
Masaryk University
Faculty of Informatics

N^TIS m*

***AS itíSP

Models of Infinite-State Systems
with Constraints

Master's Thesis

Jan Strejček

April 2001

>fM. looA

M^jau*.

Declaration
I declare that this thesis was written by myself and all presented results are
my own if not stated otherwise.

Some of the material has been published in [StrOOa, StrOOb].

\ 6 V v ~ U A M U \

Acknowledgment

First of all, I would like to thank Antonín Kučera for his encouragement,
valuable discussions and reading the draft. I thank Mojmír Křetínský for
his constant willingness to listen, discuss and help.

Warm thanks to Adriana for reading the draft of my thesis and simply
being with me.

Thanks are also due to all members of our ParaDiSe laboratory staff for
their tolerance and to all people which help me with my awful English.
Finally, I want to thank Uni, the Etruscan goddess of the cosmos.

i

Abstract

We extend a widely used concept of rewrite systems with a mechanism
for computing with partial information in a form similar to the one used
in concurrent constraint programming. We present how this extension
changes the expressive power of rewrite systems classes which are included
in Mayr 's PRS hierarchy [May97b]. The new classes (fcBPA, fcBPP, fcPA, fc-
PAD, fcPAN, fcPRS) are described and inserted into the hierarchy.

Key words

concurrency, process rewrite system, bisimulation equivalence, language
expressibility, partial information, constraint system

ii

Contents

1 Introduction 1
1.1 Plan of the thesis 2

2 Basic definitions 3
2.1 Labelled transition systems 3
2.2 Language equivalence and bisimilarity 4

3 Process rewrite systems (PRS) 6
3.1 Process terms 6
3.2 Definition of PRS 7
3.3 PRS-hierarchy 8
3.4 Intuition behind the PRS-hierarchy 11
3.5 Strictness of the PRS-hierarchy 12

4 PRS with finite constraint systems (fcPRS) 14
4.1 Constraint systems 14
4.2 Definition of fcPRS 15
4.3 Intuition behind fcPRS 18
4.4 Relationship between PRS and fcPRS 19
4.5 fcPRS-hierarchy 20

5 New classes in fcPRS-hierarchy 25
5.1 fcBPA class 25
5.2 fcBPP class 27

5.2.1 Pumping Lemma for fcBPP 29
5.3 fcPA, fcPAD, fcPAN classes 32
5.4 fcPRS class 37

6 Conclusion 40
6.1 Future research 40

i i i

Chapter 1

Introduction

Various principles of communication between processes and sharing infor­
mation in general, are traditional fields of study in theoretical computer
science. Computing with partial information in connection with the idea
of concurrency is an extensively studied problem in this research area as it
corresponds to many situations occurring in a real word.

One of the most successful applications of the ideas of concurrency and
computing with partial information has led to Concurrent Constraint Pro­
gramming (CCP) presented by Saraswat [Sar89] and consequently studied
also by Rinard, Panangaden, de Boer, Palamidessi and others (see Bibliog­
raphy for more details). In CCP processes work concurrently with a shared
store, which is seen as a constraint on the values that variables can repre­
sent. In any state of the computation, the store is given by the constraint
established until that moment. CCP provides two primitive operations to
deal with the store, tell and ask. The execution of the tell operation adds a
constraint to the current store (tell can be executed under the condition that
the store remains consistent, i.e. there must exist some valuation of vari­
ables which satisfies the constraint in the store). The ask action can be seen
as a test on the store - it can be executed only if the current store is strong
enough to entail a specified constraint. If this is not the case, then the pro­
cess suspends (waiting for the store to accumulate more information by
contributions of the other processes). The execution of ask itself leaves the
store unchanged, while the execution of tell action can only add informa­
tion to the store. Thus the store evolves monotonically during the compu­
tation, i.e. the set of possible values for variables shrinks.

Operational semantics of concurrent systems is traditionally modelled
by labelled transition systems. For CCP such an operational semantics was
given by Saraswat in [Sar89]. Caucal [Cau92] presents an elegant classi­
fication of transition systems using families of sequential rewrite systems
defined by restrictions on rewrite rules related to Chomsky hierarchy. Cau-
cal's classification has been generalised by Moller [Mol96] to both parallel

1

and sequential rewrite transition systems. Moller's approach was gener­
alised by Mayr [May97b], he defines the dynamics for rewrite systems us­
ing sequential and parallel composition together. The resulting model is
called process rewrite systems.

We transfer some principles of CCP to process rewrite systems. Previ­
ously, we have introduced an analogous modification of purely sequential
and purely parallel rewrite systems in [StrOOa, StrOOb]. In both cases, the
aim is to characterise the changes of expressive power of these systems.
The mechanism of rewrite systems is extended with the store, which can
contain some partial information. We keep talking about constraints (as
the theory around CCP) although we do not specify the shape of partial
information as sharply as CCP does. We add two constraints to every stan­
dard rewrite rule. The rule can be applied only if the actual store is strong
enough to entail the first constraint. The second constraint is added to the
store when the extended rule is used (the rule is applicable under condi­
tion that the store keeps consistent). After application of the rule the store
contains the same or more information, thus we say that the store is mono-
tonic. Extended process rewrite systems are called process rewrite systems
with finite constraint systems.

The comparison between the original process rewrite systems and pro­
cess rewrite systems with added finite constraint system gives some inter­
esting results. At first, the expressive power of finite state systems, push­
down processes, and Petri nets does not change by adding the store. A
more interesting result is that the expressive power of process rewrite sys­
tems corresponding to transition systems of classes BPA, BPP, PA, PAD,
and PAN strictly increases, hence some new classes of transition systems
are obtained in this way.

1.1 Plan of the thesis

The rest of the thesis is structured as follows. The next chapter recalls var­
ious definitions widely used in concurrency theory. In Chapter 3 we sum­
marise Mayr's results, especially the definition of process rewrite system
and we also present the hierarchy of such systems obtained by imposing
various restrictions on the form of rewrite rules. In Chapter 4 we define
the notion of process rewrite systems with finite constraint systems and
we present the fcPRS-hierarchy. The new classes fcBPA, fcBPP, fcPA, fc-
PAD, fcPAN, and fcPRS are introduced in this chapter. The strictness of
the fcPRS-hierarchy is proven in Chapter 5 focused on the new classes. The
thesis closes with a chapter summarising our results and pointing out some
directions for future research.

2

Chapter 2

Basic definitions

In this chapter we recall the notions of labelled transitions systems, lan­
guage generated by such system, and bisimulation equivalence.

2.1 Labelled transition systems

Concurrent systems are traditionally modeled as edge-labelled directed
graphs, whose nodes represent the states which can be entered by a sys­
tem, and whose edges are labelled with atomic actions. An edge leading
from a node s\ to a node s 2 that is labelled with an action a represents the
fact that if the system is in the state a\, then it can do action a and will be in
the state S2 afterwards.

A precise definition is given below.

Definition 2.1. A labelled transition system (LTS) C is a tuple (S, Act, —>
,ato), where

• S is a set of states or processes,

• Act is a set of atomic actions or labels,

• —>C S x Act x S is a transition relation, written a
(a,a,ß) e—>,

• cto £ S is a distinguished initial state.

A state a G S is terminal (or deadlocked, written a —/-*) if there is no a G Act
and ß G S such that a - % ß.

Our notion of a labelled transition system differs from the standard def­
inition of a (nondeterministic) finite-state automaton (as for example the
one given in [HU79]) in two aspects. First, both the set of states and the set
of actions can be infinite. Second difference is an absence of final states as
we do not distinguish between successful and unsuccessful termination.

ß instead of

3

The transition relation —> can be homomorphically extended to finite
sequences of actions a G Act* so as to write a —> a and a —» ß whenever
a —» 7 —^ /3 for some state 7. The set of states a such that ao —> a for
the initial state ao and some a G Act* is called the set of reachable states.

If an LTS is finite then it can be finitely described. In computer science
and also in other domains, there are many situations corresponding to infi­
nite transition systems (e.g. algorithms working on arbitrarily large natural
numbers). Formal models like Petri nets, pushdown automata and process
algebras are able to describe certain classes of infinite transition systems in
a finite way. As we shall see in Chapter 3, the class of transition systems de­
finable by process rewrite systems is even larger than all mentioned classes.

2.2 Language equivalence and bisimilarity

An important question in the realm of concurrency theory is to determine
when two transition systems are to be considered "the same". It turned
out that the isomorphism is a too strong equivalence. A plethora of finer
eqlvalences was defined by many people in eighties, an overview of these
equivalences was compiled by van Glabbeek [vG90]. We define just two of
them, language equivalence and bisimulation equivalence.

Given a labelled transition system C with the initial state ao, we can
define its language L(C) to be the language generated by its initial state ao,
where the language generated by a state is defined in the usual way as the
set of all sequences of labels associated with transitions leading from the
given state to a terminal state.

Definition 2.2. The language generated by the labelled transition system L is
the set L(C) = L(a0), where

L (a) = {w G Act* j a —t ßfor some terminal state ß}.

States a and ß of the system L are language equivalent, written a ~ L ß, iff they
generate the same language, i.e. L(a) = L(ß).

Language equivalence is generally taken to be too coarse in the frame­
work of concurrency theory. The second presented equivalence, bisimu­
lation equivalence, is perhaps the finest behavioural equivalence studied.
Bisimulation equivalence was defined by Park [Par81] and used by Mil-
ner [Mil80, Mil89] in his work on CCS. Its definition is as follows.

Definition 2.3. A binary relation 1Z on states of labelled transition system is a
bisimulation iff whenever (a, ß) E Ti we have that

• if a -£•* a' then ß -̂ -> ß' for some ß' with (a', ß') G Ti,

4

• if ß —* ß' then a —^ a1 f or some a! with (a1, ß') £ TZ.

a and ß are bisimulation equivalent or bisimilar, written a ~ ß,iff (a, ß) € %
for some bisimulation TZ.

This definition can be extended to states in different transition systems
by putting them "side by side" and considering them as a single transition
system. The binary relation ~ defined above is called bisimulation equiva­
lence as it is an eaquivalence and even the largest bisimulation.

Bisimulation equivalence has an elegant characterisation in terms of
certain two-player games presented by Stirling [Sti95].

5

Chapter 3

Process rewrite systems (PRS)

In this chapter we summarise (and slightly modify) the first part of Mayr's
paper titled "Process Rewrite Systems" [May97b].

The process rewrite systems represent a very general term rewriting
formalism that covers many widely known models like Basic Parallel Pro­
cesses (BPP), context-free processes (BPA), pushdown processes, process
algebras (PA), Petri Nets, and provides an unified view of these models.

3.1 Process terms

The process terms are the cornerstone of process rewrite systems. They
correspond to states of transition systems described by process rewrite sys­
tems.

Definition 3.1. Let Const = {X, Y,Z,---}bea countably infinite set of pro­
cess constants. The process terms that describe states of the system have the
form <y

t = £ | X | Í1.Í2 I -̂111 ̂ 21

where e is the empty term, X e Const is a process constant (used as an atomic
process in this context), "\\" means parallel composition, and "." means sequential
composition. Let T be the set of process terms.

We always work with equivalence classes of terms modulo commuta-
tivity and associativity of parallel composition and modulo associativity of
sequential composition. Also we define that e.t = t = t.e and i||e = t.

Although we have declared that sequential composition is associative,
when we look at terms we think of it as left-associative. So when we say
that a term t has the form tifat w e mean that Í2 is either a single constant
or a parallel composition of process terms.

Definition 3.2. The size of a process term is the number of occurrences of con­
stants in it plus the number of occurrences of operators in it.

size(e) = 0
size(X) = 1

size{t\.ti) = size(t\) + size(t2) + 1
size(ti\\t2) = size(t\) + size(t2) + 1

Definition 3.3. The set Const(t) is the set of all constants that occur in a process
term t.

Const(e) = 0
Const(X) = {X}

Const{t\.t2) = Const(ti)UConst(t2)
Const{ti\\t2) = Consŕ(íi) U Const(t2)

3.2 Definition of PRS

Now we are ready to introduce the syntax of process rewrite systems. The se­
mantics will be explicitly given a bit later, when we show how to associate
a labelled transition system to each process rewrite system.

Definition 3.4. Let Act = {a, b, • • • } be a countably infinite set of atomic ac­
tions. A process rewrite system (PRS) A is a pair (R, i0), where

• R is afinite set of rewrite rules, which are of the form t\ —t Í21/ where
t\, Í2 € T are process terms and a E Act is an atomic action,

• to ET is an initial state.

Slightly abusing our notation, we usually write (ti —> t2) G A instead
of (ii - % t2) G R, where A = (R, t0).

For a given A with the initial state to, the set Const(A) is naturally
defined as the set of all constants that occur in rewrite rules or initial state.

Const(A) = Const(t0) U | J (Consí(íi) U Const{t2))
(íi-2+í2)6A

Similarly, the set Act (A) is the set of all actions that occur in rewrite rules
of A.

Aci(A) = (J {a}
(t l - ^ t 2) £ A

1There is an ambiguity around the expression ii —* ti as it can be seen as a rewrite
rule as well as an element of a transition relation. Fortunately, the actual meaning is always
determined by the context.

7

Due to the finiteness of A, the sets Const(A) and Act(A) are both finite.

Each process rewrite system induces an unique labelled transition sys­
tem that represents its dynamics. A formal definition follows.

Definition 3.5. Let A = (R, i0) be a process rewrite system. The LTS Ĺ induced
by A has the form (S, Act (A), —•, to), where

• S = {t e T I Constat) C Const(A)} is the set of states,

• transition relation —> is defined as the least relation that satisfies the infer­
ence rules

where ti,t2,t[e T,

Since the set of rewrite rules in A is finite, the generated LTS is finitely
branching. (For some classes of systems (e.g. Petri nets) the branching-
degree is bounded by a constant that depends on A. For other classes (e.g.
PA) the branching-degree is finite at every state, but it can get arbitrarily
large.) On the other hand, the generated transition system can be infinite.

We often speak about "process rewrite system" meaning "labelled tran­
sition system generated by process rewrite system".

The definition of process rewrite systems is more general than the def­
inition of rewrite systems presented by Caucal [Cau92] which takes into
account only systems with sequential composition; and also than the one
given by Moller [Mol96] which takes into account only purely sequential
and purely parallel rewrite systems and which was also used to form the hi­
erarchy of standard process classes. Process rewrite systems provide a gen­
eral and unifying framework which naturally subsumes all of the above-
mentioned formalisms.

3.3 PRS-hierarchy

Many common models of systems fit into the scheme of process rewrite sys­
tems. In this section we characterise some interesting subclasses of rewrite
systems. At first, we need to define some classes of process terms.

Definition 3.6. We distinguished four classes of process terms.

"1" Terms consisting of a single process constant like X.
2Note that parallel composition is commutative and, thus, the inference rule for parallel

composition also holds with či and ti exchanged.

8

\ 'Á

"S" Terms consisting of a single constant or a sequential composition of process
constants like X.Y.Z.

"Y" Terms consisting of a single constant or a parallel composition of process con­
stants like X\\Y\\ Z.

"G" General process terms with arbitrarily nested sequential and parallel compo­
sitions like (X.(Y\\Z))\\W. , i

We also let eeS,P, G, but e£l.

The relationship between these classes of process terms is easy to see:
1 S 5, 1 C P, S C G, and P C G. S and P are incomparable and S n P =
lC{e}.

The expressiveness of a rewrite system depends on what kind of terms
are on the left-hand side and the right-hand side of rewrite rules in A. Thus
the subclasses of process rewrite systems are characterised by the classes of
terms allowed on the left-hand and the right-hand side of the rewrite rules.

Definition 3.7. Let a, ß G {1, S, P, G}. A process rewrite system A = (R, to) is
an (a, /3)-PRS if to G ß and for every rewrite ride (l —t r) G A the term I is in
the class a and I ^ e and the term r is in the class ß (and can be e iff ß ^ 1). A
(G, G)-PRS is simply called PRS.

It does not have much sense to consider those (a, /3)-PRS where a is
more general than ß or incomparable to ß (for example, a = G and ß = S),
because the rule t\ —» ti can generate a transition from a state t only if the
term ii is a subterm of t. But when the initial state io is taken from the same
class as terms which appear at right sides of rewrite rules, the reachable
states are of the class ß. Only those rules whose left-hand side is taken
from the class ß (or some subclass) are applicable to reachable states. Thus,
we restrict our attention to such (a, /3)-PRS where a C ß.

Without the loss of generality it can be assumed that the initial state
io of a (a, /?)-PRS is a single constant. There are only finitely many terms
ti,Ů2)• • • »in such that to —^ ŕj. If io is not a single constant then we can
achieve this by introducing a new constant XQ and new rules XQ —^ U and
declaring XQ to be the initial state (the modified system is still (a, /3)-PRS).

If a system A belongs to a class [a, /3)-PRS (where a C ß), then the set
of states of LTS generated by A consists only of process terms t of the class
ß that satisfy Const(t) C Const(A).

Figure 3.1 shows a graphical description of the hierarchy of (a, /3)-PRS,
simply called PRS-hierarchy. Many of these (a, /3)-PRS correspond to widely
known models like Petri nets, pushdown processes, context-free processes,
and others.

•

9

PRS (G, G)

PAD (S, G) PAN (P, G)

PDA (S, S) PA(1,G) PN (P, P)

BFA (1,5) BPP(1,P)

PS (1,1)

Figure 3.1: The PRS-hierarchy

1. (1,1)-PRS are equivalent to finite-state systems (FS). Every process
constant corresponds to a state and the state space is bounded by
\Const(A)\. Every finite-state system can be encoded as a (1,1)-PRS.

2. (1,5)-PRS are equivalent to Basic Process Algebra processes (BPA)
defined in [BK85], which are the transition systems associated with
Greibach normal form (GNF) context-free grammars in which only
left-most derivations are allowed.

3. It is easy to see that pushdown automata can be encoded as a sub­
class of (5*, S)-PRS (with at most two constants on the left-hand side
of rules). Caucal [Cau92] showed that any unrestricted (S, S^-PRS can
be presented as a pushdown automaton (PDA), in the sense that the
transition systems are isomorphic up to the labelling of states. Thus
(S, 5)-PRS are equivalent to pushdown processes (which are the pro-

10

cesses described by pushdown automata).

4. (P, P)-PRS are equivalent to Petri nets (PN). Every constant corre­
sponds to a place in the net and the number of occurrences of a con­
stant in a term corresponds to the number of tokens in this place. This
is because we work with classes of terms modulo commutativity of
parallel composition. Every rule in A corresponds to a transition in
the net.

5. (1,P)-PRS are equivalent to communication-free nets, the subclass
of Petri nets where every transition has exactly one place in its pre­
set [BE97]. This class of Petri nets is equivalent to Basic Parallel Pro­
cesses (BPP) [Chr93].

6. (1, G)-PRS are equivalent to PA-processes, Process Algebras with se­
quential and parallel composition, but no communication (see [BK85]
for details).

7. (P, G)-PRS are called PAN-processes in [May97a]. It is the smallest
common generalisation of Petri nets and PA-processes and it strictly
subsumes both of them (e.g., PAN can describe all Chomsky-2 lan­
guages while Petri nets cannot).

8. (S, G)-PRS is the smallest common generalisation of pushdown pro­
cesses and PA-processes. They are called PAD (PA + PDA) in [May98].

9. The most general case is (G, G)-PRS (here simply called PRS). PRS
have been introduced in [May97b]. They subsume all of the previ­
ously mentioned classes.

From our point of view, standard process classes like FS, BPA, BPP,
PDA, and PN are considered more generally then for example in [Mol96].
The difference corresponds to the different definition of labelled transi­
tion system. For us, every terminal state is successful ("final" in the terms
of [Mol96]) and we do not assume that the set of final states is finite.

3.4 Intuition behind the PRS-hierarchy

In this section we explain the intuition behind the design of (a, /3)-PRS rules
and the respective restricted subclasses of PRS.

If parallel composition is allowed on the right-hand side of rules, then
there can be rules of the form t —> íi||Í2- This means that it is possible to
create processes that run in parallel. The rule can be interpreted that, by
action a, the process t splits into two independent processes t\ and t%.

11

If sequential composition is allowed on the right-hand side of rules,
then there are rules of the form t —> t\±2- The interpretation is that the
process t calls a subroutine ii and behaves like the process t^. It resumes
its execution after the subroutine t\ terminates.

If arbitrary process terms are allowed on the right-hand side of rules
then both parallelism and subroutines are possible.

If parallel composition is allowed on the left-hand side of rules, then
there are rules of the form t\ p2 —> t. This can be interpreted as synchroni­
sation or communication of the parallel processes t\ and Í2- This is because
this action can only occur if both t\ and Í2 change in a certain defined way.

If sequential composition is allowed on the left-hand side of rules, then
there can be rules of the form í':.Í2 —> ť a n d ť[.12 —> t". The intuition
is that the process t called a subroutine ii and behaves like Í2 by a rule
t —> Í1.Í2- I n its computation the subroutine may reach a state t[or t'[.
Now one of these rules is applicable. This means that the result of the
computation of the subroutine affects the behaviour of the caller when it
becomes active again, since the caller can become ť or t". The interpretation
is that the subroutine returns a value to the caller when it terminates.

If arbitrary process terms are allowed on the left-hand side of rules then
both synchronisation and value-passing by subroutines are possible.

3.5 Strictness of the PRS-hierarchy

There is a natural question about the strictness of the PRS-hierarchy. With
respect to language expressibility this is not the case. For example, both
BPA and PDA define exactly the (e-free) context-free languages. The sit­
uation is different if we ask about strictness with respect to bisimulation
equivalence.

It has been proven by Burkart, Caucal, Steffen, and Moller [BCS96,
Mol96] that the classes FS, BPP, BPA, PDA, PA, and PN are all different
with respect to bisimulation equivalence. For PAD, PAN, and PRS it was
demonstrated by Mayr [May97b] using the two rewrite systems below.

Example 3.8. Consider the following PDA system given as (S, S)-PRS with ini­
tial state U.X.

U.X -- ^ U.A.X U.A - ^ U.A.A U.B - a • U.A.B
U.X -A U.B.X U.A A U.B.A U.B - b t • U.B.B
U.X --Uv.x U.A - ^ V.A U.B • c •V.B
U.X --^w.x U.A - A W.A U.B - d •W.B
V.X --^v V.A-^V V.B - b V

w.x Aw W.A^W W.B b >w

v

r
•

12

The system described in Example 3.8 can produce a sequence a G {a, b}*
and then either c followed by a in the reversed order and finally action e,
or d followed by a in the reversed order and finally action / . Such a system
cannot be bisimilar to any PAN system.

Example 3.9. Consider following Petri net given as (P, P)-PRS with initial state
X\\A\\B.

X-Ux\\A\\B Y\\A-±>Y

X ^ Y Y\\B-^Y

X\\A^Z Y\\A^Z

X\\B -U Z Y\\B -*• Z

The system shown in Example 3.9 can do the action g n-times (n > 0),
then the action c followed by an arbitrary sequence a G {a, b}* such that
the action a occurs (n + 1)-times in a and so does the b. From every non­
terminal state the system can also do the action d leading to a deadlocked
state. This Petri net cannot be described by any PAD process with respect
to bisimulation equivalence.

The systems given by previous two examples prove that the classes
PAN and PAD are incomparable. The strictness of the PRS-hierarchy is
now obvious.

13

Chapter 4

PRS with finite constraint
systems (fcPRS)

In this chapter we extend the process rewrite systems with finite constraint
systems. This extension of rewrite systems provides a way of keeping a sort
of global information which is accessible to all parallel threads. It is quite
surprising that this extension (which is not so powerful as an extension
with a general finite-state control unit which gives Turing power even to
PA class) increases the expressive power of classes like PAN and PAD.

The extension is inspired by the idea of common store used in Concur­
rent Constraint Programming. \ ** «

4.1 Constraint systems

The state space and possible evolution of the store used by PRS with finite
constraint system are described by a constraint system, i.e. a set of con­
straints with a structure of an algebraic lattice.

Definition 4.1. A constraint system is a bounded lattice (C, <, A, tt,jf), where
C is the set of constraints, < is an ordering on this set, A is the lub operation, and
tt (true), ff (false) are the least and the greatest elements of C (tt y^ffl.

In algebra, the symbol A usually denotes the gib (the greatest lower
bound) operation, while lub (the least upper bound) operation is rather
marked with symbol V. We adopted the notation used in the framework
of CCP, where the lub operation (marked with A) corresponds to logical
conjunction.

Following the terminology and the notation used in CCP, instead of <
we refer to its inverse relation, denoted by h and called entailment. Formally

Vm, n G C : m h n <=> n <m.

14

We say that a constraint m is consistent with a constraint nitím An ^ff.
The state of the store cannot bej^ as we require the consistency of the store
initialised to tt. We use CQ to denote C \ {ff}.

Two following examples show two constraint systems heavily used in
the rest of this thesis.

Example 4.2. Let C = {tt,ff}, < = {(tt,ff), (tt, tt), (ff,ff)}. Then CE is the trivial
constraint system (C, <, A, tt,ff) depicted in Figure 4.1.

ff

tt

Figure 4.1: Constraint system Ce

Example 4.3. Let C = {tt, m, n,ff}, < = {(tt,ff), (tt, m), (tt, n), (m,ff), (n,ff)}U
{(o, o) | o G C}. Then Cmn = (C, <, A, tt,ff) is the constraint system depicted in
Figure 4.2.

m n

tt

Figure 4.2: Constraint system Cmn

We add one more example which can provide a better illustration of the
relation between partial information, a constraint system and an evolution
of the store.

Example 4.4. The Herbrand constraint system on {a, b} with variables x, y is
diagrammatically represented in Figure 4.3.

4.2 Definition of fcPRS

At first we define the syntax of PRS with finite constraint system. Simi­
larly to the definition of PRS, the semantics will be given later by a precise
definition of LTS generated by fcPRS.

15

Figure 4.3: Herbrand constraint system on {a, b} with variables x, y

Definition 4.5. A PRS with finite constraint system A is a tuple (C,R,to),
where

• C = (C, <, A, tt,ff) is afinite constraint system describing the store; the
elements of C represent the states of the store,

• R is afinite set of rewrite rules, which are of the form (ti —t t2,m,n),
where ti,t% £Tare process terms, a G Act is an atomic action, and m,n £
C° are constraints,

• to is a distinguished initial process term.

Again, instead of (t\ —t Í2, m,n) E R where A = (C, R, to), we usually
write (ii —> t2,m,n) G A.

The definitions of Const(A) (which is the set of process constants used
in rewrite rules) and Act(A) (the set of actions occurring in rewrite rules)
for a given fcPRS A with initial process term to are very similar to those
which were used for PRS.

Const(A) = Const(t0) U (J (Const(ti) U Const{t2))

(ti—>t2,m,n)eA

Act(A) = (J {a}
(í l—>Í2,m,n)eA

Again, the sets Const(A) and Act(A) are both finite because of the finite-
ness of A.

The next definition exactly describes the labelled transition system de­
fined by a PRS with finite constraint system.

16

Definition 4.6. Let A = (C, R, to) be a PRS with finite constraint system C =
(C,<,A,tt,ff). The labelled transition system C induced by A has the form
(S, Act (A), —•, a0), where

• S = {t G T I Const(t) C Const(A)} x C° is í/ie set of states,

• transition relation —• is defined as the least relation that satisfying the
inference rides

(tl^t2,m,n)EA ifo h m m d o A n ^ff
(i i ,o)-^(i 2 ,oAfi) ' ^JJ'

(t l , 0) ^ (t »
(*1 \\t2,0)-^W\t3J,)'

{tl,o)^{t\,p)

{tl.t2,o)^{t\.t2,py

where ti,t2,t[G T and m, n, o,p G C°,

• ao = (*0) tt) /s ŕ/ze initial state. c , i o^-
Two importarft conditions contained in the first inference rule are very

close to principles used in Concurrent Constraint Programming (CCP). The
first one (o h m) ensures that the rule (ii —y Í2,m,n) G A can be used
only if the actual state of the store o entails the constraint m (it is similar
to ask(m) in CCP). The second condition (o A n ^ ff) guarantees that the
store keeps consistent after application of the rule (analogous to consistency
requirement when processing tell(n) action in CCP). If these two conditions
are satisfied, the meaning of inference rules is the same as in the case of
standard process rewrite systems.

An important observation is that the state of the store (starting at tt) can
move in a lattice C only in one direction, from tt upwards. This can be easily
seen from the fact that the actual state of the store o can be changed only by
applying some rewrite rule (t\ —> Í2, m, n) G A and after this application
the new state of the store o An always entails the old state o. Intuitively, the
partial information can only be added to the store, not retracted. We say
the store has a monotonie behaviour, or simply that the store is monotonie.

Note that when the system (with o on the store) executes a transition
generated by a rewrite rule (t\ —> Í2, m, n) G A then for every subsequent
state of the store p both conditions, p h m and p An ^ ff are satisfied. The
first condition p h m comes from the monotonie behaviour of the store.
The second condition comes from the fact that the constraint n in the rule
changes the store only in the first application of the rule provided o does not
entail n (o A n / o) . All subsequent applications of this rule do not change
the store (again thanks to its monotonie behaviour), i.e. for each subsequent

17

state p of the store p An = p holds. A corollary of this observation is the
satisfaction of consistency condition as p ^ ff- In other words, once the
information presented by n is added to the store, each subsequent attempt
to add the same information to the store does not change the store and thus
the store keeps consistent.

On the other hand, the fact that some rule is applicable (hence entail­
ment and consistency are satisfiable) does not imply that this rule is appli­
cable forever. The insidious point is the consistency requirement. The store
can evolve to a state inconsistent with the second constraint from the rule.

4.3 Intuition behind fcPRS

The intuition behind process rewrite systems with finite constraint systems
will be demonstrated on one small example.

Let A be a fcPRS given below with initial term X||Y||Z.

(X - ^ X, tt, tt)

(Y - ^ Y, tt, tt)

(X —> e,tt,m)

(Y-^Y,tt,n)

(Z - ^ Z, o, tt)

tt

At the beginning, the process X can perform the a action without changing
the store. The process Y can perform b, also without any changes on the
store. The process Z is deadlocked as the rule (Z —> Z, o, tt) is applicable
only if information on the store implies o. Furthermore, the process X can
also perform x, put an information m on the store (and terminate). The
process Y can do y and put n on the store. The process Y can do y again
and again, but the information on the store increases only after performing
the first y. This naturally corresponds to the fact that if one writes on the
blackboard the same statement twice, the information written there is not
doubled. When constraints m and n have been added to the store (it does
not depend what constraint was written to the store first), the store is in the
state o corresponding torn An. Then the process Z can start to perform e's.

As you can see, the meaning of constraints in rewrite rules together with
the shape of used constraint system can be translated to a human language
in a very straightforward way.

ff

rn n

18

4.4 Relationship between PRS and fcPRS

The first information about the relationship between PRS with finite con­
straint system and standard PRS is provided by the following lemma.

Lemma 4.7. Labelled transition systems defined by PRS A' = (R',to) and by
fcPRS A = (C£,R,t0) are isomorphic on the assumption that R' = {t± - % t2 \
{h -^t2,tt,tt)eR}.

Proof. Let C be the transition system corresponding to the fcPRS A. The
state of the store is tt in every state of L due to the shape of the trivial
constraint system C£ (defined in Example 4.2).

Further, for each rewrite rule (ii —> t2, tt, tt) the two conditions in the
first inference rule are always satisfied (tt h tt and tt Att = tt ^ ff).

Now we know that the transition system L is of the form (S, Act(A), —>
,(to,tt)), where S = {(t,tt) | Const(t) C Const(A)} and the transition
relation —> can be alternatively defined as (t, tt) —y (ť, tt) iff there is a
transition rule (ri -̂ -> t2, tt, tt) e A such that the transition t —+ ť can be
derived from the rewrite rule t\ —> t2 using the inference rules given in
Definition 3.5.

If we remove tt from the states of C, we get an isomorphic system C!
which corresponds to the rewrite transition system A'. D

Roughly speaking, the lemma says that the trivial constraint system
cannot hold any significant information and thus such a fcPRS is isomor­
phic to the corresponding standard process rewrite system. The lemma can
be used in both directions, for proving that any fcPRS of the specified form
has an equivalent PRS as well as for constructing a fcPRS equivalent to an
arbitrary given PRS.

The following lemma defines another situation when an added con­
straint system cannot increase expressive power of a process rewrite sys­
tem.

Lemma 4.8. For every fcPRS A = (C,R,ÍQ) with the rewrite rules of the form
(ti —> Í2, tt, tt), there is an (effectively constructible) PRS A' with the transition
system isomorphic to the transition system of A.

Proof. We may assume that C ^ C£ (if C = C£ then the lemma is a direct
corollary of Lemma 4.7).

A crucial step is to observe that the state n of the store cannot be changed
by any application of a rewrite rule of the form (ri —> t2,tt,tt) as n Att = n.
This means that there is no transition between states (t, n) and (ť, m) for
any í, ť G T and m, n G C°, m ^ n.

Another important observation says that applicability of rewrite rules
of the specified form does not depend on the current state of the store as

19

necessary conditions are always satisfied because every m G C entails tt
and every n G C° is consistent with tt (n A tt = n ^ ff). Thus, if there is a
transition (ŕ, tt) —• (ť, tí) then there is also a transition (ŕ, m) —> {ť, m)
for every m G C°.

The conclusion is that the transition system defined by A can be split
into | C°j1 isolated isomorphic parts. Let Cm denote the part with m on
the store for every m G C°. It is easy to see that if we change the con­
straint system in A to Ce/ the modified fcPRS describes exactly £ff. From
the Lemma 4.7 it follows that we can construct a standard PRS A'(ř with
a transition graph isomorphic to Ctt (i.e. isomorphic to every Cm). The
desired process rewrite system A' consists of |C°| copies of A'tt. D

Intuitively, the lemma says that if the power of the store is not employed
by the rules (we do not add any information to the store), then (without any
assumptions on the structure of constraint system) the PRS with constraint
system is isomorphic to some standard PRS. The proof also says that the
reachable part of the transition system defined by such a fcPRS consists of
states with tt on the store.

Although adding a finite constraint system looks like quite weak exten­
sion, in the following we will demonstrate that this mechanism can increase
expressibility of standard classes of process rewrite systems.

4.5 fcPRS-hierarchy

There are several possibilities how to build the hierarchy of process rewrite
systems with finite constraint systems. We can divide fcPRS systems into
classes with respect to their constraint systems, rewrite rules (placing re­
strictions on the form of process terms on the left-hand side and the right-
hand side of the rules, conditions on the first and the second constraint
in rules), or with respect to some combination of these aspects. We have : t~\&
chosen a combination of the two .criterions. ^-Q ff (I.

The first criterion is the same as for PRS-hierarchy presented in Sec­
tion 3.3, i.e. the classes of process terms allowed on the left-hand side and
the right-hand side of rewrite rules used in fcPRS.

Definition 4.9. Let a,ß G {1,5, P, G] and C be a constraint system. AfcPRS
A = (C, R, to) is (a, /3)-fcPRS if the initial term to G ß and for every rewrite rule
((/, m) -2-> (r, n)) G A the term I is in the class a and I ^ e and the term r is in
the class ß (and can be e). A (G, G)-fcPRS is simply called fcPRS.

As in the case of standard PRS, we can make some additional assump­
tions. We consider only such (a, /3)-fcPRS classes where ß is more general

:We use \M\ to denote cardinality of the set M.

20

than (or equal to) a. Also, without the loss of generality it can be assumed
that the initial term io of an (a, /3)-fcPRS is a single constant.

If a system A belongs to a class (a, /3)-PRS (where a C ß), then the set
of states of LTS generated by A consists only of pairs (í, m), whose process
terms t are of the class ß and satisfy Constat) C Const(A).

The second criterion for dividing fcPRS systems is a constraint system
used by fcPRS. We distinguish only between rewrite systems with the triv­
ial constraint system CE and rewrite systems with an arbitrary constraint
system.

Lemma 4.7 says that any class of (a, /3)-fcPRS systems with the trivial
constraint system defines the same class of labelled transition systems (up
to isomorphism) as (a, /3)-PRS class. That is the reason why we can appre­
hend all (a, /3)-PRS classes as classes of fcPRS systems and include them
into fcPRS-hierarchy.

We use human-readable abbreviations fcFS, fcBPA, fcBPP, fcPA, fcPDA,
fcPN, fcPAD, fcPAN, and fcPRS for classes (1, l)-fcPRS, (1, ^-fcPRS, (1, P)-
fcPRS, (l,G)-fcPRS, (S,S)-fcPRS, (P,P)-fcPRS, (S,G)-fcPRS, (P,G)-fcPRS,
and (G, G)-fcPRS respectively.

Figure 4.4 shows the hierarchy of fcPRS classes, simply called fcPRS-
hierarchy. The relations depicted in the hierarchy partly result from the
definition of classes. The rest of this section elucidates three equalities in
the hierarchy (fcFS = FS, fcPDA = PDA, and fcPN = PN). The principle of
the proofs lies in various mechanisms of stowing the content of the store in
the process terms.

As the PRS-hierarchy is not strict with respect to the language equiva­
lence, the fcPRS-hierarchy also cannot be strict on the language expressibil-
ity level. However, the fcPRS-hierarchy is strict with respect to the bisim-
ulation equivalence (with one exception in the relation between PRS and
fcPRS classes, where the situation is not clear). To prove the strictness, we
need to show that the new classes differ from each other and also from the
classes in PRS-hierarchy. It will be demonstrated in the next chapter which
is focused on new classes.

Theorem 4.10. Let A be a (1, l)-fcPRS. There exists (1, l)-fcPRS A' with the
trivial constraint system C£, isomorphic to A.

Proof. Each state of an arbitrary fcFS consists of exactly one process con­
stant and one constraint. Thus the actual state of the store can be held as a
part of such a constant.

Let A be of the form {C, R, X0), where C = (C, <, A, tt,ff). A new fcFS

A' is constructed as (CS,R',XQ '), where C£ is the trivial constraint system,

XQ ' is the initial variable holding the initial state of the store. In R' we

21

fcPRS

fcPAD

PAD

fcPDA=PDA

fcBPA

fcPAN

PAN

fcPN=PN

fcBPP

BPA BPP

fcFS=FS

Figure 4.4: The fcPRS-hierarchy

replace every rewrite rule

(Y -2-» Z,m,n) E R

by the set of rules
(Y(o) - ^ z(°An\ tt, tt) e R'

for every o 6 C° which satisfies the entailment condition o h m and the
consistency condition o A n ^ ff. In other words, the entailment and consis­
tency conditions are always satisfied in A', but the power of checking for
these conditions is not lost, just moved to the new set of rules. The system

22

A' is isomorphic to A in the way, that each state (Y (m>, ŕŕ) of A' corresponds
to the state (Y, m) of A. D

The equation fcFS = FS is a corollary of above theorem which gives fcFS
C FS and Lemma 4.7.

Theorem 4.11. Let A be a (S, S)-fcPRS. There exists (S, S)-fcPRS A' with the
trivial constraint system C£, isomorphic to A.

Proof. The idea of the proof is based on the fact that we can add special
process constants corresponding to the actual states of the store, one to each
state of fcPDA. Then the content of the store will be stored in such special
constants, when the store keeps unused (permanently set to ŕŕ).

Let A = (C,R,to), where the constraint system C is of the form (C, <
,A,tt,ff). Let S = {S^ | m G C°} be the set of special process con­
stants such that S n Const(A) = 0. A new fcPDA A' is constructed as
(Ce, R', SW.to), where CE is the trivial constraint system, S^tt\to is the ini­
tial term with the special constant holding the initial state of the store. In
R' we replace every rewrite rule

(ii —• t2,m,n) G R

by the set of rules

(5(o).ŕi -As (o A n) . ŕ 2 , ŕ ŕ , ŕ ŕ) e i ť

for every o £ C ° which satisfies the entailment condition o h m and the
consistency condition o An ^ff. The new rules are constructed to abide by
the entailment and consistency conditions connected with original rules.
The isomorphism of A and A' is obvious as every state (S^m>.t,tt) of A'
corresponds exactly to the state (t, m) of the system A. D

Again, the equality fcPDA = PDA is a corollary of the previous theorem
and Lemma 4.7. The equality fcPN = PN arises from the same lemma and
the following theorem.

Theorem 4.12. Let A be a (P, P)-fcPRS. There exists (P, P)-fcPRS A' with the
trivial constraint system CE, isomorphic to A.

Proof. The proof is the same as the previous one if we replace every sequen­
tial composition "." by the parallel composition "\\". D

The intuitive reasons why similar tricks cannot be done for other classes
are of two kinds.

In the case of fcBPA, fcBPP, or fcPA the reason is the restriction that only
process constants can occur on the left-hand side of the rules. Thus we
cannot add any special process constant to every process term in states, as

23

we cannot have two constants on the left-hand side of any rule. The content
of the store also cannot be held as a part of some "original" constant Y (like
in case of finite-state systems) as such a constant can be lost by a rule of the
form (Y -l+e,tt,tt).

In the case of fcPAN, fcPAD, and fcPRS we can add new process con­
stants holding the content of the store. However, there is another problem.
The size of a process term is unlimited and there can be more rules which
are applicable on different (and far-away from each other) subterms of the
process term. In fcPDA case all subterms which can be rewritten immedi­
ately are at the beginning of the term, in fcPN case we can assume the same
(thanks to the commutativity of parallel composition). Thus the problem
is that we do not know where this constant should be placed in a process
term as we do not know which subterm will be rewritten by next transition.

24

Chapter 5

New classes in fcPRS-hierarchy

This chapter describes new classes of transition systems defined by the
(a, /3)-fcPRS formalism. The proofs that these classes differ from surround­
ing classes in fcPRS-hierarchy are included. The fcBPA and fcBPP classes
were defined (a bit differently) in [StrOOa, StrOOb].

5.1 fcBPA class

This section is devoted to the class of the transition systems which can be
defined by (l,5)-fcPRS systems. The abbreviation fcBPA corresponds to
BPA with finite constraint system.

The fact that BPA is a subclass of fcBPA follows from Lemma 4.7. The
witness of the strictness can be found in the example bellow.

Example 5.1. Let A be afcBPA of the form (Cmn, R, A), where Cmn is the con­
straint system from Example 4.3 and R contains the following rewrite rules.

(A - A AX, tt, tt) {X - A Y, m, tt)

(A-Ue,tt,m) {Y-^e,m,tt)

(A-^e,tt,n) (X-±>E,n,tt)

Behaviour of this system is represented in Figure 5.1.

The transition graph depicted on Figure 5.1 is not alphabetic (as it is
not of finite multiplicity - see [CM90] for the proof and terminology). Thus
this transition systems cannot be described by any BPA as the class of BPA
corresponds to rooted alphabetic rewrite systems.

Another argumentation can be based on the fact proved in [BCS96], that
factorisation of any BPA with respect to the bisimulation equivalence is a
regular graph (i.e. there exists some graph grammar generating the graph).
Figure 5.2 represents a non-regular factorisation of the transition system
depicted on Figure 5.1.

25

(e, m) J- {Y, m) ^— {X, m) ^ - {Y.X, m) ^— (X.X, m) -

(A,tt)

b

(e , n) -

-^ [A.X, tt)

b

— (X,n)«

{A.X.X, tt)

b

(X.X,n)*-

Figure 5.1: Transition system described in Example 5.1

Figure 5.2: Bisimulation collapse of transition graph in Figure 5.1

It can be seen from the definition of (a, /3)-fcPRS and Theorem 4.11 that
fcBPA is a subclass of PDA. A PDA transition system which cannot be de­
scribed up to bisimilarity by any fcBPA is presented in Example 5.2.

Example 5.2. The PDA given by the following rewrite rules and the initial state
qX describes the transition system represented in Figure 5.3.

qX -^ qAX

qA - ^ qAA

qA^q

qX

qA

rX

r A •

+ qX i > qAX » qAAX ~ *•
6 6 6

r -e rX < r AX -*

Figure 5.3: Transition system described in Example 5.2

To see that there is no fcBPA bisimilar to the transition system pre­
sented in Figure 5.3, suppose that we have such a fcBPA A. Let M C

26

V.

Const(A) x C° be the set of states such that (X, m) G M if and only if
there is a reachable state of the form (X.t, m). We can assume that for every
process constant X G Const(A) there is a m G C° such that (X, m) G M.
Let s be defined as

s = max s(X,m)
{X,m)eM

where s(X, m) be the length of the longest word in L((X, m)) n {b, c}*. The
number s is finite as every sequence (possible in our system) consisting
of {b, c}* is finite. Let (t, m) be the state of A bisimilar to qAs X, where
s' = sConst^ + 1. Due to bisimilarity with qAs'X, the state (t,m) can do
an arbitrary sequence of the form blcbs ~l (0 < i < s'). From the definition
of s' follows that the term t consists of more than \Const(A)\ constants and
thus some process constant X occurs twice between the first | Const(A) | + 1
constants in t, i.e. t = t1-X.t2-X.t3 (či,Í2>Í3 can be e). A very important
fact is that every sequence of the form blcbs ~l will erase at least the first
\Const(A)\ process constants from the state (t,m). Now, we can make
transitions under b* from [t\.X.t2.X.t$,m) to the state (X.t2-X.tz,n) and
then we can make other transitions (X.t2.X.t$,ri) —> (X.Í3,o). The state
(X.t3,o) is bisimilar to the state rAlX of PDA for appropriate i. The only
one possible transition from the state rAlX is the transition with the label
b. But in the set of possible transitions from the state (X.ts, o) there is also
the transition with the label c corresponding to the rule used for the first

cb*

transition of the previous derivation sequence {X.t^-X.t^^n) —> (X.t^^o)
as the entailment and consistency conditions are satisfied forever after the
first application of the rule. It is the contradiction with the bisimilarity of
(X*3,o) and rAlX.

We have demonstrated that fcBPA class has strictly greater expressive
power than classic BPA and strictly lower expressive power than PDA, both
with respect to the bisimulation equivalence. On the language expressibil-
ity level, all three classes are equal due to the known fact L(BPA) = L(PDA)
and the demonstrated relation BPA C fcBPA C PDA.

5.2 fcBPP class

This section presents some basic facts around the class of the transition
systems which can be defined by a (l,P)-fcPRS. The abbreviation fcBPP
corresponds to BPP with finite constraint system.

We have already demonstrated that BPP is a subclass of fcBPP, the strict­
ness follows from the example given below which offers a fcBPP transition
system which is not in the BPP class.

27

http://t1-X.t2-X.t3

Example 5.3. Let A be afcBPP of the form (Cmn,R, A), where Cmn is the con­
straint system from Example 4.3 and R contains the following rewrite rules.

(A -=-> A\\X,tt,tt)
b

(A —> e,tt,m)
(A - ^ e, tt, n)

Behaviour of this system is presented in Figure 5.4

(X —> e, m, tt)

{X -?->e,n,tt)

(e, m) -<-^— (X, m) -*—— (X\\X,m) +±

(e,n) (X,n)

+ {A,tt)—±iA\\X,tt)—±(A\\X X, tt) —

(X\\X,n)

Figure 5.4: Transition system described in Example 5.3

-.n—lun „n—l„n The language generated by this system L(A) = {an 16n,a'" *c" n >
1} cannot be generated by any BPP due to the Pumping Lemma presented
by Christensen [Chr93] in the following form.

Lemma 5.4 (Pumping Lemma for BPP). Let L be any language of L(BPP).
There exists a constant m such that if u is a word of L and the length of u (written
\u\) is greater than m, then there exist x,y,z G E* such that

• u = xz,

• \y\ > I

• Vi > 0 : xy*z e L.

The definition of (a, /3)-fcPRS classes and proved fact fcPN=PN imply
that the fcBPP class is a subclass of PN. These classes differ, even with re­
spect to the language equivalence. The language L = {anbcndenf | n > 0}
is an instance of a language generated by PN, which cannot be described
by any fcBPP Example 5.5 shows a PN describing the language L, while
Pumping Lemma presented in the following subsection gives the argument
that there is no fcBPP generating the language L.

Example 5.5. Let A = (i?, W) be a (P, P)-PRS with rewrite rides as below.

W - i

X\\A

w
X

X

Y

Y\\B

YA
ZU-
Z\\B

^ Y

Z

•Vzp
±*Z\\B

28

5.2.1 Pumping Lemma for fcBPP

The pumping lemma for fcBPP is formulated and proved in this subsec­
tion. The proof is similar to the one presented by Christensen for BPP case
[Chr93] thanks to the fact that every possible sequence of actions contains
a finite number of transitions which change the state of the store due to
finiteness of a constraint system.

Let A = (C, R, t0) be a fcBPP. For every process constant X G Const(A)
and every constraint m G (7°, let Sm{X) denote the set

Sm(X) = {Y(E Const{A) \3teP: (X,m) —>+ (Y\\t,m)}\

i.e. the set of process constants Y which can be derived from (X, m) with­
out changes on the store. We extend this definition to parallel terms in
obvious manner, thus

Sm(A1||A2||...||A/)= (J Sm(Ai).
ie{i,2,...,j}

Lemma 5.6. Let A = (C, R, to) be a fcBPP. If there exists some derivation of
a word u = u\U2 • • • uk G L(A) of the form

(to,tt) = (t0,m0) - ^ (h,mi) - ^ . . . - ^ {tk,mk)-^

such that Vi G {0,1 ,2 , . . . , fc}, VX G U it holds X £ Smi (X), then \u\ < h,
where h is a constant depending only on A.

Proof. At first we focus on maximum "flat" parts of the above derivation,
which are of the form

(4- \ Ui+l (J. \ Ui + ? Ui+Í (J. \
(ti,mi) —> (ti+i,mi+i) —> ... —> {ti+j,mi+j),

where the state of the store (in following marked as m) keeps unchanged
(m = mi = rrii+i — • • • = rrii+j), i = 0 or m^-i ^ m, and i + j = k
o r m / rrii+j+i. We denote u' = Ui+iUi+2 • • • Ui+j. From this flat part we
deduce another derivation sequence

M \ " i . I II \ "2 . VP. i M \

s0,m) —> (ri | |si ,m) —> ... —> (rp\\sp,m),
where vi, «2, • • •, vp G Act+, ro\\so = t{, in ro there are all constants from ti

which are rewritten in the derivation sequence (ťj, m) —> (ij+j, m), and in
so there are constants which do not actively participate in this derivation
sequence. Now rj||sj (I = 1,2,... ,p) rises from rj_i ||sj_i by one rewriting

1The relation —>+ (resp. —•*) is apprehended as usual, i.e. (ti,m) —>+ (Í2,n)
(resp. (íi, m) —>* (<2, n)) iff there exists w e Act+ (resp. w G Acť) such that {ti, m) -^->
(í2 ,n) .

29

file:///3teP

of each constant from rj_i in the same way as a constant has been rewritten
in the original flat derivation sequence (thus |u;| = |n_i|) and still it holds
that 77 contains constants, which are rewritten in the original flat deriva­
tion sequence, while s; contains the other constants (thus s;_i C s(). We
finish rewriting when 77 is empty (thus rp = e and sp = ti+j). It is clear
that v = «1^2 • • • Vp is a permutation of u', especially \v\ = \u'\. By re­
placing (ti,m) —> (ti+j,m) with (ro\\so,m) -—> (rp\\sp,m) in the original
derivation we get a correct derivation of the word u\... UÍVUÍ+J+I... un of
the length k. Further, for each X in rj (I — 0 ,1 ,2 , . . . ,p) there exists tz

(i < z <i + j) such that X E tz.
Now we show that Sm(ri-i) 2 Sm(ri) for each 1 < I < p.

"D" It comes directly from the fact that each constant from 77 has an ances­
tor in n_i .

"Ý" Let us assume that for some 1 < I < p we have 5TO(r;_i) = Sm(ri). For
each X Eri (77 ^ e) it holds that X G Sm(ri-i) and thus X e Sm(rj).
From the premise X £ Sm(X) follows that there exists some Y G 77,
ľ / I such that X e Sm(Y). Analogous reasoning as for X can be
done for Y, i.e. from Y G 77 it follows that Y G Sm(ri-i) = Sm(ri)
and Y £ Sm(Y), Y $ Sm(X). In conclusion we get Y G Sm(ri) and
Y £ Sm(X\\Y). Again, there exists Z € n, Z $ {X,Y} such that
Y G Sm{Z) and thus also {X,Y} C Sm{Z). We know Z G 77 and
Z g Sm(Z), hence we get Z G Sm(n) and Z ^ Sm(X\\Y\\Z). We can
continue in this fashion to the point where we have the contradiction
WeSm(ri) and W<$Sm(n).

Hence we have

\Const(A)\ > \Sm{r0)\ > \Sm{ri)\ > .. . > \Sm{rp-i)\ > 0.

This implies \Const(A)\ > p — 1. Further, for each 1 < I < pit holds that

H = | n - l | < ko|a '_ 1 < \ro\aP-1 < |r0|alConsť(A)l,

where a is a maximum number of constants in right sides of rewrite rules
in A. Now we restrict the length of v!

\u'\ = \v\
1=1 1=1

\u'\ < p|r0|alConsi(A)l < (|Const(A)| + l)\U\a}Conat^\.

In conclusion we get the restriction on the length of flat parts of the original
derivation

\u'\ < \ti\b,

30

file:///ro/aP-1
file:///ti/b

where b = {\Const(A)\ + l)0lConat(A)l.
In general it holds that each sequence of derivation steps consists of

non-flat steps and flat derivation sequences. The number of "unflat" steps
(ti, mi) —4 (ťj+i, TTij+i), where ra$ ^ mj+i, is limited by |C°| — 1. The cardi­
nality of the set C also constrains the number of flat parts to |C°|. Therefore

|c°l
|u|< 10*1-1 + ̂ 1^16,

i=i

where (£',m') is the first state of the j - th flat derivation sequence, i.e. m'-
is the j-th different state of the store used in the original derivation and
(ťj,m'j) is the first state in this derivation with the constraint m'- in the store.
Hence (*;, mi) = (r0,tt)-

The last step is to restrict the length of £ for j > 1. We can deduce a
restriction

l*Sl<l<5-il + («-i)(|í5-il6+i)
thanks to the facts that each application of a rewrite rule cannot add more
than a — 1 constants to the string of constants in the actual state and that
the number of these applications is limited by the length of the previous flat
string plus one (the unflat derivation step). The previous inequality can be
modified in the following way.

|«}-il +adrift+ 1)
l*5-il(1 + o6+a)
{tWil + ab + ay-1

{toKl + ab + ay-1

By summarisation we get

|C«|

|u| < \C°\ - 1 + 6|r0| 5^(1 + ab + ay-1,
i=i

where b = (\Const(A)\ + i)a\
Cmst(A)\. The sum on the right side of the

previous inequality can be modified as it is an geometric progression. The
final form of desired h is then

h = \n-i+b\t/1+ab+a)lc°l-\
ab + a

where a is the maximum number of constants in right sides of rewrite rules
in A and b = {\Const{A)\ + l)0lConst(A)l. ' D

The pumping lemma formulated below is a simple consequence of the
previous lemma.

«I <
W <
l̂ l <

31

Lemma 5.7 (Pumping Lemma for fcBPP). Let L be a language of L(fcBPP).
There exists a constant h such that if u is a word of L and \u\ > h then there exist
x,y,z,w G Act* such that

• u = xz,

• \y\ > h

• Vi > 0 : xylzw% G L.

Proof. Given L we have a fcBPP A such that L = L(A). It follows from
Lemma 5.6 that each derivation

{t0,tt) = {t0,m0) - % (ii ,mi) - ^ . . . - ^ {tk,mk)-h

of the word u = u\u<i... uk G L(A), \u\ > h contains some state (tj,rrij) =
(X\\t'j,mj), where X G Smj(X). The definition of Smj(X) says that there
exist í G P and y G Act+ such that {X, m f) -̂ -> (X\\t,mj). Further, let
w G Act* be a word in L((í,mfc)), i.e. there exists a terminal state (i',n)
such that (í, m k) —> (ť, n). Now the derivation

(*o,íř) —• (tj,mj)—> [tjt ,mj) —> (t\mk)—>{t,n)-^

is the correct one for all i > 0. To make the proof complete we should add
that x — u\... Uj and z = Uj+i... uk- •

5.3 fcPA, fcPAD, fcPAN classes

From the Lemma 4.7 follows that PA is a subclass of the fcPA class, PAD is
a subclass of fcPAD, and PAN is a subclass of fcPAN. To prove that men­
tioned PRS classes are strict subclasses of corresponding fcPRS classes, we
present two fcPRS systems. The first is a fcBPA system which is not bisim-
ilar to any PAN system. The second will be fcBPP system which is not
bisimilar to any PAD system.

Example 5.8. Let us consider afcBPA system given as an (1, S)-fcPRS with the
constraint system Cm,n introduced in Example 4.3 and the initial process term
U.X.

(U -^ U.A, tt, tt) (A -^ e, tt, tt)
{U - ^ U.B, tt, tt) {B A e, tt, tt)
(U—> e,tt,m) (X—> e,m,tt)
(U-Ue,tt,n) (X-?-> e,n,tt)

The fcBPA system given above is bisimilar to the pushdown system de­
fined in Example 3.8, which is not bisimilar to any PAN system. Hence

32

this fcBPA system is not bisimilar to any PAN, and as corollary we get
PA C fcPA and PAN C fcPAN.

We will prove that there is no PAD system bisimilar to fcBPP system
given by the example below.

Example 5.9. Let us consider afcBPP system given as an (1, P)-fcPRS with the
constraint system depicted below and the initial state (X, tt).

ff (X - A X\\A,tt,tt)

J (X - ^ X\\B,tt,tt)
I (X-^e,tt,o)

(A -^ e, o, tt)

tt {B -^ e, o, tt)

Lemma 5.10. If there is a PAD system bisimilar to thefcBPP system from Exam­
ple 5.9, then there is also a PDA system bisimilar to thisfcBPP.

Proof. Let A be a PAD with the initial state Q (we can assume that the initial
state is a single constant) such that Q ~ (X, tt). As on the left-hand side of
rewrite rules A only sequential composition can occur, some part of parallel
composition t\ ||Í2 can influence the behaviour of such system only if there
is a reachable state of the form {t\ P2) -̂ 3 where £3 can be e. If there is no such
a state, we can remove all parallel compositions from the rules and we get a
PDA system bisimilar to A and thus also bisimilar to the considered fcBPP
process.

Another situation arises if there is a reachable state of A of the form
(h ||*2)-*3/ where Í3 can be e. Let us assume that during the derivation of the
state (*i ||*2) -*3 from Q there is no other state of the form (*i ll*2)-*3 (*3 can be
e). As Q is a single process constant and any parallel composition s\ \\s2 in a
termp.(si||s2).p' cannot be changed by any rewriting until p is e, there must
be some rewrite rule (t —t Z.(íi||Í2)-'") G A (I, r can be e, x G {a, b, c, d, e})
such that íi ||Í2 is the mentioned parallel composition. There are two cases.

1. The state (íi||Í2)-Í3 was derived from Q under a word w G {a,b}*.
We show that t\ or t% is then deadlocked. With respect to the defi­
nition of PAD, which does not provide any form of communication
or synchronisation between processes in a parallel composition, just
one component of *x ||*2 can enable the action e, let us assume that it
is Í2- Then t\ is deadlocked - it cannot do neither the actions a or b
(as these actions are disabled after the action e) nor the actions c or
d (as these actions are disabled before e). Nevertheless, the term t\.ť
is not necessarily deadlocked for some term ť. Hence, the parallel
composition íi | | í2 in the rule (t -^-> Z.(íi||Í2).r) 6 A can be changed
to the sequential composition t2-^i- We should insert some separator

33

between t% and t\ (resp. I and t2) to keep the impossibility of com­
munication between parts of parallel composition (resp. between I
and part of the following parallel composition). Thus we replace the
rule (t - ^ i.(íi||í2).r) G A by the rule t -^f l.X.t2.X.tx.r (resp.
t —> t2.X.t\.r if / = e), where X £ Const(A) is a new constant,
and we add new rewrite rule X.s —> s' to A for every rewrite rule
s - ^ s' G A (if we already have the rules of the form X.s —> s' in
modified A, we do not need to add them again in the future). These
changes do not affect the behaviour of A.

2. The action e occurs during the derivation of the state (*i ||*2)-*3 from
Q. The state (*i||*2)-*3 is thenbisimilar to a state (An\\Bm,o)2 of con­
sidered fcBPP and thus every possible sequence of actions performed
by the process (*i||Í2)-*3 is finite, as well as every possible sequence
performed by the term *i ||*2- We construct a finite labelled (acyclic)
transition graph where the vertices are processes reachable from the
parallel composition t\ ||Í2 (which is the root of the graph) and edges
naturally correspond to actions (resp. applications of rewrite rules).
Now we assign a fresh process constant to each vertex of the graph
which has some parallel composition inside (the vertices without any
parallel composition keep unchanged). We replace the rule (t —*•
l.(ti\\t2).r) G A by the rule t - ^ l.Z.r, where Z £ Const(A) is a pro­
cess constant assigned to t\ \\t2. For every edge of the graph from the
vertex A (where A is a fresh constant) to the vertex v we add a rule
A —> v (where x is the label of the edge) to A. The behaviour of A
is still unchanged thanks to the fact that if (ti \\t2).t3 —-> ť-h then the
term í3 can be changed by the following transition only if there is no
parallel composition in ť, and the fact that the vertices without any
parallel composition are unchanged.

In both cases, the number of parallel compositions in rewrite rules has de­
creased (with one exception - when we add rules of the form X.s —^ s',
then the number of parallel compositions can be doubled, but it does not
matter as we make it only once). If there is still a reachable state of the form
(h ||*2) -*3 in modified A, we can use the same method again. As the number
of parallel compositions in rewrite rules is finite, after finite number of steps
we get a PAD system without any reachable state of the form (íi||Í2)-Í3,
which is the situation discussed at the beginning of this proof. D

The class of context-free languages (i.e. the class of languages generated
by PDA processes) is closed under intersection with regular languages. The

2The expression A" is an abbreviation for n copies of process constant A in parallel
composition. The abbreviation Bm has an analogous meaning.

34

language L generated by the fcBPP system from Example 5.9 is not context-
free, as its intersection with the regular language a*b*ec*d* is the language
L n a*b*ec*d* = {anbmecndm \ m,n > 0} which is not context-free. Thus
there is no PDA process bisimilar to fcBPP from Example 5.9 and from the
Lemma 5.10 follows that there is no PAD process bisimilar to considered
fcBPP. The direct corollary is the inequality PAD C fcPAD.

It has been proven that PA, PAD and PAN classes are strict subclasses
of corresponding (a, /3)-fcPRS classes. It is obvious from the definition that
fcPA is a subclass of fcPAD and fcPAN. It remains to show that fcPA is a
strict subclass of fcPAN and fcPAD and that fcPAN differs from fcPAD. To
prove it, we introduce a PDA process which is not bisimilar to any fcPAN
process, and a PAN process which is not bisimilar to any fcPAD process.

Example 5.11. Let us consider the pushdown process described in Example 3.8
with added rewrite rules below.

V - ^ U.X W - i+ u.x
V -?-> z w -A z

This system behaves like the one defined in Example 3.8, but when the
original system terminates, the enhanced system can choose between ter­
mination under the action z and restart under the action x.

Lemma 5.12. If there is afcPAN system bisimilar to the PDA process from Ex­
ample 5.11, then there is a PAN process bisimilar to the PDA system from Exam­
ple 3.8.

Proof. Let A be a fcPAN system bisimilar to the PDA process defined in Ex­
ample 5.11. From the finiteness of the constraint system used in A follows
that there exists a non-terminal reachable state (t, o) of A such that every
non-terminal state reachable from (t, o) has also o on the store (the contrary
implies the infiniteness of the constraint system). As (t, 6) is non-terminal,
there exist a word w G {a, b, c, d, e, / } * such that (t, o) —> (s, o), where
(s,o) is bisimilar to the state U.X of the PDA process from Example 5.11.
To summarise, (s, o) is a fcPAN process bisimilar to U.X and every non­
terminal state reachable from (s,o) has o on the store (terminal states are
reachable only under the action z).

If we remove from A the rules labelled by actions x, z and consider the
state (s, o) to be the initial, we obtain the system with reachable states with
o on the store, bisimilar to the pushdown process from Example 3.8.

Now, let A' be a PAN system with the initial state s and with the set of
rewrite rules consisting of rules / —> r, where (I —> r, m,n) G A, o h m,
o A n = o and v G {a, b, c, d, e, / } . It is clear from above arguments that this
PAN system A' is bisimilar to the PDA system defined in Example 3.8. D

35

Mayr in [May97b] has proved that there is no PAN process bisimilar to
the PDA process from Example 3.8, thus there is no fcPAN process bisimilar
to the pushdown process described by Example 5.11. Hence, fcPA is a strict
subclass of fcPAD and the classes fcPAN, fcPAD are different. To check
that fcPA is also a strict subclass of fcPAN, we show that there is a PAN
process which cannot be described by any fcPAD process with respect to
bisimulation equivalence.

Example 5.13. Let Abe a PAN process with the initial state (X\\A\\B).W and
the following rewrite rules.

X-Ux\\A\\B Y\\A^Y X ^ e
X ^ Y Y\\B-^Y Y ^ e
X\\A^Z Y\\A^Z Z ^ e
X\\B - ^ Z Y\\B -U Z A ^ e

B ^ e
W - A {X\\A\\B).W
W ~^D

The first two columns of rewrite rules include the same rules as Petri net
given by Example 3.9. Also the initial state of that PN is very similar to the
one of PAN system above. This PAN system can behave as mentioned Petri
net (it can deviate from the behaviour of PN only under action y) and states
corresponding to terminal states of considered PN can perform a sequence
of actions y* to reach the state W. The state W can perform the action z
leading to deadlock, or the action x restarting the PAN system.

Lemma 5.14. If there is afcPAD system bisimilar to the PAN process from Exam­
ple 5.13, then there is a PAD process bisimilar to the PN system from Example 3.9.

Proof. The proof is made in the same fashion as the previous one. Let A
be a fcPAD system bisimilar to the PAN process defined in Example 5.13.
From the finiteness of constraint system used in A follows that there ex­
ists a non-terminal reachable state (ŕ, o) of A such that every non-terminal
state reachable from (ŕ, o) has also o on the store (the contrary implies the
infiniteness of the constraint system). As (í, o) is non-terminal, there ex­
ist a word w G y* such that (t,o) -^4 (s,o), where (s,o) is bisimilar to
the state pf||A||.B).W of the considered PAN process. To summarise, (s, o)
is a fcPAD process bisimilar to (JC||A||J5).W and every non-terminal state
reachable from (s, 6) has o on the store (terminal states are reachable only
under action the z).

If we remove from A the rules labelled by actions y,x,z and consider
the state (s, o) as the initial, we obtain the system with reachable states with
o on the store, bisimilar to the Petri net from Example 3.9.

36

Now, let A' be a PAD system with the initial state s and with the set of
rewrite rules consisting of rules I —> r, where (I —> r,m,n) G A, o h m,
o An = o and v G {g, a, b, c, d}. It is clear from above arguments that this
PAD system A' is bisimilar to the Petri net system defined in Example 3.9.

D

Again, Mayr in [May97b] has showed that the Petri net described by
Example 3.9 is not bisimilar to any PAD system. Hence, the PAN sys­
tem from Example 5.13 is not bisimilar to any fcPAD system and we have
proved that fcPA is a strict subclass of the class of fcPAN processes. We also
have demonstrated that the difference between classes fcPAD and fcPAN is
"symmetric".

5.4 fcPRS class

At the beginning of this section, we should explain why the edge between
PRS and fcPRS classes in the fcPRS-hierarchy (depicted on Figure 4.4) is
dotted while other edges are not. The reason is that we have no proper
proof (yet - as we hope) that the fcPRS class has strictly bigger expressibil-
ity than the PRS class. It is obvious from the definitions that PRS C fcPRS,
but we can provide only intuition for PRS C fcPRS. The assumed witness
of the inequality can be found in the fcPA below.

Example 5.15. Let A be afcPA system with the initial process term X\\Y and the
following constraint system and rewrite rules.

(X -2-> X.A, tt, tt)
(X - A X.B, tt, tt)
(Y -U Y.C, tt, tt)
(X^E,tt,p)
(Y^e,p,o)
(A -̂ -> e, o, tt)
(B^Ue,o,tt)
(C -Ae ,o , ř ř)

The behaviour of A defined in the example above is as follows. At the
beginning, the process X can perform some actions a, b and remember the
order of the actions, while the process Y can perform just the action c and
count the number of performed actions c. The process X can also perform
the action x, make a remark p on the store about this action and termi­
nate. Thereafter, the process Y can perform the action y, make a remark o
on the store and terminate. When both processes X and Y are terminated

/ /

o

P

tt

37

(i.e. there is p Ao = o on the store), actions a', b', d can be performed. The or­
der (and the count) of actions a', b' corresponds in reversed order to actions
a, b produced before termination of the process X. The count of actions c'
is the same as the count of actions c performed before termination of the
process Y.

We can approve that this fcPA system is not bisimilar to any PAD pro­
cess. For the proof we consider the fcPA process without rules labelled by
the action b (if we assume that there is a PAD process bisimilar to the orig­
inal fcPA, then there is also a PAD system without b action bisimilar to the
fcPA without b action). Then the behaviour of our system is very similar
to the behaviour of fcBPP from Example 5.9, which is not bisimilar to any
PAD process. The proof is very similar too.

We can also approve that the considered fcPA process is not bisimilar to
any Petri net. The argumentation is based on the fact, that if we remove the
rules labelled by c from the fcPA system, then we get a system describing
the language L = {w.x.y.wR \ w G {a, b}*}. The proof that there is no Petri
net generating the language L, can be found in [Pet81].

Now we try to explain (on very intuitive level) why we think that there
is no PRS process bisimilar to the considered fcPA. Let us assume that A is
such a bisimilar PRS system. We know this PRS cannot be described by any
PAD process. Thus, there must be reachable state with some parallel com­
position. As the use of the parallel composition must be "non-removable",
the information about performed actions a,b,c should be stored in some
components of this parallel composition. There should be one parallel
component (let us call it p) which saves the information about the order
of actions a, b (and thus p is a sequential composition, at least at the top-
level), and another parallel component (let us call it q) which remembers
the number of performed actions c (the information about the count of ac­
tions c cannot be mixed with the information about the order of actions
a, b, because after the action y we need a "random access" to the count of
actions c). As the sequence of actions a, b can be arbitrary long, the size of
corresponding parallel component p is "unbounded" (i.e. for every n > 0,
there is a reachable state where size(p) > n). Let m be the maximum size
of left-hand sides of rewrite rules in A. Further, consider the state of the
form (p|M|s)-r, where size(p) > m and process terms s,r can be e. Then
there is no rule, which can change p together with some other part of the
term. In other word, there is no way how can q or s provide an information
to p. We need such kind of communication for the transition labelled by y,
which allows to perform actions a',b',c'. One possible way how to enable
these actions at the same time, is to add some term / in front of the parallel
composition and enable the action by removing /. But any application of a
rewrite rule on the process term of the form Z.(p||g||s).r cannot modify the
process term p if p is large enough. Thus we cannot add information about

38

next possibly performed actions a, b to p (as well as I cannot be generated
by p after the action a; if p is large enough). In other words, the problem is
that a very large parallel component (which is an sequential composition at
the top-level) cannot get any information from other parallel components.

We should note that we already know that both, fcPAD and fcPAN
classes, are strict subclasses of fcPRS with respect to bisimilarity. This fol­
lows directly from the fact, that fcPAD and fcPAN are incomparable sub­
classes of the fcPRS class.

39

Chapter 6

Conclusion

We have enriched process rewrite systems with the mechanism related to
computing with partial information in the form used in widely studied con­
current constraint programming. In the case of process rewrite systems,
this mechanism can be effectively used to provide some information to ev­
ery part of the process term.

It has been proven that the enriching the classes of finite systems, push­
down processes, and Petri nets with the finite constraint system does not
change their expressibility with respect to the bisimulation equivalence and
even with respect to isomorphism of generated labelled transition systems.
On the contrary, the process rewrite systems of classes BPA, BPP, PA, PAD,
and PAN extended with finite constraint system establish corresponding
new classes fcBPA, fcBPP, fcPA, fcPAD, and fcPAN as the expressive power
of such systems increases. Regrettably, we cannot state that PRS is a strict
subclass of the fcPRS class. Although, a commentary in this sense to the
relation between fcPRS and PRS classes was given.

The hierarchy of fcPRS classes has been introduced and the strictness
with respect to the bisimulation equivalence of such a hierarchy (with the
exception in the relation between PRS and fcPRS classes) has been proven,
mainly with use of examples. Despite of the fact that the hierarchy is not
strict on the language equivalence level, we demonstrated that BPP is a
strict subclass of fcBPP and fcBPP is a strict subclass of Petri nets even with
respect to the language equivalence. We have also presented the Pumping
Lemma for fcBPP

6.1 Future research

The area of process rewrite systems with finite constraint systems still offers
many interesting topics. The topic number one is obviously the relation be­
tween classes of fcPRS and PRS processes. Other two topics for our future
work are provided by the fcBPP class. The first one is an open question of

40

decidability of the bisimulation equivalence for fcBPP since the decidability
of the bisimulation equivalence for BPP has been already proven by Chris-
tensen, Hirshfeld and Moller [CHM93] and Moller [Mol96] has shown that
the bisimulation equivalence is undecidable for multiset automata1. The
second interesting challenge around the fcBPP class would be to specify
the boundary of decidability of the weak bisimulation equivalence with
finite-state processes. Mayr [May96] has proved that the weak bisimula­
tion equivalence with FS processes is decidable for BPP and Jančar, Kučera
and Mayr [JKM98] have demonstrated undecidability of this problem for
MSA.

Next possible subject is to observe the dependency between the shape
of constraint system (number of constraints, branching limitations, etc.)
and expressive power of process rewrite systems using such constraint sys­
tems. We take into account just two classes of process rewrite systems -
with the trivial constraint systems C£ (defined in Example 4.2) and with
arbitrary finite constraint systems. Probably, there can be found a finer hi­
erarchy of process rewrite systems with finite constraint systems.

Totally different mission is to employ an infinite constraint system.

:MSA are in [Mol96] called as PPDA. In [Mol98] there was also demonstrated that the
class of MSA is a strict subclass of Petri nets. It was proven in [StrOOb] that fcBPP is a strict
subclass of MSA and that the expressibility of MSA systems is not changed by enriching
with finite constraint systems.

41

Bibliography

[BCS96] O. Burkart, D. Caucal, and B. Steffen. Bisimulation collapse and
the process taxonomy. In Ugo Montanari and Vladimiro Sas-
sone, editors, CONCUR '96: 7th International Conference on Con­
currency Theory, volume 1119 of Lecture Notes in Computer Science,
pages 247-262. Springer-Verlag, 1996.

[BE97] O. Burkart and J. Esparza. More infinite results. Bulletin of the
European Association for Theoretical Computer Science, 62:138-159,
1997.

[BK85] J. A. Bergstra and J. W. Klop. Algebra of communicating pro­
cesses with abstraction. Theoretical Computer Science, 37:77-121,
1985.

[Cau92] D. Caucal. On the regular structure of prefix rewriting. Theoreti­
cal Computer Science, 106:61-86,1992.

[CHM93] S. Christensen, Y. Hirshfeld, and F. Moller. Bisimulation equiv­
alence is decidable for basic parallel processes. In Eike Best,
editor, CONCUR '93: 4th International Conference on Concurrency
Theory, volume 715 of Lecture Notes in Computer Science, pages
143-157. Springer-Verlag, 1993.

S. Christensen. Decidability and Decomposition in Process Algebras.
PhD thesis, Department of Computer Science, University of Ed­
inburgh, 1993.

D. Caucal and R. Monfort. On the transition graphs of automata
and grammars. In WG '90: Graph-Theoretic Concepts in Computer
Science, volume 484 of Lecture Notes in Computer Science, pages
311-337. Springer-Verlag, 1990.

F. S. de Boer and C. Palamidessi. A process algebra of concurrent
constraint programming. In Krzysztof Apt, editor, JICSLP '92:
Joint International Conference and Symposium on Logic Program­
ming, pages 463-477. MIT Press, 1992.

[Chr93]

[CM90]

[dBP92]

42

[Esp97] J. Esparza. Decidability of model checking for infinite-state con­
current systems. Acta Informatica, 34(2):85-107,1997.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.

[Jan95] P. Jančar. Undecidability of bisimilarity for Petri nets and some
related problems. Theoretical Computer Science, 148(2):281-301,
1995.

QKM98] P. Jančar, A. Kučera, and R. Mayr. Deciding bisimulation-like
equivalences with finite-state processes. Lecture Notes in Com­
puter Science, 1443:200-211,1998.

[May96] R. Mayr. Weak bisimulation and model checking for basic paral­
lel processes. Lecture Notes in Computer Science, 1180:88-99,1996.

[May97a] R. Mayr. Combining Petri nets and PA-processes. In M. Abadi
and T. Ito, editors, TACS '97: International Symposium on Theoret­
ical Aspects of Computer Software, volume 1281 of Lecture Notes in
Computer Science, pages 547-561. Springer-Verlag, 1997.

[May97b] R. Mayr. Process rewrite systems. Electronic Notes in Theoretical
Computer Science, 7,1997.

[May98] R. Mayr. Decidability and Complexity of Model Checking Problems
for Infinite-State Systems. PhD thesis, TU München, 1998.

[Mil80] R. Milner. A calculus on communicating systems. Lecture Notes
in Computer Science, 92,1980.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[Mol96] F. Moller. Infinite results. In Ugo Montanari and Vladimiro Sas-
sone, editors, CONCUR '96: 7th International Conference on Con­
currency Theory, volume 1119 of Lecture Notes in Computer Science,
pages 195-216. Springer-Verlag, 1996.

[Mol98] F. Moller. A taxonomy of infinite state processes. Electronic Notes
in Theoretical Computer Science, 18,1998.

[Par81] D. M. R. Park. Concurrency and automata on infinite sequences.
In Peter Deussen, editor, Theoretical Computer Science: 5th GI-
Conference, volume 104 of Lecture Notes in Computer Science,
pages 167-183. Springer-Verlag, 1981.

[Pet81] J. L. Peterson. Petri Net Theory and the Modeling of Systems. Pren­
tice Hall, 1981.

43

[Sar89] V. A. Saraswat. Concurrent Constraint Programming Languages.
PhD thesis, Computer Science Department, Carnegie Mellon
University, 1989.

[SR90] V. A. Saraswat and M. Rinard. Concurrent constraint program­
ming. In Conference Record of the Seventeenth Annual ACM Sym­
posium on Principles of Programming Languages, pages 232-245.
ACM Press, 1990.

[SRP91] V. A. Saraswat, M. Rinard, and P. Panangaden. Semantic foun­
dations of concurrent constraint programming. In Conference
Record of the Eighteenth Annual ACM Symposium on Principles of
Programming Languages, pages 333-352. ACM Press, 1991.

[Sti95] C. Stirling. Local model checking games. In Insup Lee and
Scott A. Šmolka, editors, CONCUR '95: 6th International Confer­
ence on Concurrency Theory, volume 962 of Lecture Notes in Com­
puter Science, pages 1-11. Springer-Verlag, 1995.

[StrOOa] J. Strejček. Constrained rewrite transition systems. Master's the­
sis, Faculty of Science, Masaryk University, 2000.

[StrOOb] J. Strejček. Constrained rewrite transition systems. Technical
Report FIMU-RS-2000-12, Faculty of Informatics, Masaryk Uni­
versity, 2000.

[vG90] R. J. van Glabbeek. The linear time-branching time spectrum. In
J. C. M. Baeten and J. W. Klop, editors, CONCUR '90: 1st Inter­
national Conference on Concurrency Theory, volume 458 of Lecture
Notes in Computer Science, pages 278-297. Springer-Verlag, 1990.

44

