes BPA, BPP, PA, PAD, 
and PAN extended with finite constraint system establish corresponding 
new classes fcBPA, fcBPP, fcPA, fcPAD, and fcPAN as the expressive power 
of such systems increases. Regrettably, we cannot state that PRS is a strict 
subclass of the fcPRS class. Although, a commentary in this sense to the 
relation between fcPRS and PRS classes was given. 

The hierarchy of fcPRS classes has been introduced and the strictness 
with respect to the bisimulation equivalence of such a hierarchy (with the 
exception in the relation between PRS and fcPRS classes) has been proven, 
mainly with use of examples. Despite of the fact that the hierarchy is not 
strict on the language equivalence level, we demonstrated that BPP is a 
strict subclass of fcBPP and fcBPP is a strict subclass of Petri nets even with 
respect to the language equivalence. We have also presented the Pumping 
Lemma for fcBPP 

6.1 Future research 

The area of process rewrite systems with finite constraint systems still offers 
many interesting topics. The topic number one is obviously the relation be­
tween classes of fcPRS and PRS processes. Other two topics for our future 
work are provided by the fcBPP class. The first one is an open question of 
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decidability of the bisimulation equivalence for fcBPP since the decidability 
of the bisimulation equivalence for BPP has been already proven by Chris-
tensen, Hirshfeld and Moller [CHM93] and Moller [Mol96] has shown that 
the bisimulation equivalence is undecidable for multiset automata1. The 
second interesting challenge around the fcBPP class would be to specify 
the boundary of decidability of the weak bisimulation equivalence with 
finite-state processes. Mayr [May96] has proved that the weak bisimula­
tion equivalence with FS processes is decidable for BPP and Jančar, Kučera 
and Mayr [JKM98] have demonstrated undecidability of this problem for 
MSA. 

Next possible subject is to observe the dependency between the shape 
of constraint system (number of constraints, branching limitations, etc.) 
and expressive power of process rewrite systems using such constraint sys­
tems. We take into account just two classes of process rewrite systems -
with the trivial constraint systems C£ (defined in Example 4.2) and with 
arbitrary finite constraint systems. Probably, there can be found a finer hi­
erarchy of process rewrite systems with finite constraint systems. 

Totally different mission is to employ an infinite constraint system. 

:MSA are in [Mol96] called as PPDA. In [Mol98] there was also demonstrated that the 
class of MSA is a strict subclass of Petri nets. It was proven in [StrOOb] that fcBPP is a strict 
subclass of MSA and that the expressibility of MSA systems is not changed by enriching 
with finite constraint systems. 
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