
MASARYK UNIVERSITY

FACULTY OF INFORMATICS

}w��������
��������������� !"#$%&'()+,-./012345<yA|
Verification of Name Service
Cache Daemon with DIVINE

Model Checker

MASTER’S THESIS

Milan Lenčo

Brno, autumn 2014

Declaration

Hereby I declare, that this paper is my original authorial work, which I
have worked out by my own. All sources, references and literature used or
excerpted during elaboration of this work are properly cited and listed in
complete reference to the due source.

Milan Lenčo

Advisor: doc. RNDr. Jiřı́ Barnat, Ph.D.

ii

Acknowledgement

I would like to thank my thesis advisor doc. Jiřı́ Barnat for giving me the
opportunity to join the ParaDiSe laboratory and see how the real research
is done. Even though I have decided to go a different direction in the end,
it is only through experience that one can make a right decision about the
future career path.
Also a very special thanks to my parents who were very supportive during
the study period and gave me the motivation to finish this off in the darkest
of times.

iii

Abstract

In this thesis we present an attempt to verify a number of important safety
and liveness properties of GNU nscd, a name service cache daemon shipped
alongside the GNU C Library, using the DIVINE model checker. We give a
detailed description of all the steps needed to prepare and perform verifica-
tion of a non-trivial C/C++ program with DIVINE. In our approach we keep
nscd unmodified and wrap it around with a virtual environment simulat-
ing interactions between the daemon, clients and directory services from a
black-box perspective. Model checking is then performed for different con-
figurations of the complete system. Another contribution of this thesis is a
verification-ready implementation of an in-memory file system, supporting
all common low-level I/O interfaces as defined by POSIX family of stan-
dards. Based on the results obtained and the effort that was required, we
draw conclusions on feasibility of model checking real-world concurrent
C/C++ programs in general.

iv

Keywords

DIVINE, nscd, glibc, NSS, model checking, LLVM, software verification

v

Contents

1 Introduction . 3
2 Preliminaries . 5

2.1 Model Checking . 5
2.1.1 Introduction . 5
2.1.2 Linear Temporal Logic 5
2.1.3 Explicit Model Checking of Software 7
2.1.4 State Space Explosion 8

Symbolic execution . 8
Bounded model checking 9
Reductions . 9
Compressions . 9
Abstractions . 10
Distributed memory . 10

2.2 Low-Level Virtual Machine 10
2.3 Related Work . 11

3 Model Checking C/C++ Programs with DIVINE 14
3.1 Introduction . 14
3.2 From Implementation to Correctness Evaluation 14
3.3 Typical Workflow . 15
3.4 LTL Specification . 16
3.5 Safety Properties . 18
3.6 Built-in Functions . 19
3.7 Library Substitutions . 19
3.8 Command Line Interface . 20
3.9 Limitations . 21

4 Name Service Cache Daemon . 24
4.1 Background . 24
4.2 The NSS Scheme . 25
4.3 Configuration . 27
4.4 Cache . 27

4.4.1 Memory Management 29
4.5 Concurrency . 30

5 Model Checking the GNU NSCD 32
5.1 Motivation . 32
5.2 System Analysis . 32

5.2.1 Decomposition . 33
5.2.2 Complexity . 34

1

Data non-determinism 35
Control-flow non-determinism 36
Memory usage . 36

5.3 Build system . 37
5.4 Acceptance Tests . 38

6 Closed Virtual File System . 40
6.1 Design . 41

6.1.1 Concurrency Control 41
6.1.2 Basic Data Structures 42

6.2 Correctness . 43
6.3 Limitations . 44

7 Experiments . 46
7.1 User-space Modifications . 46
7.2 Configuration . 46
7.3 Platform . 47
7.4 Results . 47

7.4.1 Environment Verification 47
7.4.2 NSCD Verification . 48

8 Conclusion . 51
A Content of the attached archive . 57

2

1 Introduction

A key challenge in software development is the difficulty of finding and
eliminating implementation errors. Testing is by far the most common ap-
proach used to tackle this problem. Some types of software bugs, however,
do not appear unless some intricate sequence of steps is executed. Such er-
rors are triggered rarely but often with fatal consequences and are hard to
reproduce. For example, behaviours of concurrent programs do not depend
only on user and environment inputs, but also on the interleaving of its ex-
ecution units. In practice, this means that testing alone often leaves many
errors undetected, which manifest only after days or weeks of execution.

Several authors have previously suggested model checking as a promis-
ing means to detect concurrent bugs and other types of security vulnerabil-
ities. Its idea is to prove that a system under verification has the specified
property by traversing all its reachable configurations, using techniques to
explore vast state spaces efficiently.

Unfortunately, model checking of software is almost never done in prac-
tice. Even state-of-the-art model checkers are limited in use when they re-
port an overwhelming number of false positives, counter-examples difficult
to interpret for humans, or when their lengthy running time slows down
other software development processes. Moreover, model checking fails to
impress outside the scope of research laboratories. Apart from safety critical
systems, formal verification is still lagging behind testing based methods in
correctness evaluation. Industry constantly overlooks model checking as a
viable method for software quality assurance for a number of reasons.

The most prominent problem is the so-called state space explosion, refer-
ring to the fact that the size of the state space is exponential to the size of
the model description. Later in the thesis, we will briefly survey the existing
methods used to fight the state space explosion problem. Since this problem
is inherent to model checking, it cannot be fully eliminated and is the limit-
ing factor for complexity of systems that can be verified using this method
efficiently.

Traditionally, model checking has been based on maintaining a sepa-
rate model alongside the actual implementation, providing formally exact,
high-level description of the system under verification. Not only this ap-
proach requires significant effort of a specialist, but can also miss some com-
piler and programming language specific errors, plus the model often gets
quickly outdated as the development progresses or as design is revised. Re-
cently, this problem has been addresses and several formal verification tools

3

1. INTRODUCTION

can now directly operate on the source code or on the level of a compiler
intermediate representation (IR).

Many advances have been made towards making the model checking
practical and easier to use, yet only few studies of real-world software
model checking have been published. We believe that the lack of use cases
and guidelines contributes to the prevalent omission of model checking in
software development as much as its theoretical limitations.

In this thesis we present an attempt to verify a number of important
safety and liveness properties of nscd, a name service cache daemon shipped
alongside the GNU libc, using the DIVINE model checker [1]. Entire process
of verification, consisting of system analysis, environment simulation and
the actual model checking is described in detail. Although most of the steps
and information provided here are specific to DIVINE, overall the thesis can
serve as a guideline for performing model checking of (unmodified) pro-
grams. Based on the results obtained and the effort that was required, we
draw conclusions on feasibility of model checking real-world concurrent
C/C++ programs in general.

This thesis is organized as follows. Chapter 2 overviews model check-
ing of software and briefly introduces the LLVM intermediate representa-
tion, on top of which DIVINE operates for model checking C and C++ code.
Chapter 3 is the user guide to verification of unmodified C/C++ programs
using DIVINE model checker. In Chapter 4 we provide a detailed descrip-
tion of nscd and its implementation, which is followed by the system anal-
ysis from the model checking point of view in Chapter 5. Based on this
analysis, we implemented some OS and libc facilities, mostly file-system re-
lated, to emulate the environment in which nscd typically executes, while
providing a complete description of the system so that the state space can
be generated. As we describe in Chapter6, this work resulted in implemen-
tation of all common low-level I/O functions as defined by POSIX family
of standards, which in turn makes it applicable for verification of other sys-
tems as well. Results of the actual model checking (nscd and our environ-
ment) are presented in 7. Finally, we conclude the thesis in the last Chapter
8.

4

2 Preliminaries

2.1 Model Checking

2.1.1 Introduction

In its full generality, Model checking refers to a formal verification method,
that for a given model exhaustively and automatically checks whether this
model satisfies a given specification. Due to the undecidability theorem
[Turing, 1936], it is impossible to provide a sound and complete algorith-
mic solution for any sufficiently powerful programming model, therefore it
is required that the state space of the model is finite, or meets some other
constraints depending on the approach used.

Model is typically a transcription of a system’s design, written in special
formally-defined language. Nowadays, however, multiple model checkers
support direct model checking of programs implemented in general-purpose
languages such as Java or C++.

Specifications about the system are usually expressed as temporal logic
formulas. Most commonly used logics to describe properties are LTL and
CTL (with their variants). For concurrent programs, the list of frequently
verified properties includes: assertion safety, deadlock-freedom, livelock-
freedom, progress, etc.

2.1.2 Linear Temporal Logic

The purpose of the Linear Temporal Logic (LTL) in model checking is to de-
scribe behavior of a system in time. LTL is often chosen as it is convenient
for expressing liveness (something good eventually happens) and fairness (all
possible/enabled actions are chosen infinitely often), two very important classes
of properties especially in the concurrent programming. We will see appli-
cations of both later in the thesis.

For safety properties, such as a deadlock-freedom and an absence of as-
sertion violations, introducing LTL into model checking is superfluous and
a simple reachability analysis is sufficient. Many model checkers actually
omit support for temporal logics altogether, typically those which are ori-
ented towards verification of single-threaded programs.

For the remainder of the thesis, we will concern ourselves with the state
based LTL. Properties of a single state are reflected by validity of atomic
propositions in the state and LTL formulae are interpreted over behaviours
of the system represented by sequences of sets of valid atomic propositions.

5

2. PRELIMINARIES

Formally, the syntax of an LTL formula is defined as follows:

ϕ ::= > | a | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | ϕ1Uϕ2 (2.1)

where > stands for true and a ranges over the countable set of atomic
propositions AP .

For the model checking purposes, we will interpret LTL formula on a
variation of the transition system known as a Kripke structure [2].

Let S be the set of all states, I the set of initial states and →⊆ S × S

a total transition relation. Then the Kripke structure is a triple (s0, S,→),
where s0 ∈ I . Next we define the Labeling function, assigning a set of valid
atomic propositions to states, as L : S → 2AP .

A run π in a Kripke structure is an infinite sequence of states, s0s1 . . .,
such that for every i ∈ N, si → si+1. Additionally, by πi we denote the suffix
of π starting with si.

The validity of an LTL formula ϕ for π = s0s1 . . . and a labeling function
L, written as (π, L) |= ϕ, is then inductively defined as:

(π, L) |= > (2.2)

(π, L) |= a ⇐⇒ a ∈ L(s0) (2.3)

(π, L) |= ¬ϕ ⇐⇒ (π, L) 6|= ϕ (2.4)

(π, L) |= ϕ1 ∧ ϕ2 ⇐⇒ (π, L) |= ϕ1 ∧ (π, L) |= ϕ2 (2.5)

(π, L) |= Xϕ ⇐⇒ (π1, L) |= ϕ (2.6)

(π, L) |= ϕ1Uϕ2 ⇐⇒ ∃i ∈ N : (πi, L) |= ϕ2 ∧ ∀j < i : (πj , L) |= ϕ1 (2.7)

Furthermore, a number of abbreviations and derived operators are typ-
ically defined for convenience:

⊥ ≡ ¬> (2.8)

ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2) (2.9)

ϕ1 =⇒ ϕ2 ≡ ¬ϕ1 ∨ ϕ2 (2.10)

Fϕ ≡ >Uϕ (eventually) (2.11)

Gϕ ≡ ¬F¬ϕ (always) (2.12)

Finally, we say that an LTL property holds for a given system if it holds
for all its runs starting in the initial state.

6

2. PRELIMINARIES

2.1.3 Explicit Model Checking of Software

The current trend in model checking is to progress towards direct veri-
fication of the implementation, targeting most commonly used general-
purpose languages and effectively avoiding the burden of providing a sep-
arate design-level description of the system. This is a significant step for-
ward in making the method practical and approachable for the industry. Di-
rect model checking of programs has the potential to complement testing
and become part of the software development process.

From the theoretical point of view, formal definitions and algorithms
used for traditional LTL model checking can be reused for direct verifica-
tions of software without substantial modifications. If we consider an im-
perative programming language – in practice, the paradigm used in vast
majority of cases – representing the state space of a program as a Kripke
structure is a straightforward process. States can be represented by the con-
tents of memory locations accessible to the program at a given time. The
transition relation is then given by the program itself, si → sj if and only if
by executing the instruction/statement pointed to by the program counter
in si (in the context of any active thread), we can get to the state sj .

Bringing all the powerful constructs of general-purpose languages into
model checking, however, has its side effects in the form of new and diffi-
cult problems.

First of all, constructing state space on the level of the implementation
is overly precise and aggravates the already difficult state space explosion
problem even more. Given the large code size of industrial software, nu-
merous methods for mitigating this problem are required if model checking
is to be feasible in practice.

Secondly, semantics of common programming languages are not for-
mally defined, instead a textual specification is provided, which is often
imprecise in places or overly complex for model checking. This may lead
to different interpretations or omission of some of the important features
of the language. As a radical solution, model checkers could interpret pro-
grams on the level of the machine code. While this is an option, it would re-
sult in construction of the state space on an extremely fine-grained level and
deteriorate the possibility of applying abstraction techniques efficiently. In-
stead, multiple research groups found the intermediate representation (IR)
of a particular compiler as a viable compromise between the language com-
plexity and the level of abstraction.

Introducing LTL into model checking of software is not free of chal-
lenges either. The major problem lies in formulating the validity of atomic

7

2. PRELIMINARIES

propositions. While it is desirable to define atoms as predicates over vari-
ables, there is no clear solution how it should be implemented. Due to the
lexical scoping, a common feature of programming languages, variables
may become temporary inaccessible, potentially resulting in impossibility
to evaluate the set of valid atomic propositions.

Lastly, programs are almost always open in the sense that their imple-
mentation is not fully-contained, but calls to external libraries and system
facilities are made. Unavailability of the external code or its non-applicability
for verification means, that an extra effort has to be made to provide re-
placements and simulate the environment solely for verification purposes.

2.1.4 State Space Explosion

As it has been already mentioned, the state space explosion problem is the
most prominent difficulty and blocker in making the model checking part
of the development cycle.

The source of the blowup is twofold: data nondeterminism, which, in
purely explicit model checking, causes the state space to branch for ev-
ery possible input value. This means, that reading even only a few 32 bit
integer values makes the traversal of all accessible configurations infeasi-
ble. Moreover, concurrent programs suffer from control-flow nondeterminism
(also referred to as path explosion) – every state can have as many successors
as there are active threads at the given time, which leads to an exponen-
tial growth of the state space in relation to the code size and the number of
execution units.

A numerous approaches have been suggested and successfully imple-
mented to minimize this problem. Here we list and briefly describe some of
the main techniques:

Symbolic execution

The key idea is to represent input values symbolically, instead of operating
with the concrete data, and expressing the program variables as functions of
the symbolic input values [3]. This technique is thus primarily used to cope
with the data nondeterminism, but in its pure form cannot handle the path
explosion problem very well and is not suitable for verification of complex
parallel systems. While symbolic execution is a method on its own, sepa-
rate from model checking and often combined with testing to produce high
coverage, multiple model checkers have adopted its principles to symbol-
ically store path conditions and input-dependent variables. This approach

8

2. PRELIMINARIES

enables to collapse individual states into sets of states, using a suitable set-
based data representation, such as Binary Decision Diagrams (BDD).

Bounded model checking

Instead of using an execution-based approach and exploring all the be-
haviours separately, a Boolean formula is constructed to represent all pos-
sible execution paths violating a given property, with the length restricted
by a fixed bound [4]. Any assignment satisfying the formula is a witness for
the violation of the property, which can be find using a satisfiability solving
program. In practice, the bound is progressively increased and the process
repeats for longer and longer traces. As the performance of SMT solvers
keeps improving, so does the popularity of BMC raises in the software ver-
ification community.

Reductions

A class of techniques especially efficient for complex irregular models with
a low-level description, therefore a primary pick for (direct) model checking
of parallel programs. The most established method is Partial Order Reduction
(POR) [5], which exploits the commutativity of concurrently executed tran-
sitions. While POR is used to detect symmetries in execution traces, other
techniques, such as the Heap symmetry [6, 7], focus on eliminating symme-
tries induced by data objects and memory configurations.

Completely different category of reductions is based on decreasing the
frequency of thread interleavings, aiming to mitigate the path explosion
problem. τ -reduction, introduced in [8] and the improved τ+reduction [7],
are based on the principle, that it is sufficient to interrupt thread execution
and create a state snapshot only before instructions with a visible effect, such
as Load and Store, to preserve all the behaviours of the system. The only
exceptions are control-flow loops, in which an interrupt must be enforced,
otherwise the transition may never be finalized due to an infinite execution
path with no observable effects (e.g. active waiting for an event to occur).

Compressions

Techniques used to decrease the memory requirements without actually re-
ducing the number of visited states.
For model checkers storing processed states into a hash-table, the Hash com-
paction may be an option [9, 10, 11]. This compression is lossy, however, and

9

2. PRELIMINARIES

can miss some counter-examples.
Fortunately, some of the lossless compression methods also proved to be ef-
fective for model checking, while maintaining the completeness of the veri-
fication, like a well-known Huffman compression (supported for example by
SPIN [12]), Automata representation [13] or the Tree compression, presented in
[14, 15].

Abstractions

These methods compute an approximation of a program, which is then
easier to verify. The model can be either under-approximated, potentially
missing some witnesses of the property violation, or more preferably over-
approximated, with a risk of reporting false alarms. A non-valid counterex-
ample, however, can be verified, therefore the procedure is often wrapped
in a refinement loop which ends only after no spurious violations are re-
ported or when it runs out of the allocated time. This approach is known as
Counterexample guided abstraction refinement (CEGAR) [16].

Distributed memory

An orthogonal approach to all the techniques described above is to harness
the combine power and memory resources of network-connected worksta-
tions. Most of the traditional model checking algorithms, however, have
a sequential character and thus novel designs are needed for this type of
environments. SPIN was among the first tools capable to (efficiently) per-
form distributed state space exploration [17], while DIVINE introduced new
sophisticated algorithms for parallel (and distributed) LTL model check-
ing [18]. A more recent example is PREACH[11], a distributed explicit state
model checker based on Murϕ.

2.2 Low-Level Virtual Machine

The Low-Level Virtual Machine (LLVM)1 [19], is a compiler framework pro-
viding a modern compilation strategy, initially designed for transparent op-
timizations and analysis of arbitrary programs. The major contribution of
the LLVM project is its well-specified code representation, known as the
LLVM intermediate representation (LLVM IR). It is an assembly-level machine-
independent Static Single Assignment (SSA) based language. LLVM operates
in the middle-layer of a typical compiler scheme – in between the compiler

1. http://www.llvm.org/

10

http://www.llvm.org/

2. PRELIMINARIES

frontend and backend – which makes it independent on both the input lan-
guage and the target architecture.

Moreover, the LLVM project hosts a number of sub-projects, aiming to
provide a wide-range of tools and support libraries to ease the manipula-
tion with LLVM and to increase the scope of applications beyond what was
originally intended. An attractive design and well-developed interface for
programmers sparked interest in LLVM for model checking purposes as
well. Nowadays, multiple model checkers support LLVM IR as the input
language for direct verification of programs [1, 20, 21, 22].

2.3 Related Work

In this section, we give a brief overview of some of the success-stories of
applying software model checking for verification of complex real-world
systems at the level of source code. An exhaustive survey, however, is out
of the scope of this thesis. Instead, we focus our attention to use cases where
the initiative was not just to promote a particular model checking tool, but
to actually eliminate intricate errors in the system under verification.

One of the first model checkers with a record in the area of industrial
software analysis is VeriSoft [23]. Fully integrated into the development cy-
cle, it was used to analyse several software products developed in Lucent
Technologies, a former American telecommunications equipment company.
VeriSoft is a state-less model checker, meaning that the exploration of the
state space is performed without maintaining a queue of visited states. In
order to prevent the state-less search from looping forever in cycles, the
depth of the search is limited. The most outstanding use case of VeriSoft that
has been published is a verification of the call-processing library running
on Lucent’s CDMA base-stations [24], a complex system involving many
concurrent components, implemented by millions lines of code. For the ex-
ploration to be feasible, authors opted for a black-box approach – only the
processes inside the testing environment were controlled, while the non-
determinism induced by the processing of the CDMA library was not visi-
ble to VeriSoft, meaning that the verification couldn’t guarantee complete-
ness.

NASA has had a long standing involvement in the research and devel-
opment of formal verification methods and tools, primarily carried out by
the NASA Ames Research Center2 and the Jet Propulsion Laboratory3.

2. http://www.nasa.gov/centers/ames/home/
3. http://www.jpl.nasa.gov/

11

http://www.nasa.gov/centers/ames/home/
http://www.jpl.nasa.gov/

2. PRELIMINARIES

One of the first tools to al least partially enable verification at the im-
plementation level was the SPIN model checker [12], developed at JPL.
As of the version 4.0, SPIN is able to interpret C code fragments embed-
ded into PROMELA models. Most of the published SPIN use cases, how-
ever, did include the modelling step. The most prominent story is a verifi-
cation of a multi-threaded plan execution programming language used for
the Deep-Space 1 mission, which helped to reveal several safety-critical er-
rors [25]. Later at JPL, a tool named pancam was created, a virtual machine
for executing programs in LLVM IR, used as a frontend for SPIN to enable
direct verification of multi-threaded C programs [22].

Meanwhile in the NASA Ames Research Center, Java PathFinder was
developed, an explicit-state mode checker used for analysis of Java pro-
grams on the bytecode level [26]. JPF has been used on various NASA
projects, including the Deep-Space 1 fault protection, Shuttle ground con-
trol software, Mars Rover control as well as on products from companies
such as Honeywell and Fujitsu [26, 27]. Another project from the same lab-
oratory has led to the development of MCP – an explicit model checker
providing capabilities to verify C/C++ code, built on the top of the LLVM
framework [20]. It addresses the ever-growing complexity of flight systems,
which are mostly written in C or C++. A unique feature of MCP is that is
does not assume any particular threading model (such as POSIX threads),
instead a generic threading subsystem emulator is provided onto which a
user-supplied threading model can be attached. For example, this scheme
enabled precise verification of the ARINC-653 flight code with API slightly
different from POSIX threads [28].

Another large application area for software verification methods is the
Linux kernel development. The Linux kernel is currently one of the most
important software systems in our society. From embedded systems up to
supercomputers, IT infrastructures heavily rely on its correctness. Most of
the Linux verification projects target device drivers which have been iden-
tified as the primary source of critical errors. The major obstacle, however,
is that Linux lacks a strict and uniform driver framework, which makes the
transformation of a driver code into a unit test a difficult task to automatize
[29]. A great deal of effort of these projects is therefore oriented around the
development of tools for preprocessing and transforming drivers into ver-
ifiable programs, while the actual verification is carried out by a particular
model checker.

As an example, the Linux Driver Verification Project4 [30] is an initiative

4. http://linuxtesting.org/project/ldv

12

http://linuxtesting.org/project/ldv

2. PRELIMINARIES

to define potential hazards that may occur in Linux device drivers and to
implement special-purpose verification tools for their automatic detection.
All the methods that have been developed use either CEGAR-based BLAST
model checker [31] or CPAchecker [32], a tool for configurable software ver-
ification, as their backend. In April 2014 it was reported that more than 150
patches had been submitted as a result of the verification effort5.

Other notable verification projects targeting Linux device drivers are
Avinux [29] and DDVERIFY [33], both using bounded model checker CBMC
[34] as their primary backend.

Microsoft6 has also identified the device drivers as the most important
source of failures in their operating systems. Consequently, the company
has significantly increased the reliability of the Windows OS by integrating
the Static Driver Verifier (SDV) into the production cycle. The foundations
were developed in the SLAM research project [35]. The authors reported
that SDV had helped to reveal many non-trivial bugs and to improve the
overall stability of the OS.

For other companies actively using formal verification for correctness
assurance of their products, look for Intel7 [36], Airbus8 [37] or Honeywell9

[38].
Lastly, we would like to mention the Competition on Software Verification

(SV-COMP)10 [39], a solid effort to provide a systematic comparative eval-
uation of the performance and efficiency of the state-of-the-art in software
verification. The benchmark repository of SV-COMP is a large collection of
verification tasks which, albeit being relatively simple in complexity, cover
the current scope of abilities required from software verification tools. The
primary goal of the competition is to accelerate the transfer of new verifica-
tion technology to industrial practice.

5. http://linuxtesting.org/results/ldv
6. http://www.microsoft.com
7. http://www.intel.com/
8. http://www.airbus.com/
9. http://www.honeywell.com
10. http://sv-comp.sosy-lab.org

13

http://linuxtesting.org/results/ldv
http://www.microsoft.com
http://www.intel.com/
http://www.airbus.com/
http://www.honeywell.com
http://sv-comp.sosy-lab.org

3 Model Checking C/C++ Programs with DIVINE

3.1 Introduction

DIVINE1 [1] is an explicit-state LTL model checker developed in the Paral-
lel and Distributed Systems Laboratory (ParaDiSe)2. The original initiative
behind DIVINE was to exploit parallelism in both shared memory and dis-
tributed memory environments in order to address the state space explo-
sion problem and the high requirements of model checking in general [18].
In recent years, however, the primary focus has been on language support,
resulting in modernization of the DVE interpreter [40], support for LTL
model checking and deadlock detection for real-time systems designed in
UPPAALL [41], and what is the major highlight – the ability to model-check
LLVM bitcode [8, 7], which in turn enables direct verification of C/C++ pro-
grams using an LLVM-enabled compiler. This is an important milestone for
DiVinE. The requirement to represent systems in DIVINE’s own specifically
designed language has always been the major turn-off whenever the tool
was presented to academic community or industrial partners.

Apart from sophisticated parallel algorithms and multiple language in-
terpreters, DIVINE implements a number of techniques to minimize the
state space explosion problem, such as the Partial-Order Reduction [42],
Hash compaction [9], Tree compression [15] and the LLVM interpreter spe-
cific τ+reduction, store visibility and Heap symmetry [7]. Furthermore,
a research to introduce semi-symbolic model checking methods is being
pursued with the objective to handle the data non-determinism efficiently
[43, 44].

In the rest of the chapter, we will focus our attention on the LLVM inter-
preter from the user perspective and provide a guideline to model-checking
C/C++ programs with DIVINE. The remainder of the thesis then describes
a real-world use case of this application – our attempt to verify the Name
service cache daemon (nscd).

3.2 From Implementation to Correctness Evaluation

While the support for model checking LLVM bitcode permits to skip the
modelling step, in practice the process of verification still requires a great
deal of human effort and guidance.

1. http://divine.fi.muni.cz/
2. http://paradise.fi.muni.cz/

14

http://divine.fi.muni.cz/
http://paradise.fi.muni.cz/

3. MODEL CHECKING C/C++ PROGRAMS WITH DIVINE

First of all, the verified program must have all the symbols defined for
DIVINE to be able to fully construct the state space (with the exception of
DIVINE traps, which are listed and explained in section 3.6). We refer to such
programs as closed. As we discuss in section 3.7, verifiable implementations
of some of the system libraries are already shipped with DIVINE. The rest
of the symbols must be defined by the user himself. A pure computational
fragments of external libraries can be supplied without modifications, pro-
vided that they are actually available and not overly complicated. On the
other hand, system calls and I/O facilities must be simulated.

Additionally, certain operations produce a high-level of non-determinism,
such as the random number generator. In theory, this can be interpreted by
simply branching the state space for each possible outcome, but in prac-
tice it is necessary to provide a constrained replacement or even assume a
fixed return value for model checking with explicit-state representation to
be feasible. The same rule applies to user-provided substitutions of input
operations. For model checking task to fit within the available memory, it
is thus crucial to inspect the program before verification and to localize and
simplify all the sources of high uncertainty.

Lastly, the counter-example analysis may also be a gruelling task to do
manually. Even with all the reductions enabled, an error trace of a medium-
sized program can consist of thousands of transitions. As each state is dis-
played as a dump of all accessible memory locations, the complete textual
representation of a counter-example can easily exceed 100 MiB. The prob-
lem of counterexample explanation has already been explored for DVE in
the past [45]. At the moment, DIVINE does not implement any method for
improved error localization. In a close future, however, it is planned to pro-
vide a GUI-enhanced tool with debugger-like features. It would enable user
to follow the error trace more conveniently and with better focus on impor-
tant steps. Moreover, unlike the traditional debugger, the exploration could
also be performed in the reverse direction of the execution.

3.3 Typical Workflow

To summarize the previous section, a typical approach to model-checking
C/C++ programs with DIVINE would consist of the following steps:

1. Overall analysis of the system under verification; identification of
all external symbols and verification-wise expensive operations, fol-
lowed by evaluation of their minimal set of properties/behaviours
as required by the system, simply by tracking and inspecting all their

15

3. MODEL CHECKING C/C++ PROGRAMS WITH DIVINE

occurrences in the source code.

2. Design and implementation of a closed virtual environment, com-
prised by a set of simplified replacements for fragments of the orig-
inal code which are not available or not applicable for direct model-
checking. Ideally, the environment should have a minimal impact on
the size of the state space.

3. Optionally, complementing the expressive power of assertion state-
ments with definitions of some LTL properties, directly embedded
into the test suite.

4. Model checking of the environment in order to eliminate program-
ming errors introduced in the second phase.

5. Verification of the complete system or individual units of the source
code using the prepared test suite.

6. Analysis of the verification outcome. It may lead to a further re-
designing and simplification of the tests and the environment if DIVINE
reports failure for a lack of available memory.

We believe that a more efficient approach, however, is to incorporate
verification into the development cycle. This would mean that the first three
steps are performed regularly, without much need for a cumbersome retro-
spective analysis. While at first it may seem a too time-costly addition to a
rapid test-driven development – especially the first two steps – in practice
this is already a common process in testing and the simplified replacements
are known as test stubs.

Conversely, the model-checking procedure would have to be performed
less frequently than the natively-executed tests for its high computational
complexity. Conventional testing is still expected to detect the majority of
errors, while model checking could be applied just before important mile-
stones to significantly decrease the chance of missing intricate bugs before
the product is released and sold to customers.

3.4 LTL Specification

For the purposes of convenience, DIVINE offers means to embed defini-
tions of LTL properties directly into the source code, instead of keeping
them in separate files. But as neither C nor C++ provide reasonable and
optimization-free constructs for expressing LTL, properties are stored into

16

3. MODEL CHECKING C/C++ PROGRAMS WITH DIVINE

the constant global memory as arrays of characters (with the syntax as de-
fined in subsection 2.1.2), instead of being part of the program data. The
variable which references such represented LTL property has a user-defined
name prefixed with divine LTL , so that it is recognised and parsed by
the LLVM backend.

To be precise, LTL properties are expressed using the macro LTL(name,
prop), provided by DIVINE and defined as:

#define LTL(name, prop) \
extern const char * const __divine_LTL_ ## name = #prop

Atomic propositions are referenced by integer values wrapped in an
enumerated type of the source language, identified as APs. A validity of
a proposition for a single state is signalled by invocation of a DIVINE pro-
vided trap divine ap(a), with the proposition ID as its argument.
Again, a macro is provided to hide this implementation detail:

#define AP(a) __divine_ap(a)

To summarize using an example, an excerpt of a program containing
definitions of LTL properties is included as Listing 3.1.

// D e f i n i t i o n s of LTL and AP are automat i ca l ly included by DiVinE .
LTL(progress , G(wait1 −> F (cs1)) && G(wait2 −> F (cs2))) ;
LTL(exclusion , G (! (cs1 && cs2))) ;

// The i d e n t i f i e r must be ”APs ” .
enum APs { wait1 , cs1 , wait2 , cs2 } ;
. . .

void i m p l e m e n t c r i t i c a l s e c t i o n (i n t thread id) {
AP(thread id == 1 ? wait1 : wait2) ;

// This operat ion may be blocking , but should f i n i s h eventua l ly .
e n t e r c r i t i c a l s e c t i o n () ;

// This i s supposed to be executed e x c l u s i v e l y .
c r i t i c a l s e c t i o n (thread id) ;
AP(thread id == 1 ? cs1 : cs2) ;

// Allow the other thread to enter the c r i t i c a l s e c t i o n now .
l e a v e c r i t i c a l s e c t i o n () ;

}
. . .

Listing 3.1: An excerpt of a program implementing critical section for two
threads, extended with definitions of some LTL properties for verification.

17

3. MODEL CHECKING C/C++ PROGRAMS WITH DIVINE

3.5 Safety Properties

Apart from LTL properties, DIVINE provides a wide variety of safety condi-
tions to check, for which a simple reachability analysis is sufficient to deter-
mine the validity. Table 3.1 lists and describes all the available safety prop-
erties.

Property Description

assert Verify that assumptions made by the programmer and
expressed using the macro assert are satisfied.

deadlock

Deadlock freedom in the traditional model checking
sense, i.e. satisfied iff all the reachable states have at least
one outgoing transition (not very useful with the LLVM
backend as discussed in section 3.9).

pointsto

Detect invalid use of pointers based on the points-to in-
formation, which is statically precomputed with one of
the pointer analysis algorithms and stored into LLVM
metadata.

memory
Reveal improper manipulation with memory objects. In-
cludes bound checking and detection of invalid derefer-
ences.

arithmetic Check for the presence of the division by zero error.

leak Detect memory leaks.

user User or library defined safety problems (defined by the
use of the divine problem buitlin, see section 3.6).

guard Safety of compiler-defined guards (e.g. the non-
reachability of the unreachable instruction).

mutex

Report violation if the resource allocation graph con-
structed for Pthread mutexes contains a cycle (a more
useful version of deadlock for Pthread-based parallel
programs).

safety All the above except deadlock and pointsto.

Table 3.1: Safety conditions supported by DIVINE.

18

3. MODEL CHECKING C/C++ PROGRAMS WITH DIVINE

3.6 Built-in Functions

Internally, the LLVM backend implements a virtual machine executing in-
structions of the verified program to gradually explore the complete con-
figuration graph.

Certain programming concepts, however, cannot be facilitated solely by
the language features of a pure C/C++, and an access to the system API
is required. For example, this includes thread management, atomicity con-
trol and memory management. Additionally, LTL property specification re-
quires special support as well. Therefore, a low-level interface of the ma-
chine is exposed through a set of DIVINE defined builtins, making the inter-
action between the user-supplied code and the execution engine feasible.

Some of these builtins are rather one-purpose, defined to implement a
specific feature, now supplied by DIVINE. Here, we instead focus on the re-
usable subset of builtins, which users can exploit to implement virtual en-
vironments for their programs. Table 3.2 provides a summary with a short
description for each of them.

3.7 Library Substitutions

To make the production of verification-ready programs easier, DiVinE sup-
plies replacements or partial replacements of system libraries, which are
statically linked into the program during the DIVINE-driven compilation of
the source code into the LLVM bitcode. Collectively we call them the ”user-
space” to make a clear distinction between the interpreted code (model de-
scription) and the executed code guiding the process of interpretation (the
LLVM interpreter, a.k.a. the ”system-space”).

Specifically, a slightly modified copy of the Public Domain C Library
(PDCLib)3 is shipped with DIVINE to provide almost complete implemen-
tation of the C standard library. The library uses small, but well-defined
interface to the low-level file system API, making it easily attachable to
user-defined virtual environments.

For C++ programs, DIVINE ships with libc++abi4 to provide the run-
time support and with libc++5, implementing the C++ standard library. The
run-time library had to be altered in places to enable support for model-
checking C++ code with exception handling [46].

3. http://pdclib.e43.eu/
4. http://libcxxabi.llvm.org/
5. http://libcxx.llvm.org/

19

http://pdclib.e43.eu/
http://libcxxabi.llvm.org/
http://libcxx.llvm.org/

3. MODEL CHECKING C/C++ PROGRAMS WITH DIVINE

Moreover, a substantial subset of the POSIX threading API was im-
plemented specifically for verification, including thread management (cre-
ation, joining, detaching and exiting), mutual exclusion (normal and recur-
sive mutexes), thread-local storage, barriers, once-only execution and con-
dition variables.

3.8 Command Line Interface

In this section, we briefly describe the usage of DIVINE for model checking
C/C++ programs. A more detailed summary, with all the commands and
available options, can be find in the user manual for DIVINE or displayed
with ”divine --help” and ”divine <cmd> --help”.

Firstly, DIVINE doesn’t really support C or C++ as the model descrip-
tion language. Instead, C/C++ programs must be first compiled into the
LLVM bitcode, which DIVINE can then interpret. Additionally, the obtained
bitcode file must be statically linked with the verifiable variants of system
libraries shipped with DIVINE.

To simplify this process for users, DIVINE provides a command named
compile, which is a frontend to an actual LLVM-enabled compiler (such
as clang), performing all these steps transparently.
For C/C++ programs, the usage is as follows:

divine compile --llvm [--cflags=<val>] [--precompiled=<val>]
[--output-file=<val>] <input-file>

This will take longer that you would expect as all the system libraries must
be compiled as well. To speed-up the process, you can use ”divine compile
--libraries-only” (without any input file) to obtain the archives of pre-
build system libraries. The file path to these archives is then specified using
the --precompiled option.
The output file will have an extension ”bc” (unless defined otherwise) and
for DIVINE it basically represents a model description, ready for verifica-
tion.

To get a list of all available properties (and to check that all the symbols
are actually defined), run:

divine info <bitcode-file>

To explore and measure the state space without actually verifying any
property, invoke:

divine metrics <bitcode-file>

20

3. MODEL CHECKING C/C++ PROGRAMS WITH DIVINE

However, bear in mind that this operation is asymptotically as complex as
the verification itself.

For further state space analysis, a debugger-like step-by-step exploration
can be performed using divine simulate and a partial visualization of
the configuration graph can be obtained with divine draw.

The actual model checking is executed by divine verify:

divine verify [--property=<val>] [--d] <bitcode-file>

Where -d is a short-name alias for --display-counterexample, an op-
tion to print the counterexample if one was found. Once finished, the com-
mand reports whether or not the property is satisfied and potentially out-
puts an error trace.

3.9 Limitations

As it has been already pointed out, the approach used by DIVINE strictly
requires full reproducibility of every execution step, meaning that no real
I/O operations are allowed. Process can only access its own memory and
all the interactions with the environment must be emulated. While some
of the system facilities can be relatively easily simulated to almost full API
compatibility, such as a file system, others may need to be constrained and
simplified for model checking to be feasible. In order to maintain credibil-
ity of the verification, any constraint imposed during simplification must
not interfere with the requirements of the system under verification. The
implication is that DIVINE cannot supply substitutions for all the aspects
of an execution environment and it is thus necessary for users to analyse
the system before verification and customize the simulated environment
accordingly.

Currently, the LLVM backend doesn’t support fairness, meaning that
LTL properties expressing progress are very likely to fail. Actually, for any
Pthread-based parallel program it is almost guaranteed, as not even thread
creation (pthread create) counts as a wait-free operation. Unfortunately,
sleeping of threads isn’t supported either, hence the busy-waiting is an un-
avoidable construct for thread synchronization, producing non-fair execu-
tion runs due to the presence of self-loops in the configuration graph.

The expressive power of divine ap is yet another limitation for us-
ability of LTL in model checking. Atomic proposition values can be con-
figured only on a single-state basis. Therefore, it is impossible to make a

21

3. MODEL CHECKING C/C++ PROGRAMS WITH DIVINE

proposition valid for a consecutive sequence of states, meaning that prop-
erties of the form Ga cannot be satisfied either.

In the traditional model checking, a deadlock is defined as a system
state without any outgoing transitions. For C/C++ programs, however, a
different definition and an approach for detection are required. First of all,
programs, especially non-reactive ones, tend to terminate eventually, pro-
ducing a finite-length execution run. Normally, we wouldn’t want a termi-
nation to be treated as a deadlock. Instead, a real deadlock (even more so
livelock) will appear as a loop in the state space with certain properties.
Currently, DIVINE can detect both self-deadlock and circual deadlock, but
only for Pthread mutexes.

For certain classes of programs, it is also desirable to consider relaxed
memory model in order to detect errors caused by delayed memory oper-
ations. At the current version, however, DIVINE implements a sequentially
consistent memory model disallowing any instruction re-ordering. An im-
provement in this area is planned for the future.

Lastly, a purely technical limitation is an absence of multiprocessing
support. The state vector of the execution engine is designed to represent
exactly one process with an unlimited number of threads. Consequently,
systems composed of multiple processes have to be simplified by mapping
processes to threads and resolving any interference that may occur as a re-
sult.

22

3. MODEL CHECKING C/C++ PROGRAMS WITH DIVINE

Builtin Description

divine new thread
Start a new thread, with a supplied function as an
entry point and a pointer-sized argument.

divine get tid Obtain a unique identifier of the calling thread.

divine interrupt mask

Mask interrupts, i.e. disallow other threads to inter-
rupt execution of the calling thread. The masking
is bound to stack frames, meaning that a stack un-
wind leading to an originally unmasked function
will automatically cause an unmask.

divine interrupt unmask Cancel the effect of any previous interrupt mask.

divine interrupt

Manually invoke interrupt. Useful for non-
interruptible loops to prevent from introducing a
transition with an infinite execution path.

divine choice

Implements non-deterministic choice. The state
space is branched for every value from a given
range.

divine assert
Raise assertion violation if the argument evaluates
to zero.

divine ap
Signal that a given atomic proposition is valid in
the current state.

divine malloc

Request fresh memory from the heap. This opera-
tion never fails, while the malloc family of func-
tions is implemented to simulate potential failure
using a non-deterministic choice.

divine free
An alias for free, i.e. invalidate the memory block
pointed to be the argument.

divine memcpy

Copy a block of memory without destroying
pointer maps, a data structure used by the store
visibility reduction [7] for tracking pointers.

divine problem
Raise a user-defined violation of a given type and
with a description of the problem.

Table 3.2: A re-usable subset of DIVINE defined builtins.

23

4 Name Service Cache Daemon

The GNU Name Service Cache Daemon (nscd)1 is a process, typically run-
ning in the background as a daemon, providing cache capabilities for the
most common name service requests, including accesses to the passwd,
group, hosts, services and netgroup databases through standard libc
interfaces, such as getpwnam, getpwuid, getgrnam, getgrgid, etc.

When a new (name service lookup) request is received, first the associ-
ated cache is searched to see if a response to this request is already known. If
that is the case, nscd answers immediately, without accessing the relevant
service, thus saving some computer resources and decreasing the response
latency. Otherwise, the service is accessed as normally and the response is
forwarded to the client as well as stored into the cache with a bonding to
the original request, so that future requests for the same data can be served
faster.

GNU nscd is developed and maintained inside the glibc2 repository,
under the sub-directory glibc-X.XX/nscd/. It is written in the C pro-
gramming language and the implementation consists of 34 source files and
5 headers with cca. 13500 lines of code in total (including comments and
blank lines). For this thesis, we extracted nscd source code from the GNU
C library, version 2.19 stable. As of this writing, a newer version 2.20 is
available, but has no substantial changes or bug fixes related to nscd or
other tightly-cooperating sub-systems.

4.1 Background

nscd is an optional component of an OS facility called Name Service Switch
(NSS), a clean and extensible solution for accessing directory information –
databases of people/groups/hosts/etc. – through a designated set of POSIX
API functions. Traditionally, this type of information was obtained from
files (e.g., /etc/host), using a simple, but hard-coded method provided
by the C library.

With the rapid development of network technologies and continuous
growth of shared computing infrastructures, file-based solutions stopped
to scale and had to be replaced by directory services for most of the appli-
cations. A wide variety of name resolution services enabled different data
to be stored at different places. A need for a common access mechanism,

1. http://linux.die.net/man/8/nscd
2. http://www.gnu.org/software/libc/

24

http://linux.die.net/man/8/nscd
http://www.gnu.org/software/libc/

4. NAME SERVICE CACHE DAEMON

allowing run-time configuration while being extensible for future services,
has led to the development of Name Service Switch.

Originally designed and implemented by Sun Microsystems for their
Solaris operating system, but subsequently ported to many other operat-
ing systems, including FreeBSD, NetBSD, GNU/Linux, HP-UX, IRIX and
AIX. As we discuss more closely in the next section, nscd has been in-
serted in between the application programming interface and NSS to pro-
vide caching for slow services like LDAP, NIS or NIS+.

In this thesis we focus solely on the GNU nscd, which, albeit fitting into
the scheme as designed by Sun, has no common code with the Sun’s version
or any other. Therefore, the results we obtained from the verification are
relevant only for the GNU-based operating systems.

4.2 The NSS Scheme

The basic idea behind NSS is to put the implementation of different services
offered to access the databases in separate modules, loaded at the run-time
using the dynamic linking loader. This approach offers several advantages
over the static legacy solution:

1. Support for new services can be easily provided without changing
the C library.

2. Modules can be loaded only as needed and based on a run-time con-
figuration.

3. This scheme requires strict interface between the standard library
and services, which, in a long run, can only be beneficial in terms
of code maintainability.

4. The C library image is smaller and receives less changes from exter-
nal contributors.

5. The modules can be updated separately.

To facilitate this idea, a simple naming scheme for modules and their ex-
ternal symbols was introduced. For service serv, the module (dynamic li-
brary) should be available as libnss serv.so, i.e. prefixed with ”libnss ”
and with the extension as used by the system for dynamically loaded li-
braries. Function fct will be then searched for as nss serv fct (NSS
prefix + service name + function name) in the context of symbols defined
with the external linkage.

25

4. NAME SERVICE CACHE DAEMON

The set of supported services and the order in which they should be ac-
cessed is specified individually for each database in the configuration file
/etc/nsswitch.conf3. The file is plain ASCII text, consisting of columns
separated by white-space characters. The first column specifies the database
name, immediately followed by a colon. The remaining columns then de-
scribe the order of services to query and, optionally, also a limited set of
actions to perform based on the lookup results.

For network based services, every query would translate to a TCP con-
nection with handshake overhead, possibly over SSL introducing a further
performance penalty, resulting in a very high latency for production use.
Therefore, the caching daemon nscd is typically used in between API and
NSS to speed-up consecutive requests. It is accessed via a UNIX socket, and
as illustrated by the Figure 4.1, loads the nss modules itself in order to act
as a hit-and-miss cache. Moreover, it can also be used as a client to contact
another nscd running as a daemon, and obtain the current cache statistics
or invalidate the cache content or even shut down the running daemon.

Figure 4.1: The visualization of the gethostbyname() control flow within
the NSS facility.

3. http://linux.die.net/man/5/nsswitch.conf

26

http://linux.die.net/man/5/nsswitch.conf

4. NAME SERVICE CACHE DAEMON

4.3 Configuration

The GNU Name Service Cache Daemon can be configured via the ASCII-
only text file /etc/nscd.conf4, read at the program startup.

Each line specifies either a global attribute and a value, or a database-
specific attribute, database name, and a value. Fields are separated by white-
space characters. Comments start with the hash character, #, and extend to
the end of the physical line. Valid databases are passwd, group, hosts,
services and netgroup.

An example of the nscd configuration file, with a short description for
every attribute, is included as Listing 4.1.

4.4 Cache

Internally, nscd maintains a separate cache for every (enabled) database.
The cache is represented by a pair of C structures – database dyn and
database pers head, connected through a pointer. The former stores the
so-called dynamic attributes, data relevant only for the current execution,
such as the file descriptors associated with the database file (see later), locks
for concurrency control and a subset of the user configuration. The persistent
cache data are wrapped by database pers head. If enabled, the content
of this structure is mirrored onto a file (one for every database) using the
POSIX facility for memory mapped files (sys/mman.h). This way, the cache
content is not only preserved over server restarts, but can also be accessed
externally by privileged processes.

Each database file is opened with two file descriptors, one in the full RW
mode used by nscd to propagate changes from the cache into the file and
vice-versa, while the other descriptor allows only read operations and can
be acquired over a UNIX socket and used to search the cache without the
assistance of nscd. For an external process to be able to access the cache
directly, special privileges are required, including SCM RIGHTS5 for trans-
porting open file descriptors.

In order to associate queries with responses and store them efficiently
while minimizing the lookup cost, nscd implements the traditional hash
table algorithm with buckets (Separate chaining with linked lists). The key for
each entry is computed based on the request arguments without violating

4. http://linux.die.net/man/5/nscd.conf
5. http://linux.die.net/man/3/cmsg

27

http://linux.die.net/man/5/nscd.conf
http://linux.die.net/man/3/cmsg

4. NAME SERVICE CACHE DAEMON

/ e t c /nscd . conf
#
<global−option> <value>
<db−s p e c i f i c−option> <db> <value>

Global opt ions −−−

l o g f i l e /var/log/nscd . log # Des t ina t ion f o r debug messages .
threads 4 # The (i n i t i a l) number of workers .
max−threads 32 # The maximum number of workers .
server−user nobody # Run nscd as t h i s user .
s t a t−user somebody # This user i s allowed to request s t a t s .
debug−l e v e l 0 # Desired debug l e v e l . The d e f a u l t i s 0 .

Enabling paranoia mode causes nscd to r e s t a r t i t s e l f
p e r i o d i c a l l y . The d e f a u l t i s no .
paranoia no

Set the r e s t a r t i n t e r v a l in seconds i f the paranoia mode
i s enabled . The d e f a u l t i s 3600 .
r e s t a r t−i n t e r v a l 3600

How many times a cache record i s automat i ca l ly reloaded without
a c t u a l l y being used before i t i s removed .
reload−count 5

DB a t t r i b u t e s (here only f o r the ” hosts ” database) −−−−−−−−−−−−−

enable−cache hosts yes # Enable cache f o r t h i s DB.
p o s i t i v e−time−to−l i v e hosts 3600 # TTL f o r p o s i t i v e responses .
negative−time−to−l i v e hosts 20 # TTL f o r negat ive responses .
suggested−s i z e hosts 211 # The number of hash buckets .

Check f o r the changes in the a s s o c i a t e d f i l e s of the f i l e−based
s e r v i c e s f o r t h i s database (e . g . / e t c /hosts f o r the ” hosts ” DB) .
check−f i l e s hosts yes

Keep the content of the cache over server r e s t a r t s ,
by s t o r i n g i t i n t o a memory−mapped f i l e .
p e r s i s t e n t hosts yes

Allow c l i e n t s to d i r e c t l y a c c e s s and search the cache through
the a s s o c i a t e d f i l e descr ip tor , passed over a Unix domain socket
shared hosts yes

The maximum allowable s ize , in bytes , of the database f i l e .
max−db−s i z e hosts 33554432

Listing 4.1: An example Name Service Cache config file with explanations.

28

4. NAME SERVICE CACHE DAEMON

the uniqueness property, while the hash of an entry is obtained using a fur-
ther (lossy) transformation of the key, with the size also reduced by the
modulo operation to fit into the range of available buckets.

As illustrated by Figure 4.2, the hash table starts with an array of buck-
ets, each referencing a linked-list of associated hash entries (instances of
hash entry). Hash entry is merely a reference to datahead, a variable-
sized structure storing the key and the response data alongside some ad-
ditional fields, such as the Time to live (TTL) of the entry. The separation
of hash entries from data entries is simply because the same data can often
be obtained through different methods, such as gethostbyname() and
gethostbyaddr() for retrieving the hostent structure of a given host,
therefore the equivalent response values may fall into different buckets.

4.4.1 Memory Management

A closer look at the implementation reveals, that database pers head
is in fact a header for a variable-length object with a zero-length array at-
tribute at the end, referencing the start of the actual hash table storage. To fa-
cilitate the mapping between the memory and the database file, the storage
for persistent data must be a continuous memory block and all the alloca-
tions for hash entries must necessarily come from this region. Furthermore,
all the references inside the hash table must be represented as offsets from
the base address, since the standard C pointers would become invalid after
the server restart or when accessed from another process. Therefore, nscd
implements its own memory management operating on the top of a pre-
malloc-ed memory area (to a maximum allowable size), obtained during
the initialization phase individually for every enabled database.

The allocation mechanism works simply by returning the offset of the
first byte past the last used byte. This operation has a constant time com-
plexity as nscd keeps the memory usage information updated inside the
header area of database pers head. While trivial in design, this approach
requires regular garbage collection, otherwise nscd would quickly run out
of the available memory for cache data. Alternatively, a new memory could
be made available by expanding the existing mapping using mremap(),
but with this solution the size of the cache storage would grow infinitely.

Therefore, alongside the worker threads processing client requests, ev-
ery database runs a special so-called prune thread, periodically walking
through the hash table and removing (or reloading) all entries which life-
time ended. The clean-up procedure consists of three steps. First, all the
hash entries are visited and the TTL field is compared with the current time

29

4. NAME SERVICE CACHE DAEMON

to determine whether the entry should be removed. In this phase, obsolete
entries are only removed from the linked-list so that they are no longer ref-
erenced. The next step is the mark phase of the Mark-and-Sweep algorithm.
A bit-mask representing the set of bytes used by the accessible subset of all
objects is constructed by traversing the hash table once again. Lastly, the
garbage collection is finished by moving the non-free memory areas over
the unused regions towards the base address so that the internal fragmen-
tation is completely eliminated.

4.5 Concurrency

In order to decrease the response latency as much as possible, nscd also
leverages parallelism by processing client queries in separate threads – so-
called workers. The main thread is primarily responsible to carry out the
initialization phase, i.e. loads and parses the configuration file, pre-allocates
memory for all the caches and starts other threads. Afterwards, it only waits
for new connections, while file descriptors of accepted sockets passes di-
rectly to workers for processing.

Workers are not sorted by databases or any other criteria, everyone of
them has full capabilities to handle any request. Most of the time these
threads are idle, waiting on a Pthread conditional variable, and only when
a receipt of a request is signalled, one of the workers is woken up to handle
the request. Normally, there is at least as many workers as databases, but
in the debug mode the number is allowed to be lower. But if a situation
occurs that all the processing threads are busy and a request is received, a
new worker is fired instead of delaying the query.

Moreover, as discussed in subsection 4.4.1, one prune thread is running
for every enabled database, performing garbage collection for the associ-
ated cache. Cache pruning cannot be disabled but the time interval between
subsequent passes is configurable via the configuration file. In addition, the
timing is cleverly de-synchronized between databases so that prune threads
do not wake all at once.

Concurrency control is facilitated using Pthread mutexes and RW locks.
Every cache has associated one RW lock and 2 mutexes – one to avoid par-
allel execution of the garbage collection with the cache invalidation, and the
other to serialize memory allocations performed over the same hash table
storage. The purpose of the RW lock is to avoid collisions between workers
and prune threads. For query processing the read lock is sufficient, whereas
cache pruning requires full RW privileges.

30

4. NAME SERVICE CACHE DAEMON

Figure 4.2: The nscd cache for one database, allocated using only two real
mallocs – one for the dynamic data and one for the persistent data. This
illustration represents the cache in the state after the first phase of pruning,
with the non-referenced entries highlighted using a red background color.
Also notice that the same data can be referenced by multiple hash entries,
potentially residing in different buckets, as discussed in section 4.4. The
distribution of hash and data entries is somewhat simplified here, because
in reality these objects tend to be mixed among each other within the DATA
region.

31

5 Model Checking the GNU NSCD

5.1 Motivation

For our real-world use case of model checking we chose The GNU Name
Service Cache Daemon for a number of reasons.

First, in terms of size and complexity, nscd falls into the medium cat-
egory. While certainly much more complex than a typical benchmark for
software verification, it is not massive and thus should be a feasible target
for the state-of-the-art explicit model checkers if this approach to quality as-
surance is ever to become widely applied in practise. Also for DIVINE itself
this is a significant step from simple test programs to a proper performance
evaluation.

Second, nscd exploits multi-threading a lot but introduces only a very
little of data non-determinism as we will see later, making it a perfect fit for
the explicit-state model checking.

In addition, the in-memory process-shared cache implemented by nscd
initially appeared as an interesting target for the memory-safety verifica-
tion. But as a closer system analysis revealed, the cache storage resides only
in a single continuous block of preallocated memory with a custom memory
management working on the top of it (non-transparent for model checker),
meaning that (real) invalid dereferences and memory leaks are less likely to
be present.

Last but not least, nscd is not just another benchmark tailor-made to
showcase the strengths of formal verification, but a real-world software
used in all GNU-based operating systems, making it a legitimate target for
a critical evaluation of the feasibility of model checking for industrial use.

5.2 System Analysis

As explained in section 3.2, not even direct model checking can work with-
out any human assistance and a great deal of manual effort is needed to
invest into preparation of programs for verification. In case of DIVINE, sys-
tems need to be thoroughly analysed and all non-reproducible or highly
data non-deterministic actions need to be localized and simulated or sim-
plified. nscd is no exception to this, as it extensively interacts with the en-
vironment through various communication facilities.

32

5. MODEL CHECKING THE GNU NSCD

5.2.1 Decomposition

Following our description of the NSS Scheme from section 4.2, let us first
describe our approach to the system decomposition and environment em-
ulation, which is visually summarized in Figure 5.1. Since we weren’t able
to find any existing nscd unit tests, we decided to perform the verifica-
tion of the system as a whole and from the user point of view, exactly like
Acceptance testing does. For a credible correctness evaluation at the level of
individual units, we would desperately need an access to the original inten-
tions of developers, otherwise the verification outcome would merely be a
justification of our (mis)understanding of the system’s inner workings.

The major achievement is that we have managed to perform the model
checking while keeping the nscd source code almost untouched. Only the
SELinux access controls were disabled and omitted from the verification
(by un-defining the macro HAVE SELINUX). For this thesis we have simply
decided to target the concurrency bugs and memory safety violations, while
an analysis of security vulnerabilities is left for the future work. In addition,
we were also able to copy-and-paste the NSS modules and some other purely-
computational dependencies from glibc.

In our approach, every other component participating in the NSS scheme
is viewed to the system as an interaction with the environment which had
to be simulated. External storage (a filesystem), used by nscd to store the
cache data persistently as well as to log debug messages and load the user
configuration, was emulated in-memory to a full API compatibility as a part
of our Closed Virtual File System (CVFS), described in chapter 6. CVFS also
supports UNIX domain sockets with SCM RIGHTS (if enabled), for passing
open file descriptors to other processes using ancillary data. Therefore, the
communication between clients and nscd is covered as well.

Since we have decided to copy the NSS modules as they are, it was
also necessary to implement the programming interface to dynamic link-
ing loader. This couldn’t be simulated to a full generality without an ad-
ditional support from the LLVM backend, therefore we designed only an
imitation of dynamic linking that requires further customization individ-
ually for every test. Our environment provides two internal functions –
dl newlib(name) and dl newsym(lib, sym name, sym pointer),

which can be used by the programmer to define the list of available dy-
namic libraries and their symbols, while pointers to these symbols (as re-
turned by dlsym()) have to point to objects already present in the verified
bitcode file. For example, if we wanted to simulate the LDAP service for
retrieving the hostent structure of a given host, we would implement test

33

5. MODEL CHECKING THE GNU NSCD

stubs for nis ldap gethostbyname() and nis ldap gethostbyaddr(),
and then register them inside a (faked) libnss ldap.so library (before
any client requests are issued).

Finally, the end-points of this scheme are clients and services them-
selves. In our test suite, both of these components together constitute indi-
vidual (acceptance) tests, i.e. every test implements the behaviour of a client
and a service (or possibly more), and then checks using assertion statements
if the responses obtained from nscd match the values returned by the sim-
ulated service(s). Since the LLVM backend doesn’t provide multiprocessing
support, clients run only in separate threads of the same process as nscd.

Figure 5.1: Our approach to the decomposition of the NSS Scheme for
model checking purposes.

5.2.2 Complexity

The outcome of the work described above was a fully self-contained (closed)
implementation of the GNU NSS facility (one instance per acceptance test),

34

5. MODEL CHECKING THE GNU NSCD

with most of the source code being original. While this is theoretically suf-
ficient to hand the task over to model checker, in reality it is very unlikely
that we would have obtained any results without further simplification due
to the notorious state space explosion problem.

Data non-determinism

As explained in subsection 2.1.4, the two major sources of the blowup are
the data non-determinism and the path explosion. In terms of inputs, nscd
reads the configuration file, argument values of client requests and data
returned from services. Additionally, nscd uses time to schedule certain
events, such as the cache pruning, and assigns a TTL value to every new
hash entry based on the current time obtained from the system clock.

In our test suite, we opted for a fixed-content configuration file. How-
ever, each option can be easily adjusted to produce new instances of a sin-
gle test, using a set of macros defined near the top of the source file. The
behaviours of clients and services are also deterministic, with fixed argu-
ment and return values, and we do not even intend to make them (easily)
customizable. Instead, clients typically issue multiple queries with different
values to gradually test all the available interfaces of a specific database.

For the representation of time we have implemented multiple types of
clocks, accessible through the interface time() from the standard C library.
Most of these clocks are heavily constrained as it would be infeasible to con-
sider every possible timing of events. For all of these clocks, user must first
define a maximum time interval that can elapse in between two successive
calls of the function time() (from any thread), as well as the minimum
interval that the clocks can measure (or as we call it – the clock tick). The
most non-deterministic clock then works by randomly choosing the num-
ber of ticks that have elapsed since the last call not exceeding the maximum
interval. On the other hand, the most constrained (and fully deterministic)
clock simply assumes one clock tick with each measurement. For our ex-
periments, however, we ended up using the so-called manual clock. When
used, the time doesn’t advance unless explicitly requested. Using the inter-
nal function env clock tick(), one can manually trigger one clock tick
as needed. Since the LLVM backend doesn’t support model checking with
time constrains, this approach was needed to eliminate all unrealistic tim-
ings that would otherwise produce highly improbable time-outs and the
related safety violations.

35

5. MODEL CHECKING THE GNU NSCD

Control-flow non-determinism

During the system analysis, we identified the thread interleaving as the
major source of non-determinism. Without the prune thread, however, the
situation would be significantly different. If we assume at most one client
interacting with nscd at any time and no garbage collection running in the
background, the processing of client queries is basically serialized.

When a request is obtained, first the main thread is woken up to es-
tablish a new socket-based connection, while workers still remain inactive.
Only when the main thread passes a newly accepted socket to a global list
of ready connections, one of the workers is activated and starts the request-
handling procedure. The main thread no longer participate in the process-
ing of this request and immediately goes back to the (busy-)waiting state.
Meanwhile, the client thread (in a true NSS scheme it would be a sepa-
rate process) is busy-waiting for a response without performing any actions
with external effects, thus only producing self-loops in the configuration
graph. The worker thread performs the cache lookup and potentially ac-
cesses the relevant service, but only if the response is not already known.
Either way, the execution is sequential up to the point when a response is
sent back to the client. For the worker, the task may not be finalized yet as a
new cache entry has to be added or an existing one reloaded in case the data
have changed. This happens after the response is returned so that clients
are not unnecessarily delayed. During that time, the client may already do
some post-processing of the obtained data, which would thus interleave
with the finalization phase of the worker.

If we add the pruning thread into the formula, however, the situation
becomes much more complex. Depending on the time representation, the
garbage collection can trigger almost at any time and interleave with the
processing of current queries. Since the cache clean-up procedure operates
over a thread-shared cache storage, almost all the instructions are visible
and require a state snapshot. Moreover, the procedure is relatively long,
consisting of three phases as described in subsection 4.4.1. Therefore, we
decided to make the garbage collection optional and provided a configura-
tion switch which can be used to disable the cache pruning. The results of
our experiments proved that this was a wise decision (see chapter 7).

Memory usage

Furthermore, the memory consumption of a model checker is not only given
by the number of reachable states, but also by the average size of a state

36

5. MODEL CHECKING THE GNU NSCD

snapshot. As expected, the most space-complex data structure is the cache
storage. Since nscd shares the cache data through database files with other
processes, it has to reside in a single continuous memory block. Moreover,
the cache storage must be pre-allocated to a maximum possible size as an
implication of the following statement from the Linux Programmer’s Man-
ual (mmap(2)): ”The effect of changing the size of the underlying file of a mapping
on the pages that correspond to added or removed regions of the file is unspecified”.

By default, nscd assumes 32 MiB for every database, but this parameter
can be customized through the configuration file. Given that a complete
snapshot of every enabled database is present in each state, we believe that
the default value would make the model checking infeasible. Fortunately,
for our experiments we have never needed to set this parameter to more
than 512B.

5.3 Build system

It is no wonder, that by extracting nscd and NSS from glibc and placing
them into our own environment, we have introduced new bugs not present
in the native variant of the system. Most of these bugs were common pro-
gramming errors, while others resulted from API incompatibility between
our implementation and glibc, primarily caused by different interpretations
of the standard. Moreover, since GNU nscd is strictly tight to one specific
implementation of the standard C Library, it even assumes implementation-
defined behaviours of OS facilities as given by glibc, which oftentimes does
not conform to POSIX or is not defined by the standard at all.

For this reason, it was desired to have the capability to execute tests na-
tively before performing the model checking. The majority of non-original
bugs were easily reproducible and the standard testing approach turn out
to be a more suitable and a less time consuming method for their detection.

In order to facilitate different build modes of a relatively large code-
base and make them easily customizable, we have decided to manage the
compilation and the execution/verification process using CMake1, a cross-
platform and open-source build system. For the native mode, we provide
replacements for DIVINE builtins, implement certain non-pure C concepts
differently, hide internally defined symbols so that they are not called from
the system environment (e.g. pthread create() calls mmap()) and in-
clude a copy of the PDCLib library in our repository for compilation. For
the verification mode, we have written a special toolchain file reflecting the

1. http://www.cmake.org/

37

http://www.cmake.org/

5. MODEL CHECKING THE GNU NSCD

DIVINE-driven build process. At the time, the divine compile subcom-
mand used to use the ld.gold linker2 together with the LLVM gold plu-
gin3 for effective linking of LLVM assembly files. Recently, a new version of
DIVINE was released – 3.2.2, which is stripped of these dependencies and
implements its own linker.

Using CMake we were also able to define a long list of options for differ-
ent parts of the system. For example, CVFS can be customized to simulate
different file system configurations. The time representation of our environ-
ment can also be easily adjusted per build directory. Certain nscd param-
eters are configurable as well, including the maximum allowable size for a
nscd database and the absence/presence of pruning threads.

Additionally, we have also implemented a simple testing framework
consisting of python scripts and custom CMake targets, allowing to per-
form the correctness evaluation simply from the build system. For exam-
ple, all tests available for both nscd and our environment can be run using
make check, while one specific test can be evaluated with make check-<test>.
The expected outcome of a test is specified in a separate XML file (one for
every test). It is possible to define the expected (in)validity of every avail-
able property, optionally including the file name and the line number where
a violation is supposed to be detected, as well as the expected textual out-
put and the return value for the native execution. Based on these data, the
build system automatically runs all the selected tests (in the given mode),
parses the output from DIVINE or a test itself and prints the results of the
evaluation.

5.4 Acceptance Tests

Our acceptance test suite consists of 6 basic tests, each targeted to cover
all interfaces of a specific database (passwd, hosts, group, . . .) by send-
ing a few requests and verifying progress of operations and correctness of
results, and 4 specialized tests, examining the extra features of the cache
sub-system.

All these tests share the same skeleton of the control flow (implemented
in atests/common.c), which could be summarized as:

1. Initialize the Closed Virtual File System (must be run explicitly).

2. Create and initialize the contents of nscd and NSS configuration
files.

2. http://www.gnu.org/software/binutils/
3. http://llvm.org/docs/GoldPlugin.html

38

http://www.gnu.org/software/binutils/
http://llvm.org/docs/GoldPlugin.html

5. MODEL CHECKING THE GNU NSCD

3. For all accessed services, register the associated (fake) NSS libraries
and their respective functions implemented as stubs.

4. Create sub-directories used by nscd to store the database files and
the UNIX domains socket for communication with clients (/var/db/nscd
and /var/run/nscd).

5. Run nscd in a separate thread.

6. Create a number of clients (given by the NUM OF CLIENTS macro),
each running in a separate thread, sending some requests and testing
responses.

7. Wait for clients to finish.

8. Send the shutdown request to nscd.

9. Wait for nscd to finish.

The specialized, cache-targeted tests (briefly described in Table 5.1), ad-
ditionally obtain and consult the cache statistics. Most of the properties cap-
tured by these tests wouldn’t be possible to verify without the support for
full LTL model checking.

Test Expected behaviour

gc
With the reloading disabled and the cache not being
used anymore, all the cache entries should be eventu-
ally garbage collected.

reload
With the reload-count set to unlimited and the
cache being non-empty, the cache memory usage never
reaches zero.

cache stats
The cache subsystem correctly maintains the statistics
of cache hits and misses.

invalidate

When the invalidate request is received, nscd ex-
plicitly triggers the garbage collection but pretends that
the current time is infinity, therefore all the hash entries
are unconditionally marked as obsolete.

Table 5.1: Acceptance tests examining the extra features of the cache sub-
system.

39

6 Closed Virtual File System

Most programs need to do either input (reading data) or output (writing
data), or most frequently both, in order to do anything useful. However,
DIVINE interprets programs in a closed execution environment, where the
process is not allowed to see outside its own memory segments so that ev-
ery transition is fully reproducible. Therefore, I/O operations cannot be in-
terpreted directly but have to be appropriately simulated.

One option is to emulate input values using non-deterministic choice,
but this is not suitable for a purely-explicit-state representation. Luckily, if
properly approached, many applications of I/O facilities have easily pre-
dictable behaviours, with almost no inherent uncertainties, such as a use
of a secondary storage device to save data persistently or an inter-process
communication performed through local sockets. External storage can be
easily emulated in-memory without introducing additional non-determinism
(apart from random failures). Likewise, if all the interacting parties are in-
cluded in the system description, then the communication through I/O
channels is reproducible as well.

In this chapter, we present our implementation of an in-memory file
system, called Closed Virtual File System (or CVFS for short), suitable for
verification with DIVINE. It provides all common low-level I/O features as
defined by POSIX, including basic I/O functions, directory handling, UNIX
domain sockets, file statistics and memory mapped files. Supported are all
types of files – directories, regular files, symbolic links, sockets (but only
AF UNIX), FIFOs and even device special files. Additionally, it can attach
to the PDCLib library to enable access through the stream interface (PDCLib
implements the I/O buffering and the semantics of streams).

CVFS goes even beyond the current DIVINE capabilities and provides a
multi-processing support. For the time being, this is compatible only with
the native execution and for the model checking the user must select the
thread-only mode. In order to make a clear separation between thread shared
data and process shared data, while still maintaining the extensibility for
the future development of DIVINE, we hide memory allocations and prim-
itives for concurrency control (locks, barriers, . . .) behind a set of macros,
which translate differently based on the selected mode.

In terms of conformance, we aimed for a full POSIX compliance, but
where the standard is unclear or does not impose a specific behaviour we
instead followed the GNU C Library Reference Manual [47]. It was impor-
tant for us to maintain the API compatibility between CVFS and glibc for

40

6. CLOSED VIRTUAL FILE SYSTEM

the sake of nscd verification.
In the build system, CVFS is a target on its own and compiles into a

separate static library. Therefore, it is easy to extract the file system from
our repository and use it also for other projects. Furthermore, CVFS can
be configured through a set of CMake options to meet the requirements of
different applications.

6.1 Design

Development of an in-memory file system is relatively a straightforward
process. Normally, the work of a file system engineer is mostly oriented
around designing and implementing solutions for data organization and
free space management, with a goal of finding the most appropriate balance
between disk space efficiency, performance and security, depending on the
application area.

In our case, the task was narrowed down to selecting the most suitable
data representation (i.e. data structures) and implementing the methods
for concurrency control. Since we were developing the file system for the
primary memory, we were able to just leverage the heap and the shared
memory management systems provided by the C run-time in order to fa-
cilitate the storage capabilities. In addition, the performance or security
weren’t our primary concerns; instead, we had to focus on minimizing
the complexity of the solution in terms of reducing the number of inter-
nal states that the file system produces. For example, we provide an op-
tion (CVFS SERIAL EXECUTION) to mask the interrupt everywhere inside
CVFS except for sections where threads need to communicate.

6.1.1 Concurrency Control

Access to shared resources is controlled by acquisition and release of exclu-
sive locks. Mutexes provide synchronization services for objects allocated
on the heap, while semaphores help to maintain the consistency of process-
shared data (currently only for the native mode). However, the lock-based
synchronization may give rise to deadlocks if used carelessly. Therefore, we
impose a partial ordering of all resource types, and require that each pro-
cess/thread requests resources in an increasing order of enumeration. This
method is commonly used to avoid the circular wait, a necessary condition
for a deadlock situation to emerge.

Threads are mandated to acquire resources in the following order:

41

6. CLOSED VIRTUAL FILE SYSTEM

1. file description

2. file without a hard-link

3. file with a hard-link

(a) for multiple hard-linked files: always acquire at the same branch
and in the increasing distance from the root directory (i.e. pre-
decessors first)

4. File descriptor table

It is not allowed to acquire multiple locks at the same level (with the excep-
tion of 3a) or out of this order.

Separately from the lock-based access control, we also maintain a ref-
erence counter for each shared object, which is only manipulated using
atomic instructions (CAS), or inside a non-interruptible block of code (ver-
ification mode). The reference counting was used specifically to implement
a simple garbage collection mechanism.

6.1.2 Basic Data Structures

At the top-most level of abstraction, CVFS represents the shared data using
only 5 different data types, all declared as structs and visually illustrated
in Figure 6.1.

• File (cvfs file t)
Object type that is used to store the header (timestamps, protection,
file type identification) and the content of a single file. Internally, a
union is used to store file-type-specific data. For example, directo-
ries contain a list of entries – associations between file names and
pointers to other instances of this structure, whereas regular files
store all data inside a continuous memory block, reallocated on de-
mand. Files are organized in a tree, reflecting the Unix file naming
scheme, with the root directory at the top.

• File Descriptor (cvfs fd t)
An abstract thread-shared indicator for accessing a file. It is merely
a pointer to an associated file description and exists only to store the
file descriptor flags separately (currently only FD CLOEXEC).

• File Description (cvfs fdn t)
The process-shared portion of an open file identification data. Points

42

6. CLOSED VIRTUAL FILE SYSTEM

to the associated file, maintains the current read/write file offset (for
random-access files only), specifies the access mode and stores the file
status flags.

• File Descriptor Table (cvfs fd table t)
File descriptors (the numbers) are indices into the process-specific
file descriptor table. Inside, integers get translated into references,
which when followed lead through all the structures described above
up to the actual (open) file.

• Table of Drivers (cvfs driver table t)
A container of all available drivers. A driver represents a custom
operational semantics of the basic I/O operations and is accessed
through device special files. We designed this mechanism to imple-
ment the standard streams and the null device in a clear non-intrusive
manner.

6.2 Correctness

For correctness evaluation, we have written 15 unit tests to gradually cover
all supported interfaces of the file system. Tests were designed to execute
at least a portion of the code from multiple threads running in parallel, so
that there are actual benefits of applying the model checking approach and
a realistic change of detecting and reproducing concurrency bugs.

In the native mode, it is possible to execute these tests against both our
environment and the system-provided implementation of the file system.
We have written the unit tests in advance, before we even started designing
the file system, and ran them inside a GNU-based operating system so that
we could learn how glibc behaves in various situations and maintain the
API compatibility.

Results of the model checking (presented in chapter 7) are very promis-
ing. Not only we were able to perform the verification of every unit test in a
relatively short time and using at most 12 GiB of memory, but the majority
of concurrency bugs were identified and eliminated only after we have per-
formed the verification. It is yet another consolidation of the fact that the
(explicit-state) model checking thrives where the standard testing fails – in
the area of parallel systems.

43

6. CLOSED VIRTUAL FILE SYSTEM

Figure 6.1: Closed Virtual File System.

6.3 Limitations

Naturally, the file system has its limitations. While some of them are just
products of decisions made towards simplified solutions, others cannot be
easily overcome due to a lack of special support from the interpreter.
Here we list the major drawbacks:

• Pointers stored into files may cause some memory leaks to remain
undetected.

• lseek() with the argument SEEK HOLE always returns the offset of
the end of the file and for SEEK DATA simply returns the given offset.

44

6. CLOSED VIRTUAL FILE SYSTEM

If a hole is to be created (when writing past the end of a file), bytes
inside the hole are allocated anyway and are filled with zeroes. This
is probably the simplest implementation possible while still main-
taining the conformance with the specification.

• Only sockets for local interprocess communication are supported
(AF UNIX/AF LOCAL).

• Read/Write from/to a memory-mapped file is always in-sync with
the file content. Actually, we do not model delayed/buffered stores
and loads anywhere in the file system.

• Memory permission flags are ignored as any protection mechanism
would necessarily require an additional support from the interpreter.

• Writing beyond the boundaries of a memory mapped area is treated
as an invalid dereference, i.e. the underlying file is not automatically
resized nor new pages get allocated on demand (this is not required
by the standard anyway).

• In order to limit the impact of the file system on the size of the state
space, we do not model any non-deterministic I/O errors.

45

7 Experiments

7.1 User-space Modifications

First of all, we had to apply our assumptions into the DIVINE’s user-space
to make it compatible with our environment. Moreover, we quickly real-
ized that it is essential to reduce the complexity of the support-code for the
model checking to be feasible with the resources at our disposal.

With the LLVM linker used at the time (ld.gold + LLVM gold plugin)
it was impossible to link modules with multiple definitions of the same
symbol. Therefore, we had to remove the DIVINE provided stubs for I/O
interfaces so that we could use our own file system instead.

Next, we have made the malloc family of functions deterministic by no
longer assuming that a memory allocation may fail. While CVFS is robust
enough to handle allocation failures, unit tests as well as acceptance tests
are much simpler in design and always expect the no-random-failure sce-
nario. With this simplification we have basically restricted ourselves from
one category of bugs, but in practise they are unlikely to pose a threat for
nscd anyway, as the typical target platform for the caching subsystem is
usually a server with an abundance of hardware resources.

In addition, we have also customized the implementation of the Pthreads
API. Specifically, the spurious wake-ups of pthread cond wait() were
disabled for simplicity’s sake and the time depended actions were made
aware of our custom clocks.

Lastly, we have made all functions from string.h (provided by PD-
CLib) non-interruptible. These functions are implemented to operate on a
char-by-char basis and produce a large number of internal states.

7.2 Configuration

The verification was performed using DIVINE 3.2.0–development snapshot
from 1.11.2014. At the time, the newest release version was quite outdated
but the development version was relatively stable. We enabled all available
reductions (τ+, store visibility, Heap symmetry) as well as the (lossless)
Tree compression for the best memory-usage efficiency. Apart from that,
DIVINE was run with default settings, which also means that the state space
exploration was performed by two parallel workers.

Tests were compiled into LLVM IR using CLANG with -O0, following

46

7. EXPERIMENTS

our observation that the reductions perform better when the compiler opti-
mizations are disabled.

For the emulated environment we chose the manual clocks as the least
expensive alternative for the time representation in terms of data nonde-
terminism. Time progresses only explicitly and at certain places of each ac-
ceptance test. Similarly, to mitigate the path explosion problem, we have
configured CVFS to always disable interrupts unless it would lead to an
infinite transition in the configuration graph (i.e. only ”waiting states” are
allowed to interrupt the execution).

For acceptance testing, we have configured nscd to use the hash table
with exactly 3 buckets, each initially reserved to 96 bytes. Fortunately, it
was sufficient to set the maximum allowable size of every database to only
512 bytes (compare it to the default 32 MiB).

Our correctness evaluation covers only a model checking of the safety
property (explained in Table 3.1) using the reachability analysis. All defined
LTL properties are guaranteed to fail without fairness assumptions.

7.3 Platform

Experiments were performed on aura.fi.muni.cz, with 448 GiB DDR3
RAM and eight Intel Xeon X7560 2.27 GHz processors (64 cores total). The
limit for the execution time was set to 1 month and each test was allowed
to use at most 200 GiB of virtual memory.

7.4 Results

7.4.1 Environment Verification

All environment unit tests were verified for only two parallel workers (de-
fined by the NUM OF WORKERS macro individually for each test). A com-
prehensive study on real-world multi-threading programming bugs [48]
showed, that majority (96% according to their evaluation) of concurrency
bugs are guaranteed to manifest if certain partial order between 2 threads
is enforced.

Model checking helped us to localize various bugs that the native execu-
tion failed to detect or reproduce frequently enough. Majority of violations
resulted from our own programming errors, but others were due to bugs al-
ready present in the user-space, mostly in PDCLib. Table 7.1 lists state space
metrics of all env. unit tests as well as time and memory requirements of the
reachability analysis as performed by DIVINE after we have eliminated all

47

7. EXPERIMENTS

the errors. Similarly, statistics for CVFS unit tests are recorded separately in
Table 7.2.

Unit test States Transitions Wall time RAM

(seconds) (MB)

resolv 93 084 277 403 619 1061

time 20 239 59 784 127 632

conf 278 659 2 631

error 290 201 868 440 1768 1254

herrno 4235 12 360 22 631

libintl 3054 8834 15 631

getenv 188 401 1 631

in 530 1391 3 631

dlfcn 84 867 252 592 681 1239

Table 7.1: Environment unit tests – reachability analysis.

7.4.2 NSCD Verification

Due to the high time requirements of the model checking, we decided to fo-
cus solely on the hosts database, which is accessed through gethostbyname()
and gethostbyaddr() interfaces. Black-box testing of the nscd cache as-
sociated with the hosts database is performed by atests/test-host.c.

In the default configuration, the test obtains a hostent structure for
a simulated localhost using both interfaces. The number of lookups is
doubled as data are requested separately for IPv4 and IPv6 addresses (i.e.
4 nscd queries in total). However, it is possible to reduce the complex-
ity and select only one of these calls. The control flow of the client is fur-
ther wrapped in a loop with a fixed number of iterations, set by the macro
NUM OF ITERATIONS. Moreover, it is possible to configure multiple clients
using the macro NUM OF CLIENTS and send the queries simultaneously.

The upper half of Table 7.3 shows statistics for the simplest possible
instances of the test; that is no SCM RIGHTS, disabled cache pruning and

48

7. EXPERIMENTS

Unit test States Transitions Wall time RAM

(seconds) (MB)

close 5 785 193 17 350 220 36 708 2944

dgram socket 299 286 897 066 3774 2017

stream socket 60 743 181 988 706 1083

directory 4 257 392 12 764 332 54 001 4757

fifo 26 499 78 112 488 1071

glue 12 942 809 38 810 216 138 532 11 647

link 1 133 963 3 392 492 14 837 3072

lseek 109 576 326 171 1219 1088

mknod 1 218 150 3 652 807 16 289 5002

mmap 142 870 424 601 6664 2690

open 1 641 818 4 915 251 21 613 5480

pipe 5805 17 252 103 905

poll 21 941 65 716 305 911

readwrite 8 708 377 26 124 438 131 292 10 606

scm rights 64 462 190 973 586 1073

Table 7.2: CVFS unit tests – reachability analysis.

only one active client invoking single request without repetitions. DIVINE
did not report safety violations for any of the interfaces.

However, moving only one step in complexity was enough to reach
the specified time limit in 3 out of 4 cases. When the Tree compression is
enabled, the rate of the memory consumption keeps decreasing as the ex-
ploration progresses and more similarities emerge, meaning that for large
models the execution time becomes the major limitation.

We picked a single interface (gethostbyname() for IPv4) and went

49

7. EXPERIMENTS

from the simplest instance to gradually increase/enable one complexity-
affecting parameter at a time. Within the execution time limit, we were only
able to verify the interaction between the client and nscdwith SCM RIGHTS
enabled. In this model, the client first asks for a (read-only) file descriptor
associated with the hosts database and then performs the cache lookup
himself, without the assistance of nscd. Since no data are stored in the
cache at the first iteration, the client has to send a full query to nscd any-
way. Unsurprisingly, nscd searches the cache again before contacting the
associated service as a last resort. The benefits of SCM RIGHTS would show
up only if we increased the number of iterations or the number of clients.
Unfortunately, no bugs were identified using the model checking approach.
The results of this partial success are summarized in the second half of Ta-
ble 7.3.

Acceptance test States Transitions Wall time RAM

db interface clients iters SCM GC (seconds) (MB)

host by-addr/IPv4 1 1 no no 729 203 2 749 166 15 934 9474

host by-addr/IPv6 1 1 no no 866 927 3 281 714 19 679 10 971

host by-name/IPv4 1 1 no no 709 008 2 692 782 16 240 9399

host by-name/IPv6 1 1 no no 801 727 3 030 114 17 672 10 039

host by-name/IPv4 2 1 no no n/a n/a n/a n/a

host by-name/IPv4 1 2 no no n/a n/a n/a n/a

host by-name/IPv4 1 1 yes no 40 882 947 196 364 832 1 196 141 109 598

host by-name/IPv4 1 1 no yes n/a n/a n/a n/a

Table 7.3: NSCD acceptance tests – reachability analysis.

50

8 Conclusion

We have shown model checking to be a viable and useful technology to in-
clude into the software development cycle for an improved quality assur-
ance. We have extracted the GNU Name Service Cache Daemon from glibc,
built an emulated environment around it, prepared a suite of acceptance
tests of moderate complexity and performed a verification of the safety
property using DIVINE model checker for a few instances of the system.

The goal was not to exhaustively verify nscd in all available configu-
rations and for all plausible scenarios, but instead to demonstrate the cur-
rent capabilities and limitations of DIVINE and provide a guideline for the
implementation-level model checking of real-world software in general.

We conclude with the following observations on using software model
checking for industrial applications:

• By attacking the correctness evaluation from a different angle, soft-
ware model checking complements traditional testing and can sig-
nificantly increase the confidence that a software product is ready to
ship.

• In theory, (explicit) model checking is a simple verification strategy
based on exhaustive state space exploration. If used naively, the chances
of getting valuable feedback are rather small. Used properly, it can
be extremely effective in increasing test coverage, detecting intricate
bugs and reducing the overall cost of the product.

• Writing useful tests and properties, i.e. those that actually help to
reveal unknown bugs, while minimizing the state space explosion
problem requires training, experience and a basic knowledge of how
model checking works, as well as tenacity and ingenuity.

• Retrospective analysis and verification of an already developed sys-
tem is a costly and a time demanding process. Instead, we recom-
mend to incorporate the manual pre-verification steps into the de-
velopment cycle and perform the model checking on a regular basis,
e.g. prior to public releases.

• Model checking is most effective in the area of parallel systems and
especially when combined with unit testing. From our experience
with DIVINE, the impression is that model checking is perfectly prac-
tical method for verification of individual units of a complex parallel

51

8. CONCLUSION

program. A high-level model checking of complete medium-sized or
larger systems, corresponding to acceptance or integration testing, is
currently feasible only for very simple instances and thus looses its
major benefits.

52

Bibliography

[1] J. Barnat, L. Brim, V. Havel, J. Havlı́ček, J. Kriho, M. Lenčo, P. Ročkai,
V. Štill, and J. Weiser, “DiVinE 3.0 – An Explicit-State Model Checker
for Multithreaded C & C++ Programs,” in Computer Aided Verifica-
tion (CAV 2013), vol. 8044 of LNCS, pp. 863–868, Springer, 2013.

[2] C. Baier and J.-P. Katoen, Principles of Model Checking. The MIT
Press, 2008.

[3] J. C. King, “Symbolic Execution and Program Testing,” 1976.

[4] E. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded Model Checking
Using Satisfiability Solving,” 2001.

[5] D. Peled, “Ten years of partial order reduction,” Springer Berlin Hei-
delberg, 1998.

[6] R. Iosif, “Exploiting heap symmetries in explicit-state model checking
of software,” IEEE, 2001.

[7] P. Ročkai, J. Barnat, and L. Brim, “Improved State Space Reductions for
LTL Model Checking of C & C++ Programs,” in NASA Formal Meth-
ods (NFM 2013), vol. 7871 of LNCS, pp. 1–15, Springer, 2013.

[8] J. Barnat, L. Brim, and P. Ročkai, “Towards LTL Model Checking of Un-
modified Thread-Based C & C++ Programs,” in NASA Formal Meth-
ods Symposium, vol. 7226 of LNCS, pp. 252–267, Springer, 2012.

[9] J. Barnat, J. Havlı́ček, and P. Ročkai, “Distributed LTL Model Checking
with Hash Compaction,” Electr. Notes Theor. Comput. Sci., vol. 296,
pp. 79–93, 2013.

[10] V. Y. Nguyen and T. C. Ruys, “Incremental Hashing for Spin,” Springer
Berlin Heidelberg, 2008.

[11] B. Bingham, J. Bingham, F. M. de Paula, J. Erickson, G. Singh, and
M. Reitblatt, “Industrial Strength Distributed Explicit State Model
Checking,” IEEE Computer Society, 2010.

[12] G. Holzmann, The Spin Model Checker: Primer and Reference Man-
ual. Addison-Wesley Professional, 2003.

53

BIBLIOGRAPHY

[13] G. J. Holzmann and A. Puri, “A minimized automaton representation
of reachable states,” 1999.

[14] A. Laarman, J. van de Pol, and M. Weber, “Parallel Recursive State
Compression for Free,” Springer Berlin Heidelberg, 2011.

[15] V. Štill, “State space compression for the DiVinE model checker,” Mas-
ter’s thesis, Masaryk University, 2014.

[16] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
Guided Abstraction Refinement,” Springer Berlin Heidelberg, 2000.

[17] F. Lerda and R. Sisto, “Distributed-Memory Model Checking with
SPIN,” Springer-Verlag, 1999.

[18] J. Barnat, L. Brim, I. Černá, P. Moravec, P. Ročkai, and P. Šimeček, “Di-
VinE – A Tool for Distributed Verification,” Springer Berlin Heidel-
berg, 2006.

[19] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Life-
long Program Analysis & Transformation,” IEEE Computer Society,
2004.

[20] S. Thompson and G. Brat, “Verification of C++ Flight Software with the
MCP Model Checker,” in Aerospace Conference, 2008 IEEE, pp. 1–9,
March 2008.

[21] F. Merz, S. Falke, and C. Sinz, “LLBMC: Bounded Model Checking
of C and C++ Programs Using a Compiler IR,” in Verified Software:
Theories, Tools, Experiments, vol. 7152, pp. 146–161, Springer Berlin
Heidelberg, 2012.

[22] A. Zaks and R. Joshi, “Verifying Multi-threaded C Programs with
SPIN,” in Model Checking Software, Lecture Notes in Computer Sci-
ence, pp. 325–342, Springer Berlin Heidelberg, 2008.

[23] P. Godefroid, “Software Model Checking: The VeriSoft Approach,”
2005.

[24] S. Chandra, P. Godefroid, and C. Palm, “Software Model Checking in
Practice: An Industrial Case Study,” ACM, 2002.

[25] K. Havelund, M. Lowry, and J. Penix, “Formal Analysis of a Space-
Craft Controller Using SPIN,” 2001.

54

BIBLIOGRAPHY

[26] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda, “Model Check-
ing Programs,” 2003.

[27] W. Visser and P. Mehlitz, “Model Checking Programs with Java
PathFinder,” Springer Berlin Heidelberg, 2005.

[28] S. Thompson, G. Brat, and A. Venet, “Software Model Checking of
ARINC-653 Flight Code with MCP,” in Proceedings of the Second
NASA Formal Methods Symposium (NFM 2010), NASA/CP-2010-
216215, pp. 171–181, NASA, April 2010.

[29] H. Post, C. Sinz, and W. Küchlin, “Towards automatic software model
checking of thousands of Linux modules—a case study with Avinux,”
2009.

[30] A. Khoroshilov, V. Mutilin, A. Petrenko, and V. Zakharov, “Establish-
ing Linux Driver Verification Process,” Springer Berlin Heidelberg,
2010.

[31] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Software Verifi-
cation with BLAST,” Springer Berlin Heidelberg, 2003.

[32] D. Beyer and M. Keremoglu, “CPAchecker: A Tool for Configurable
Software Verification,” in Computer Aided Verification, vol. 6806 of
Lecture Notes in Computer Science, pp. 184–190, Springer Berlin Hei-
delberg, 2011.

[33] T. Witkowski, N. Blanc, D. Kroening, and G. Weissenbacher, “Model
Checking Concurrent Linux Device Drivers,” ACM, 2007.

[34] D. Kroening and M. Tautschnig, “CBMC – C Bounded Model
Checker,” in Tools and Algorithms for the Construction and Analysis
of Systems, vol. 8413, pp. 389–391, Springer Berlin Heidelberg, 2014.

[35] T. Ball, B. Cook, V. Levin, and S. K. Rajamani, “SLAM and Static Driver
Verifier: Technology Transfer of Formal Methods inside Microsoft,” in
Integrated Formal Methods, vol. 2999, pp. 1–20, Springer Berlin Hei-
delberg, 2004.

[36] L. Fix, “Fifteen Years of Formal Property Verification in Intel,” in 25
Years of Model Checking, vol. 5000, pp. 139–144, Springer Berlin Hei-
delberg, 2008.

55

BIBLIOGRAPHY

[37] J. Souyris, V. Wiels, D. Delmas, and H. Delseny, “Formal Verification of
Avionics Software Products,” in FM 2009: Formal Methods, vol. 5850,
pp. 532–546, Springer Berlin Heidelberg, 2009.

[38] J. Barnat, J. Beran, L. Brim, T. Kratochvı́la, and P. Ročkai, “Tool Chain
to Support Automated Formal Verification of Avionics Simulink De-
signs,” Springer Berlin Heidelberg, 2012.

[39] D. Beyer, “Status Report on Software Verification,” in Tools and Al-
gorithms for the Construction and Analysis of Systems, vol. 8413,
pp. 373–388, Springer Berlin Heidelberg, 2014.

[40] J. Kriho, “Enhanced parser for DVE modelling language,” Master’s
thesis, Masaryk University, 2013.

[41] J. Havlı́ček, “Untimed LTL Model Checking of Timed Automata,”
Master’s thesis, Masaryk University, 2013.

[42] J. Barnat, L. Brim, and P. Ročkai, “Parallel Partial Order Reduction with
Topological Sort Proviso,” in Software Engineering and Formal Meth-
ods (SEFM 2010), pp. 222–231, IEEE Computer Society Press, 2010.

[43] J. Barnat, P. Bauch, and V. Havel, “Model Checking Parallel Programs
with Inputs,” in 22nd Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing (PDP), pp. 756–759, IEEE,
2014.

[44] V. Havel, “Generic Platform for Explicit-Symbolic Verification,” Mas-
ter’s thesis, Masaryk University, 2014.

[45] R. Plášil, “Counterexample explanation in DiVinE model-checker,”
Master’s thesis, Masaryk University, 2011.

[46] P. Ročkai, J. Barnat, and L. Brim, “Model Checking C++ with Excep-
tions,” Electronic Communications of the EASST, Proceedings of 14th
International Workshop on Automated Verification of Critical Systems
(AVoCS 2014), vol. 70, 2014.

[47] S. L. with Richard M. Stallman, R. McGrath, A. Oram, and U. Drepper,
The GNU C Library Reference Manual. [for version 2.19].

[48] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from Mistakes –- A Com-
prehensive Study on Real World Concurrency Bug Characteristics,”
in Proceedings of Architectural Support for Programming Languages
and Operating Systems (ASPLOS), (Seattle, WA), March 2008.

56

A Content of the attached archive

A snapshot of the repository is made available in the attached archive nscd-mc.tgz.
Table A.1 briefly explains the directory layout.

Directory Description

atests nscd acceptance tests.

cmake CMake modules, including the toolchain file for the DIVINE-
driven compilation.

cvfs Complete source code of Closed Virtual File System.

diffs A record of all changes made in glibc for the verification pur-
poses.

env

Emulated environment; i.e.: clocks, a fake dynamic linking
loader, a mock DNS resolver and stubs for various system
interfaces. Strictly speaking, CVFS is also part of the environ-
ment, but unlike the rest it is simulated to a full API compat-
ibility, therefore we put it into a separate top-level directory.

experiments A textual output from DIVINE as obtained from all the exper-
iments.

glibc A subset of the GNU C Library tightly-coupled with nscd
(except nscd itself).

native A support code for the native execution mode.

nscd Complete source code of GNU Name Service Cache Daemon.

pdclib A copy of the PDCLib library needed for the compilation in
the native mode.

primitives
Basic building blocks of parallel programming, inter-
preted differently between the threads-only and the multi-
processing mode.

tools Python and bash scripts used by custom targets of the build
system.

Table A.1: Directory layout of the repository.

57

	Introduction
	Preliminaries
	 Model Checking
	 Introduction
	 Linear Temporal Logic
	 Explicit Model Checking of Software
	 State Space Explosion
	 Symbolic execution
	 Bounded model checking
	 Reductions
	 Compressions
	 Abstractions
	 Distributed memory

	 Low-Level Virtual Machine
	 Related Work

	Model Checking C/C++ Programs with DiVinE
	 Introduction
	 From Implementation to Correctness Evaluation
	 Typical Workflow
	 LTL Specification
	 Safety Properties
	 Built-in Functions
	 Library Substitutions
	 Command Line Interface
	 Limitations

	Name Service Cache Daemon
	 Background
	 The NSS Scheme
	 Configuration
	 Cache
	 Memory Management

	 Concurrency

	Model Checking the GNU NSCD
	 Motivation
	 System Analysis
	 Decomposition
	 Complexity
	 Data non-determinism
	 Control-flow non-determinism
	 Memory usage

	 Build system
	 Acceptance Tests

	Closed Virtual File System
	 Design
	 Concurrency Control
	 Basic Data Structures

	 Correctness
	 Limitations

	Experiments
	 User-space Modifications
	 Configuration
	 Platform
	 Results
	 Environment Verification
	 NSCD Verification

	Conclusion
	Content of the attached archive

