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Abstract

This thesis presents a new option to verify timed automata that has been
implemented into the parallel model checker DiVinE. This allows DiVinE to
verify LTL properties on models of real-time systems designed by Uppaal.
We overview abstractions and reduction techniques commonly used in veri-
fication of timed automata and their extensions and discuss their usability
for LTL model checking. We also perform experimental evaluation of our
implementation, compare it to Uppaal and measure how much can it be
sped-up by using multiple threads.
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1 Introduction

As the complexity of hardware and software systems is steadily increasing, it
is getting harder to ensure their quality. Testing cannot guarantee system
correctness, especially with parallelism. For this reason, formal verification
has become a part of the development process for industries where ensuring
correctness is critical, such as chip manufacturing.

One of the well-known formal verification methods is model checking. Its
idea is to prove that the system under verification has the specified property
by traversing all its configurations reachable from the initial one. However,
the number of configurations can be exponential in the size of the system
specification and, for many complex systems, it may be infeasible to fully
explore all of them. This phenomenon is called the state space explosion and
several techniques have been researched with the aim to reduce its impact.
For example, abstracting away some information can decrease the number of
states, but can also lead to incorrect results under some circumstances. As a
different approach, some of the modern model checkers, as well as many other
pieces of computationally intensive software, try to exploit the architecture
of current hardware by running the computation on multiple threads or even
distributing it over the network.

In order to formally analyse or verify a system, it has to be described
in a suitable formalism that can fully capture all its important properties.
The behaviour of some systems or their correctness may depend on time.
For example, they can be time-critical in a sense that their response has
to come in a given time-period, aside from being correct. For this kind of
systems, timed automata are widely used as the modeling formalism, because
they allow to specify a fixed number of clocks to measure the elapsed time,
query their values and reset them independently. Since clocks are defined as
real-valuated, strict interpretation of timed automata semantics leads to an
infinite system. However, by allowing clocks to be compared only with integral
values, many states cannot be distinguished by such a comparison and a
finite system with the same behaviour can be constructed. This construction
is known as the region abstraction. Despite the unique theoretic properties
of the region abstraction, it is rarely used in practical applications, since the
number of regions depends on the value of constants used in guards. Coarser
abstractions based on zones are used instead.

Not only the system itself, but also the properties to be verified have to
be formally specified. The linear temporal logic (LTL) is one of the commonly
used ways to formulate claims about system behaviour. LTL can express
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1. Introduction

claims that should hold in every state (assertions), various liveness properties
(responsiveness), fairness constraints and their arbitrary combinations, while
still being efficiently decidable.

The aim of this thesis is to overview abstractions and other reduction
techniques commonly used in timed automata verification, determine the
possibility of their use for LTL model checking of timed automata and to
implement an extension to the model checker DiVinE allowing to verify
real-time systems with respect to LTL properties. The verification can be run
on multiple threads or even in a distributed environment to take advantage
of the current hardware architecture. We measure the impact of different
zone-based abstractions, compare the performance of our implementation
to Uppaal and also evaluate how much can the verification be sped-up by
increasing the number of parallel workers.

The support of full LTL allows us to verify properties that are beyond
capabilities of Uppaal [1], which can be considered an industry standard for
verification of real-time systems, or parallel reachability-focused verification
tools, like LTSmin with opaal [2]. And even though there already are some
tools allowing LTL model checking of timed automata, like [3] and [4], they
are either discontinued, publicly unavailable or prototype implementations.
On the other hand, our implementation is incorporated into an existing
open-source LTL model checker DiVinE [5, 6] that can already be used to
verify models specified using a variety of input languages and a subset of
C/C++ programs. To our knowledge, that makes DiVinE the first parallel
and distributed LTL model checker for timed automata and also the first tool
allowing LTL model checking of timed automata containing clock difference
constraints.

This thesis is organized as follows. Chapter 2 formally defines timed au-
tomata, outlines some of their extensions and the Uppaal modeling language
and overviews commonly used abstractions and reduction techniques that can
be used to simplify the verification of timed automata. The linear temporal
logic (LTL) and its timed extension (TLTL) is presented in Chapter 3 together
with techniques and algorithms designed to perform the LTL model checking.
Chapter 4 aims to describe our implementation and Chapter 5 provides an
evaluation of its performance. The thesis is concluded in Chapter 6.
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2 Timed automata

This chapter defines some of the notions regarding timed automata and
overviews algorithms, abstractions and other techniques applicable to timed
automata with the focus on basics and techniques that are actually used in
our implemenatation. We refer to [7] and [8] for more extensive and detailed
surveys on this topic.

2.1 Syntax

A timed automaton is essentially a finite transition system with finitely
many non-negative real-valuated variables, called clocks, whose values can be
tested and changed when traversing edges. Formally, we will define a timed
automaton as a tuple ⟨𝐿,𝑋, 𝑙𝐼 , 𝐸, 𝐼𝑛𝑣⟩, where:

∙ 𝐿 is the finite set of locations,

∙ 𝑋 is the finite set of clocks,

∙ 𝑙𝐼 ∈ 𝐿 is the initial location,

∙ 𝐸 ⊆ 𝐿 × 𝐺(𝑋) × 2𝑋 × 𝐿 is the set of edges labelled by guards and
sets of clocks to be reset,

∙ 𝐼𝑛𝑣 : 𝐿 → 𝐺(𝑋) is the mapping that assigns an invariant to every
location.

𝐺(𝑋) denotes the set of all possible clock constraints that are defined induc-
tively as:

𝑔 ::= 𝑥1 ≶ 𝑛 | 𝑥1 − 𝑥2 ≶ 𝑛 | 𝑔1 ∧ 𝑔2 | 𝑡𝑟𝑢𝑒

where

𝑥1, 𝑥2 ∈ 𝑋,
𝑛 ∈ Z,
≶ ∈ {<,≤,≥, >}.

Constrains involving clock differences are called clock difference constraints or
diagonal constraints. An automaton that does not contain any clock difference
constraints is called diagonal-free. Section 2.5.5 focuses on clock difference
constraints and their pitfalls. The purpose of invariants is to limit how long
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2. Timed automata

can the system stay in a specific location, so only constraints of the form
𝑥1 < 𝑛 and 𝑥1 ≤ 𝑛 are usually allowed to appear in invariants. An example
of a simple timed automaton with guards, a clock reset and an invariant can
be seen on Figure 2.2.

For the purpose of this thesis, we do not consider timed automata to
be language acceptors, because we use them solely to model behaviour of
a specific system. However, it is possible to label edges by symbols from
an input alphabet and add an accepting condition for finite or infinite
words. A timed word accepted by such automaton is a sequence of pairs
(𝑎𝑖, 𝑡𝑖), where 𝑎𝑖 is an input symbol and 𝑡𝑖 ∈ R+ is a time in which the
symbol was read since the automaton was started — the so-called time-stamp
(R+ is a set of non-negative real numbers). Stripping all the time-stamps
gives us an untimed word. It is a PSPACE-complete problem to decide if a
timed automaton accepts non-empty language. We refer to [9] for detailed
description of languages accepted by timed automata and their properties.

2.2 Semantics

A clock valuation is a function 𝜈 : 𝑋 → R+. Let 𝜈 be a clock valuation,
𝛿 ∈ R+ and 𝑌 ⊆ 𝑋. We will define 𝜈 + 𝛿 to be a valuation for which
(𝜈 + 𝛿)(𝑥) = 𝜈(𝑥) + 𝛿 for every clock 𝑥 ∈ 𝑋, 𝜈[𝑌 := 0] to be the valuation
for which 𝜈[𝑌 := 0](𝑥) = 0 if 𝑥 ∈ 𝑌 and 𝜈[𝑌 := 0](𝑥) = 𝜈(𝑥) otherwise. And
finally, 𝜈0⃗ will denote the valuation such that 𝜈0⃗(𝑥) = 0 for every clock 𝑥.

The semantics of a timed automaton 𝒜 = ⟨𝐿,𝑋, 𝑙𝐼 , 𝐸, 𝐼𝑛𝑣⟩ can be defined
by the transition system 𝒯 𝒮(𝒜) = ⟨𝑆, 𝑠𝐼 ,−→⟩ where:

∙ 𝑆 = 𝐿× R𝑋
+ is the set of states (configurations of 𝒜),

∙ 𝑠𝐼 = (𝑙𝐼 , 𝜈0⃗) is the initial state,

∙ there is an action transition (𝑙1, 𝜈1) −→ (𝑙2, 𝜈2) if and only if there
exists an edge (𝑙1, 𝑔, 𝑅, 𝑙2) ∈ 𝐸 such that 𝜈1 |= 𝑔, 𝜈2 = 𝜈1[𝑅 := 0] and
𝜈2 |= 𝐼𝑛𝑣(𝑙2),

∙ there is a time transition (𝑙, 𝜈1) −→ (𝑙, 𝜈2) if there is 𝛿 ∈ R+ so that
𝜈2 = 𝜈1 + 𝛿 and 𝜈2 |= 𝐼𝑛𝑣(𝑙).

However, this transition system can be infinite, so another way to express
the semantics is necessary. It has been observed that many valuations cannot
be distinguished by any guard. To put it formally, let 𝑀(𝑥) denote the highest
constant that the clock 𝑥 is compared to, ⌊𝑟⌋ and 𝑓𝑟(𝑟) denote integral and
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2. Timed automata
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𝑥1 ≥ 1 ∧ 𝑥1 < 4 ∧ 𝑥2 ≥ 0 ∧ 𝑥1 − 𝑥2 < 2

Figure 2.1: Regions and zones.

fractional part of 𝑟. Then we can define valuations 𝜈1 and 𝜈2 to be region
equivalent if all three following points hold for all clocks 𝑥, 𝑦 ∈ 𝑋:

1. ⌊𝜈1(𝑥)⌋ = ⌊𝜈2(𝑥)⌋ ∨ (𝜈1(𝑥) > 𝑀(𝑥) ∧ 𝜈2(𝑥) > 𝑀(𝑥))

2. 𝜈1(𝑥) ≤𝑀(𝑥) =⇒ (𝑓𝑟(𝜈1(𝑥)) = 0 ⇐⇒ 𝑓𝑟(𝜈2(𝑥)) = 0)

3. (𝜈1(𝑥) ≤ 𝑀(𝑥) ∧ 𝜈1(𝑦) ≤ 𝑀(𝑦)) =⇒ (𝑓𝑟(𝜈1(𝑥)) < 𝑓𝑟(𝜈2(𝑥)) ⇐⇒
𝑓𝑟(𝜈1(𝑦)) < 𝑓𝑟(𝜈2(𝑦)))

According to this definition, a symbolic representation of the state space
that uses sets of equivalent valuations (regions) can be constructed. Such
representation is called region graph and each its vertex corresponds to one
or infinitely many vertices in 𝒯 𝒮(𝒜) it simulates. Even though the number
of regions is finite, it is exponential in the number of clocks and linear in∏︀

𝑥∈𝑋 𝑀(𝑥), which means the number of regions is likely to be very high
unless the number of clocks and their bounds are fairly low. Many proofs and
theoretic constructions concerning timed automata are based on regions, but
most tools use zones instead. Figure 2.1 shows an example of a region graph
and a zone. All points, line segments and areas between them are separate
regions.

2.3 Zones

The construction that is used in practice to represent the state space of a
timed automaton is based on the so-called zones. A zone is a (convex) set
of valuations expressible by constraints from 𝐺(𝑋). Let us denote the set
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2. Timed automata

of all zones as 𝑍𝑜𝑛𝑒𝑠(𝑋) and if 𝑍 is a zone and 𝑌 ⊆ 𝑋, we will define the
“up” operation 𝑍↑ 𝑑𝑒𝑓= {𝜈 + 𝛿 | 𝜈 ∈ 𝑍}, the restriction of a zone by a clock
constraint 𝑍 Z 𝑔 𝑑𝑒𝑓= {𝜈 | 𝜈 ∈ 𝑍, 𝜈 |= 𝑔} and the clock reset 𝑍[𝑌 := 0] 𝑑𝑒𝑓=
{𝜈[𝑌 := 0] | 𝜈 ∈ 𝑍}.

The zone graph of a timed automaton 𝒜 = ⟨𝐿,𝑋, 𝑙𝐼 , 𝐸, 𝐼𝑛𝑣⟩ is defined
to be a transition system 𝒵𝒢(𝒜) = ⟨𝑆, 𝑠𝐼 ,=⇒⟩ where:

∙ 𝑆 = 𝐿× 𝑍𝑜𝑛𝑒𝑠(𝑋) is the set of symbolic states,

∙ 𝑠𝐼 = (𝑙𝐼 , {𝜈0⃗}) is the initial state,

∙ (𝑙1, 𝑍1) =⇒ (𝑙2, 𝑍2) if there is an edge (𝑙1, 𝑔, 𝑅, 𝑙2) ∈ 𝐸 for which it
holds that (𝑍1 Z 𝑔)[𝑌 := 0]↑ Z 𝐼𝑛𝑣(𝑙2) = 𝑍2 and 𝑍2 ̸= ∅.

Zones can be efficiently stored as matrices of constraints called difference
bound matrices (DBM). DBM is defined to be a square matrix of pairs
𝐷 = ⟨𝑐𝑖𝑗 ,≺𝑖𝑗⟩𝑖<𝑛,𝑗<𝑛 with 𝑛 = |𝑋| + 1 rows and columns, where either
𝑐𝑖𝑗 ∈ Z and ≺𝑖𝑗 ∈ {<,≤} or 𝑐𝑖𝑗 =∞ and ≺𝑖𝑗 = <. Such matrix 𝐷 defines a
zone 𝑍𝐷 = {𝜈 | ∀0 ≤ 𝑖, 𝑗 < 𝑛 : 𝜈(𝑥𝑖)− 𝜈(𝑥𝑗) ≺𝑖𝑗 𝑐𝑖𝑗} where 𝑥1, . . . , 𝑥𝑛−1 are
all clocks and 𝜈(𝑥0) = 0 for any valuation.

DBMs also have an important property that they can be transformed
into canonical forms. This helps immensely in model checking since it allows
for simple equality testing and use of hash-tables. A DBM is in a canonical
form if ∀𝑖, 𝑗, 𝑘 < 𝑛 : (𝑐𝑖𝑗 ,≺𝑖𝑗) ≤ (𝑐𝑖𝑘,≺𝑖𝑘) + (𝑐𝑘𝑗 ,≺𝑘𝑗) assuming the addition
and comparison of DBM elements is defined in a following way:

(𝑐1,≺1) + (𝑐2,≺2) =

⎧⎪⎪⎨⎪⎪⎩
(∞, <) if 𝑐1 =∞ or 𝑐2 =∞
(𝑐1 + 𝑐2,≤) if ≺1 = ≺2 = ≤
(𝑐1 + 𝑐2, <) otherwise

(𝑐1,≺1) ≤ (𝑐2,≺2) if 𝑐1 < 𝑐2 or the following case is true
(𝑐,≺1) ≤ (𝑐,≺2) if ≺1 = ≺2 or ≺2 = ≤

The transformation to the canonical form (also called DBM closing) can
be done in 𝒪(𝑛3) time using the Floyd-Warshall’s algorithm. See [7] for
description of other operations on difference bound matrices, like conjunction
and the “up” operation.

The zone graph can still be infinite and an additional methods, called
extrapolations or normalizations, have to be employed to address this issue.
Section 2.5 describes these techniques in detail.

6



2. Timed automata

Input: Source state (𝑙, 𝑍)
1 federation 𝐹𝑐𝑢𝑟, 𝐹𝑛𝑒𝑥𝑡, 𝐹𝑠𝑟𝑐

2 𝐹𝑛𝑒𝑥𝑡 ← {𝑍}
3 foreach priority 𝑝 in descending order do
4 𝐹𝑐𝑢𝑟 ← 𝐹𝑛𝑒𝑥𝑡

5 foreach edge 𝑒 with guard 𝑔 and priority 𝑝 from 𝑙 do
6 𝐹𝑠𝑟𝑐 ← 𝐹𝑐𝑢𝑟 Z 𝑔
7 foreach zone 𝑍 ∈ 𝐹𝑠𝑟𝑐 do
8 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠(𝑙, 𝑍, 𝑒)
9 end

// Perform federation subtraction
10 𝐹𝑛𝑒𝑥𝑡 ← 𝐹𝑛𝑒𝑥𝑡 − 𝐹𝑠𝑟𝑐

11 end
12 end
13 if 𝐹𝑛𝑒𝑥𝑡 ̸= ∅ then
14 possible time-lock
15 end

Algorithm 2.1: Successor generation with priorities.

2.4 Extensions

2.4.1 Non-zero updates

In the classical timed automata formalism, the only possible update of a
clock is the reset to zero (𝑥 := 0). Allowing different kinds of updates affects
the expressive power (from the language point of view) and even decidability
of reachability properties [10]. For example:

∙ Updates of the form 𝑥 := 𝑐, 𝑐 ∈ N0 do not increase expressiveness, but
can lead to exponentially more concise automata [11]. Updates of this
form are supported both by Uppaal and our implementation.

∙ Updates of the form 𝑥 := 𝑥 + 1 or 𝑥1 := 𝑥2 + 𝑐, 𝑐 ∈ N0 do not
increase expressiveness of diagonal-free automata, but can lead to
undecidability if used in conjunction with diagonal constraints.

∙ Updates of the form 𝑥 := 𝑥− 1 always lead to undecidable formalism.

7



2. Timed automata

𝑥 ≤ 2

𝑥 ≤ 2
𝑥 := 0

𝑥 ≤ 2

Figure 2.2: An example of a timed automaton.

2.4.2 Networks of timed automata

It is impractical to model systems consisting of multiple independent compo-
nents as a single timed automaton and network of timed automata is a more
suitable formalism since it is easily composable and scalable. Networks are
usually defined by the means of the parallel composition operator (‖) from
process algebra [12] and some form of inter-process communication.

For example, Uppaal allows binary synchronization on arbitrary edges,
𝑛-ary synchronization with some restrictions and it is possible to pass values
during synchronization using an auxiliary variable. Moreover, it is also possible
to assign priorities to communication channels and processes to reduce non-
determinism. The construction of a product automaton from the composition
is usually done on-the-fly.

However, priorities may cause that the set of valuations for which certain
action can be performed is not expressible as a zone. For example, if an edge
with a high priority has a guard 𝑥 ≥ 1 ∧ 𝑥 ≤ 2, then some low priority edge
with no guard can be used only if 𝑥 ∈ [0, 1) ∪ (2,∞). The general solution
for successor generation with priorities is based on zone subtractions [13]
and the algorithm itself is outlined as Algorithm 2.1. This algorithm needs
to work with arbitrary sets of valuations, which are usually represented as
unions of zones called DBM federations. Most of the DBM operations can be
extended to federations simply by performing them on all zones in the union.
However, the subtraction algorithm is more complicated and needs 𝒪(𝑚 · 𝑛)
operations, where 𝑚 and 𝑛 are numbers of zones in each fedration.

2.5 Abstractions and reductions

2.5.1 Location-based simulation

This section introduces the notion of location-based simulation and bisim-
ulation, which is crucial for definitions of various abstractions and their
properties. Intuitively, these kinds of relations are analogous to well-known
simulation and bisimulation relations, but they focus solely on time, since
only states with equal locations can be related.

8



2. Timed automata

Let 𝒜 = ⟨𝐿,𝑋, 𝑙𝐼 , 𝐸, 𝐼𝑛𝑣⟩ be a timed automaton and 4 be a a binary
relation on 𝐿 × R𝑋

+ . We say 4 is a location-based simulation (or time-
abstracting simulation) if it satisfies following properties:

1. if (𝑙1, 𝜈1) 4 (𝑙2, 𝜈2), then 𝑙1 = 𝑙2

2. if (𝑙, 𝜈1) 4 (𝑙, 𝜈2) and (𝑙, 𝜈1) −→ (𝑙′, 𝜈 ′
1), then there is (𝑙′, 𝜈 ′

2) so that
(𝑙, 𝜈2) −→ (𝑙′, 𝜈 ′

2) and (𝑙′, 𝜈 ′
1) 4 (𝑙′, 𝜈 ′

2)

3. if (𝑙, 𝜈1) 4 (𝑙, 𝜈2) and (𝑙, 𝜈1) −→ (𝑙′, 𝜈1 + 𝛿), then there is 𝛿′ ∈ R+ so
that (𝑙, 𝜈2) −→ (𝑙′, 𝜈2 + 𝛿′) and (𝑙′, 𝜈1 + 𝛿) 4 (𝑙′, 𝜈2 + 𝛿′)

If both 4 and 4−1 are location-based simulations, then 4 is location-based
bisimulation. [14]

Let 4 be a location-based simulation, then we can define an abstraction
in the context of timed systems to be a mapping a : 𝐿 × 2R𝑋

+ → 𝐿 × 2R𝑋
+

satisfying that whenever (𝑙2, 𝑍2) = a((𝑙1, 𝑍1)), then 𝑙1 = 𝑙2, 𝑍1 ⊆ 𝑍2, and for
each 𝜈2 ∈ 𝑍2, there is 𝜈1 ∈ 𝑍1 so that (𝑙2, 𝜈2) 4 (𝑙1, 𝜈1).

If the abstraction a returns a zone for every zone on the input, so it can
be restricted to a mapping a : 𝐿 × 𝑍𝑜𝑛𝑒𝑠 → 𝐿 × 𝑍𝑜𝑛𝑒𝑠, we will call it a
zone-based abstraction. All abstractions described in following subsections
are zone-based. If the location part of states is fixed or unimportant, we will
consider an abstraction a to be mapping from the set of zones to itself.

2.5.2 Zone extrapolation

As was mentioned in the previous section, the region abstraction is rarely
used in practice, since the number of regions can become needlessly high even
for relatively small system and for this reason, most of the tools working with
timed automata use zones represented by difference bound matrices (DBMs).

The number of zones produced by any zone-base abstraction is always
countable, but it can still be infinite. Similarly to the region abstraction,
this issue can be dealt with by exploiting the fact that any timed automata
is unable to distinguish values of clocks after they exceed a certain bound.
Let 𝑀(𝑥) denote the maximal constant involved in any invariant or guard
with the clock 𝑥. Then any zone can be transformed by removing constraints
𝑥 ⪯ 𝑐 and 𝑥−𝑥′ ⪯ 𝑐 for ⪯ ∈ {<,≤} in case that 𝑐 > 𝑀(𝑥) and replacing the
right side of the constraints 𝑥 ⪰ 𝑐 and 𝑥− 𝑥′ ⪰ 𝑐 by 𝑀(𝑥) if 𝑐 > 𝑀(𝑥). This
transformation is called maximal bounds extrapolation and it is the baseline
for more advanced extrapolation techniques used in model checkers [7].

Formally, it is based on the following relation:

𝜈 ≡𝑀 𝜈 ′ 𝑑𝑒𝑓⇐⇒ ∀𝑥 ∈ 𝑋 : 𝜈(𝑥) = 𝜈 ′(𝑥) ∨ (𝜈(𝑥) > 𝑀(𝑥) ∧ 𝜈 ′(𝑥) > 𝑀(𝑥))

9



2. Timed automata

For every zone 𝑊 , we can express the extrapolated zone as a≡𝑀 (𝑊 ) = {𝜈 ′ |
𝜈 ∈ 𝑊, 𝜈 ′ ≡𝑀 𝜈}. The relation ℛ = {((𝑙, 𝜈), (𝑙, 𝜈 ′)) | 𝜈 ≡𝑀 𝜈 ′} is a location-
based bisimulation, which means it preserves all important properties of the
state space, such as reachability and presence of deadlocks and so-called
time-locks — states, where the time can pass, but no action transition will
ever become enabled.

Since DBMs are the most common way to store zones, we will describe
extrapolations as transformations from DBM ⟨(𝑐𝑖𝑗 ,≺𝑖𝑗)⟩𝑖,𝑗=0,...,𝑛 to another
DBM ⟨(𝑐′

𝑖𝑗 ,≺′
𝑖𝑗)⟩𝑖,𝑗=0,...,𝑛. For the maximal bounds extrapolation, the rule is

following:

(𝑐′
𝑖𝑗 ,≺′

𝑖𝑗) =

⎧⎪⎪⎨⎪⎪⎩
∞ if 𝑐𝑖𝑗 > 𝑀(𝑥𝑖)
(−𝑀(𝑥𝑗), <) if −𝑐𝑖𝑗 > 𝑀(𝑥𝑗)
(𝑐𝑖𝑗 ,≺𝑖𝑗) otherwise

𝐸𝑥𝑡𝑟𝑎𝑀

2.5.3 LU extrapolation

Several extensions of the maximal bounds extrapolation were introduced
in [14]. The LU extrapolation takes advantage of the fact that constants the
clocks are compared to from above and below often differ.

Let us define the lower bound 𝐿(𝑥) to be the highest value the clock 𝑥
is compared to from below (comparisons of the form 𝑥 > 𝑐 or 𝑥 − 𝑥′ > 𝑐)
and similarly for the upper bound 𝐻(𝑥). Naturally, it holds that 𝑀(𝑥) =
max(𝐿(𝑥), 𝑈(𝑥)). The LU extrapolation can be defined in the form of DBM
transformation in the following way:

(𝑐′
𝑖𝑗 ,≺′

𝑖𝑗) =

⎧⎪⎪⎨⎪⎪⎩
∞ if 𝑐𝑖𝑗 > 𝐿(𝑥𝑖)
(−𝑈(𝑥𝑗), <) if −𝑐𝑖𝑗 > 𝑈(𝑥𝑗)
(𝑐𝑖𝑗 ,≺𝑖𝑗) otherwise

𝐸𝑥𝑡𝑟𝑎𝐿𝑈

Another observation described in [14] is that if a whole zone is above the
maximal bound for some clock 𝑥, diagonal constraints involving 𝑥 can be
removed without a change in the system behaviour. This of course requires
the timed automaton to be diagonal-free, but clock difference constraints are
problematic even with the maximal bounds extrapolation — see Section 2.5.5
for details. Diagonal variants of both the maximal bounds extrapolation and
the LU extrapolation that use this rule are defined below.

10
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(𝑐′
𝑖𝑗 ,≺′

𝑖𝑗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞ if 𝑐𝑖𝑗 > 𝑀(𝑥𝑖)
∞ if −𝑐0𝑖 > 𝑀(𝑥𝑖)
∞ if −𝑐0𝑗 > 𝑀(𝑥𝑗), 𝑖 ̸= 0
(−𝑀(𝑥𝑗), <) if −𝑐𝑖𝑗 > 𝑀(𝑥𝑗), 𝑖 = 0
(𝑐𝑖𝑗 ,≺𝑖𝑗) otherwise

𝐸𝑥𝑡𝑟𝑎+
𝑀

(𝑐′
𝑖𝑗 ,≺′

𝑖𝑗) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞ if 𝑐𝑖𝑗 > 𝐿(𝑥𝑖)
∞ if −𝑐0𝑖 > 𝐿(𝑥𝑖)
∞ if −𝑐0𝑗 > 𝑈(𝑥𝑗), 𝑖 ̸= 0
(−𝑈(𝑥𝑗), <) if −𝑐𝑖𝑗 > 𝑈(𝑥𝑗), 𝑖 = 0
(𝑐𝑖𝑗 ,≺𝑖𝑗) otherwise

𝐸𝑥𝑡𝑟𝑎+
𝐿𝑈

In the same way as the maximal bounds extrapolation is based on the
relation ≡𝑀 , the LU extrapolation is based on the so-called LU preorder
4𝐿𝑈 . It holds that 𝜈 4𝐿𝑈 𝜈 ′ if the following is true for all clocks 𝑥:

∙ either 𝜈(𝑥) = 𝜈 ′(𝑥)

∙ or 𝐿(𝑥) < 𝜈(𝑥) < 𝜈 ′(𝑥)

∙ or 𝜈(𝑥) > 𝜈 ′(𝑥) > 𝑈(𝑥)

However, we cannot simply construct an abstraction from the LU preorder,
because such abstraction can produce sets of valuations that cannot be
expressed as zones. The LU extrapolation obviously always produces zones,
but it is not as coarse as the abstraction constructed from the LU preorder
would be.

Let us note that the LU extrapolation has a few disadvantages over
the classical maximal bounds extrapolation. First of all, it is not an exact
abstraction with respect to bisimulation, which means it may not preserve all
properties of the state space. Namely, it does not preserve so-called time-locks

— states where time can pass, but no action transition can be performed in
future. Uppaal considers time-locks to be special cases of deadlocks, our
implementation can be run with time-lock detection enabled or disabled.

Let us demonstrate the problem of time-lock detection under the LU
extrapolation on Figure 2.2. A time-lock can happen in the central location,
since there is no outgoing edge for 𝑥 ∈ (2,∞), but not in the initial one, since
it is prevented by the location invariant. The lower bound for 𝑥 is −∞ and the
upper bound is 2. The initial state will be entered with a zone, where 𝑥 = 0,

11
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which will be expanded using the “up” operation to a zone [𝑥 ≥ 0 ∧ 𝑥 ≤ 2].
However, since 2 < 𝐿(𝑥), the extrapolation 𝐸𝑥𝑡𝑟𝑎𝐿𝑈 will transform it into a
zone [𝑥 ≥ 0], which is the same zone that would be produced if there was
no invariant. This means that any time-lock detection method would falsely
find a time-lock in the initial state if the LU extrapolation is used.

The second drawback of the LU extrapolation is that it makes Zeno runs
more difficult to detect [15]. Under the LU extrapolation it is 𝒩𝒫-hard to
decide if an abstract run can be instantiated to at least one non-Zeno run.
Zeno runs are described in more detail in Section 3.3.

2.5.4 Location-dependent bounds

Extrapolations described so far use global bounds for individual clocks, but it
is also possible to compute separate bound for each location. This technique,
often called location-dependent abstraction, was introduced in [16] and it
surpassed previously used technique — the active clock reduction.

With the active clock reduction, the set of clocks that can be accessed
before their value is reset (𝐴𝑐𝑡𝑙) is constructed for each location 𝑙. The system
behaviour clearly does not depend on the values of clocks outside this set,
which means they can be abstracted-out (set to a fixed value) to potentially
reduce the number of different zones.

Formally, we can define 𝐴𝑐𝑡𝑙 as the smallest set satisfying following:

∙ 𝑥 ∈ 𝐴𝑐𝑡𝑙 if 𝑥 is referenced in 𝐼𝑛𝑣(𝑙) or a guard 𝑔 for some edge
(𝑙, 𝑔, 𝑅, 𝑙′) ∈ 𝐸

∙ (𝐴𝑐𝑡𝑙′ r𝑅) ⊆ 𝐴𝑐𝑡𝑙 for any edge (𝑙, 𝑔, 𝑅, 𝑙′) ∈ 𝐸 that resets clocks in 𝑅

This set can be easily computed using a backwards reachability on the timed
automaton in question and for a network of timed automata, the set of active
clocks can be computed on-the-fly as the union of active clocks for each of
its components.

The local bounds for each location can be computed in a similar way. The
local maximal bound 𝑀𝑙(𝑥) is the lowest number from Z ∪ {−∞} satisfying:

∙ 𝑀𝑙(𝑥) ≥ 𝑐 if 𝑥 ≶ 𝑐 is a part of 𝐼𝑛𝑣(𝑙) or 𝑔 for some (𝑙, 𝑔, 𝑅, 𝑙′) ∈ 𝐸

∙ 𝑀𝑙(𝑥) ≥𝑀𝑙′(𝑥) if there is an edge (𝑙, 𝑔, 𝑅, 𝑙′) ∈ 𝐸 and 𝑥 ̸∈ 𝑅

The local lower and upper bounds can be expressed in the same way — we
just need to take into account only constraints from below or above in the
first bullet.

12
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It was shown that location dependent abstraction subsumes the active
clock reduction, because if 𝑥 ̸∈ 𝐴𝑐𝑡𝑙, then 𝑀𝑙(𝑥) = −∞ and all possible
values of 𝑥 in 𝑙 will be above 𝑀𝑙(𝑥) and thus considered equal by the relation
≡𝑀 .

If the LTL verification is being performed and the formula contains a clock
constraint, we potentially need to decide the validity of such constraint and
its negation in every state. Therefore, we implemented a rule that prevents
the lower and upper local bounds for any clock 𝑥 to be set below 𝑐 if the LTL
formula being verified contains a comparison of the clock 𝑥 to the constant 𝑐.

2.5.5 Diagonal constraints

Extrapolations described to this point did not consider diagonal constraints.
The reason is that using even the basic maximal bounds extrapolation for a
timed automaton with diagonal constraints can lead to incorrect reachability
results if more than three clocks are used [17]. Other reason why diagonal
constraints are often excluded from constructions involving timed automata is
that they do not add any expressive power, so that an equivalent diagonal-free
automaton always exists. However, their use can significantly simplify the
model construction in some cases and they are very useful when modeling
scheduling problems.

Even though an equivalent automaton without diagonal constraints can
always be constructed, the removal of every diagonal constraint can double
the automaton size, resulting in an exponentially larger automaton [18]. This
blow-up generally cannot be avoided, since automata with diagonal constraints
allow for exponentially more concise representation of some behaviour than
diagonal-free automata, as was shown in [11].

Other methods are based either on encoding truth-values of each diagonal
constraints into states of the zone-graph or on zone slicing. We decided to
employ a method based on [19], which modifies the extrapolation procedure
so that the set of diagonal constraints that hold in each zone is not changed by
the extrapolation. This is done by slicing the zone by all diagonal constraints
used in the automaton, extrapolating its parts separately and ensuring the
result is contained in the corresponding slice. Formally, if 𝐺𝑑𝑖𝑎𝑔 is the set
of all diagonal constraints and 𝐸𝑥𝑡𝑟𝑎 is an extrapolation operation, then
the new extrapolation operation that guarantees correctness even with the
presence of diagonal constraints can be defined as:

𝐸𝑥𝑡𝑟𝑎𝑑𝑖𝑓𝑓 (𝑍) =
{︀
𝐸𝑥𝑡𝑟𝑎(𝑍 Z 𝑠) Z 𝑠

⃒⃒
𝑠 ∈ 𝑆𝑙𝑖𝑐𝑒𝑠 ∧ (𝑍 Z 𝑠) ̸= ∅

}︀
13
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where

𝑆𝑙𝑖𝑐𝑒𝑠 =
{︂ ⋀︁

𝑔∈𝐴

𝑔 ∧
⋀︁

𝑔∈𝐺𝑑𝑖𝑎𝑔r𝐴

¬𝑔
⃒⃒⃒⃒
𝐴 ⊆ 𝐺𝑑𝑖𝑎𝑔

}︂
.

The advantage of this method is that it works on-the-fly and does not cause
any overhead if no diagonal constraints are used.

Even though the original proposal used the maximal bounds extrapolation,
we made it to work with the LU extrapolation by setting the lower and upper
bounds of clocks 𝑥1 and 𝑥2 to at least |𝑐| if there is a diagonal constraint
𝑥1 − 𝑥2 ≶ 𝑐 either in the model or the LTL property. We found no other
complications that would prevent combining LTL verification with diagonal
constraints.

As a different approach to diagonal constraints, [20] proposed to use the
(incorrect) original algorithm and then analyse whether the traces it returns
are feasible or not. The advantage is that the potentially exponential blow-up
of the whole state space is avoided. However, this method was aimed only on
reachability analysis and it is not suitable for LTL model checking.

2.5.6 Subsumption

Since zones are sets of valuations, states with equal locations can be naturally
ordered with respect to inclusion of their zones. If 𝑍 ⊆ 𝑍 ′ we say that state
(𝑙, 𝑍 ′) subsumes (𝑙, 𝑍) and since (𝑙, 𝑍 ′) simulates (𝑙, 𝑍), we do not need to
process (𝑙, 𝑍) if we already processed (𝑙, 𝑍 ′). On the other hand, if we visit
(𝑙, 𝑍 ′) after (𝑙, 𝑍), we can save some memory by storing only the subsuming
state, but we do not save any time if we already generated successors of the
subsumed one. This means that the actual savings brought by subsumption
highly depend on the search order, as reported by [2].

Furthermore, subsumption is meant to be used for reachability analysis
and it would be very difficult or impossible to use it for LTL verification. The
reason is that the only information we need to store during the reachability
analysis is whether the given state was visited or not and if we visit a
state, marking all its subsumed states as visited preserves correctness of
the reachability algorithm. However, this is not necessarily true for complex
additional information that needs to be stored for every state by algorithms
performing LTL model checking, like OWCTY or MAP.
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2.6 Uppaal

In this section, we overview the syntax and semantics of the Uppaal [1] mod-
eling language with focus on topics not covered in the official documentation1

or otherwise unclear or non-intuitive.

2.6.1 Type system and variables

Uppaal offers three basic variable types. The integral type, int, has a
default range of ⟨−32768, 32767⟩, which can be modified to any range inside
⟨−231, 231− 1⟩ using rectangular brackets (int[-1,10] x;). Any attempt to
assign a value outside the specified range causes the verification performed
by Uppaal to terminate, but any intermediate computations are done on
signed 32-bit integers without any range checks. If a variable is declared, but
not explicitly initialized, its initial value depends on its range. If the range
contains zero, the value is set to zero. Otherwise, it is set to the minimal
value in the range.

The boolean type, bool, is essentially equivalent to int[0,1], which
means all arithmetical operations can be performed on booleans and all
logical operators also work on integers. In this situation, any non-zero value
is considered to be true and true evaluates to 1 so that 2*true == 2. The
scalar type is designed solely to allow symmetry reduction and does not
support any operation other that check for equality with another scalar.

Additional types can be defined using the typedef keyword or creating
structures or arrays from existing types. Constant variables can be declared
by prepending const to the type, allowing these variables to be used in range
specifications and array sizes. Few examples:
struct R { int min; int max; };
const R r = {-1, 10};
typedef int[r.min, r.max] myint;
myint arr[2][3] = {{0,1,2}, {3,4,5}};

Structures and arrays can be assigned as a whole using single assignment
if their types and dimensions are compatible.

Rules regarding identifier naming and most of the arithmetic operations
are the same as in C and C++ programming languages. This includes bit-wise
operators (&, |, <<, >>, ^, but not ~), modulo (%), pre-increment and post-
increments operators, shortcut operators (+=, *=, <<=, . . . ) and the ternary

1. Available on-line at http://www.it.uu.se/research/group/darts/uppaal/help.php?
file=System_Descriptions/Introduction.shtml
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operator. Assignments can be done using both := and =, all C-like relational
operators are supported (==, !=, <=, <, . . . ) and the standard set of logical
operations (!, ||, &&) is supplemented by not, or, and (and imply) with the
same meaning, but lower precedence, which allows to exploit the short-circuit
behaviour in expressions like a = a/2 or b *= 2, which doubles b if the
new value of a is zero. Also, comma can be used to join multiple statements
into one.

Other newly introduced operators are the minimum and maximum opera-
tors (the result of 3 <? 2 is 2 and 3 >? 2 evaluates to 3), and the universal
and existential quantifiers that can be used in the following way:
forall (x: int[0,5]) a[t] == 0
exists (x: int[0,4]) b[t] > t

Note that the quantified expressions must not have side-effects.
Variables declared using the meta keyword can be used in the same way as

regular variables, but states that differ only in meta variables are considered
equal, which means only one of them will be processed further. Therefore,
value of meta variables is not deterministic and cannot be relied upon. The
official documentation suggest they can be used for passing a value from one
process to another during synchronization.

2.6.2 Clocks and channels

Clocks and channels have to be declared in the same way as variables. A
clock is declared as clock x; and it is even possible, although not very useful
in practice, to declare an array of clocks. Similarly, channels are declared
using chan c; and an array of channels is also possible. Prepending urgent,
prevents time from passing if any edge labelled by this channel is enabled and
if the broadcast modifier is present, the channel in question will be used for
𝑛-ary synchronization instead of binary synchronization. Note that urgent
broadcast chan ch is the correct declaration, but broadcast urgent chan
ch is an error. Following sections explain synchronizations and urgency in
more detail.

2.6.3 System declaration

A system is declared as a synchronous product of one or processes using the
system keyword followed by a comma-separated list of processes. The Uppaal
GUI can be used to design timed automata templates that can be instantiated
to create actual processes by assigning values to all their unbound parameters.
If a template T has a single parameter int[0,2] x, then p = T(1) declares a
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process. If a template with unbound parameters is used directly in the list after
the system keyword, instances for all possible combination of its arguments
is created, which means that system T; is equivalent to p0 = T(0); p1
= T(1); p2 = T(2); system p0, p1, p2. Note that it is not possible to
write system T(0);, since only templates or previously instantiated processes
can be used in the system declaration. If Q is a template with two integral
parameters, it can be partially specialized using the following syntax: T(const
int[1,4] x) = Q(x, 2*x).

Parameters are not limited to integers — it is possible to use arrays,
structures, references to variables or even to clocks and channels. References
are indicated using the ampersand symbol and any change to a reference
is projected to the referenced variable. References can also be used when
declaring custom functions, which makes it possible to create a function that
swaps values of two integer variables:
void swap(int& a, int& b)
{

int c = a;
a = b;
b = c;

}

Priorities can be assigned to both channels and processes. Statement chan
priority followed by a list of channels, where a comma means equal priority
and ‘<’ means strictly lower priority, is used to set the channel priorities. If
a whole array of channels is mentioned in the declaration, all channels in it
will have equal priority, but it is also possible to list individual elements to
give them different priorities. Additionally, the default keyword can be used
to set the priority to all channels not otherwise mentioned in the priority
declaration and to all non-synchronizing transitions. Process priorities are
embedded directly into the system declaration and use a similar syntax:
chan priority c1, c2 < default < ca[0] < ca[1];
system a < b, c;

If the default keyword is not used, the priority of the last channel specified
is used for all remaining channels. Therefore, c1 < c2 is equivalent to c1 <
default.

Priorities are resolved in the following way: A number is assigned to each
priority level (a higher number means higher priority) and for each possible
transition involving 𝑛 processes, a vector ⟨𝑝0, 𝑝1, . . . , 𝑝𝑛⟩ is constructed so that
𝑝0 is the priority of its channel and 𝑝1 to 𝑝𝑛 are priorities of all participating
processes listed in decreasing order (so that 𝑝𝑖 ≥ 𝑝𝑖+1 for 1 ≤ 𝑖 < 𝑛). Then
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all vectors are truncated to the length of the shortest one and compared
lexicographically to find transitions with the highest priority.

This comparison has some non-intuitive properties. For example, if all
channels have priority 1 and a process with priority 2 can perform a binary
synchronization with either a process with priority 1 or priority 2, then only
one of these transitions will be enabled since ⟨1, 2, 2⟩ is lexicographically
greater than ⟨1, 2, 1⟩. But if we add a non-synchronizing transition involving
priority 1 process, then both synchronizations will be possible, since their
priority vectors would be truncated to match the length of newly added ⟨1, 1⟩
and that would make them equal.

Note that priorities influence only action transitions and delays are com-
pletely unaffected.

2.6.4 Locations and edges

Each automaton has to have exactly one initial location and each location
can also be marked as urgent or committed. If any process is in a committed
location, no delay transitions can be performed. Committed locations also
prevent the time from passing, but additionally require that no process in a
non-committed location can perform any action if at least one process is in a
committed location.

Each edge in the automaton can be labelled by select, guard, synchroniza-
tion and assign statements. The select label can be used to declare one or
more variables (with the same syntax as the inside of a forall expression)
that can be used in other statements on the same edge as a non-deterministic
choice. Guards consist of a conjunction of clock comparisons and arbitrary
expressions involving non-clock variables without side-effects. If x is a clock
and i an integer, x < 0 && (i == 1 || i == 3) is a valid guard, while
the expression (x > 1) || (x > 2 && i > 2) is not, since the clock con-
straints do not form a conjunction on the outermost level. This rule exists to
guarantee that the set of valuations satisfying any guard forms a zone. For
the same reason, inequality is not allowed in clock constraints. Clocks can
be compared to non-constant integer variables and expressions, but doing so
can dramatically decrease the abstraction effectiveness, especially in case of
diagonal constraints.

If the guard of an edge is satisfied, it is considered enabled, but that
does not automatically mean the edge can actually be traversed — that also
depends on synchronizations and invariants. This notion is important in case
of urgent channels or when priorities are used. For example, if a location
has one low priority edge with no guard and one high priority edge with the
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guard x == 3 leading to a location with invariant false, then there will be
no successor for valuations where x is 3. Even though the high priority edge
cannot be traversed because of the invariant, it is enabled and blocks the low
priority transition.

The synchronization label consists of an expression evaluating to a channel
followed by the exclamation mark or the question mark signalling the sending
and receiving end of a synchronization. The assign statement can contain any
expressions involving non-clock variables and assignments of a non-negative
values to clocks. When a synchronization is performed, it is guaranteed that
an assignment on the sending edge is performed before the receiving edges,
which allows inter-process value passing using an auxiliary variable.

The use of a synchronization label on an edge imposes some limitations
on its guard. Namely, clocks constraints cannot be present on broadcast
receivers or edges synchronizing over an urgent channel, even though the
semantics definition of the official documentation seems to suggest otherwise.
The purpose of these limitations most likely is to lower the complexity of
successor generation.

2.6.5 Formal semantics

If 𝐿 denotes a vector of locations and 𝑣 is a valuation that assigns values to
both clocks and variables, then we can define the semantics of an Uppaal
model as follows:

A delay transition (𝐿, 𝑣) 𝛿−→ (𝐿, 𝑣′) can be performed if:

∙ 𝑣′ is created from 𝑣 by advancing all clocks by 𝛿 ∈ R+,

∙ 𝑣′ |= 𝐼𝑛𝑣(𝐿),

∙ there are no committed or urgent locations in 𝐿,

∙ (𝐿, 𝑣) has no enabled outgoing transition that can synchronize over
an urgent channel.

An internal action transition (𝐿, 𝑣) −→ (𝐿′, 𝑣′) over an edge 𝑒 from the
location 𝑙 to 𝑙′ can be performed if:

∙ 𝑣 satisfies the guard of 𝑒,

∙ 𝑒 has no synchronization label,

∙ 𝑙 is in 𝐿 and 𝐿′ = 𝐿[𝑙′/𝑙],
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∙ 𝑣′ is created from 𝑣 by performing the assignment described by 𝑒,

∙ 𝑣′ |= 𝐼𝑛𝑣(𝐿′),

∙ there are no committed locations in 𝐿 or 𝑙 is a committed location,

∙ no other enabled transition from (𝐿, 𝑣) has a strictly higher priority.

A binary synchronization transition (𝐿, 𝑣) −→ (𝐿′, 𝑣′) over edges 𝑒1 = (𝑙1, 𝑙′1)
and 𝑒2 = (𝑙2, 𝑙′2) belonging to different processes can be performed if:

∙ 𝑣 satisfies the guard of 𝑒1 and 𝑒2,

∙ the synchronization label evaluates to 𝑐ℎ! for 𝑒1 and to 𝑐ℎ? for 𝑒2,
where 𝑐ℎ is a binary synchronization channel,

∙ 𝑙1 and 𝑙2 are in 𝐿 and 𝐿′ = 𝐿[𝑙′1/𝑙1][𝑙′2/𝑙2],

∙ 𝑣′ is created from 𝑣 by performing the assignment described by 𝑒1 and
then the assignment of 𝑒2,

∙ 𝑣′ |= 𝐼𝑛𝑣(𝐿′),

∙ there are no committed locations in 𝐿 or at least one location from
{𝑙1, 𝑙2} is committed,

∙ no other enabled transition from (𝐿, 𝑣) has a strictly higher priority.

A broadcast synchronization transition (𝐿, 𝑣) −→ (𝐿′, 𝑣′) over 𝑛 > 0 edges
𝑒𝑖 = (𝑙𝑖, 𝑙′𝑖) for 1 ≤ 𝑖 ≤ 𝑛 belonging to 𝑛 different processes can be performed
if:

∙ 𝑣 satisfies the guard of 𝑒𝑖 for every 1 ≤ 𝑖 ≤ 𝑛,

∙ the synchronization label of 𝑒1 evaluates to 𝑐ℎ! where 𝑐ℎ is a broadcast
channel and {𝑒𝑖 | 2 ≤ 𝑖 ≤ 𝑛} is exactly the set of edges enabled in
(𝐿, 𝑣) with synchronization labels evaluating to 𝑐ℎ?,

∙ 𝑙1, . . . , 𝑙𝑛 are all in 𝐿 and 𝐿′ = 𝐿[𝑙′1/𝑙1] · · · [𝑙′𝑛/𝑙𝑛],

∙ for every two edges 𝑒𝑗 , 𝑒𝑘 with 2 ≤ 𝑗 < 𝑘 holds that 𝑒𝑗 belongs to
a process that appeared sooner in the system declaration than the
process which 𝑒𝑘 belongs to,

∙ 𝑣′ is created from 𝑣 by successively performing assignments described
by 𝑒1, . . . , 𝑒𝑛

20



2. Timed automata

∙ 𝑣′ |= 𝐼𝑛𝑣(𝐿′),

∙ there are no committed locations in 𝐿 or at least one location from
{𝑙𝑖 | 1 ≤ 𝑖 ≤ 𝑛} is committed,

∙ no other enabled transition from (𝐿, 𝑣) has a strictly higher priority.

If an error is encountered during the evaluation of guards, invariants,
synchronization labels or assignments, Uppaal terminates the verification.
Possible errors include assignment to a variable outside the range of its type,
accessing an element outside an array bounds, division by zero, shift by a
negative number of bits, invalid function call and assigning negative value to
a clock. Note that shift by a number of bits greater than 32 is not an error,
but the result is undefined and may depend on hardware.
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3 Model checking

The purpose of model checking is to decide whether a system satisfies the
given property or, to put it differently, whether the system is a model for
the given formula. The verification itself is done by exploring the state
space, although the specific algorithm and complexity depends on the specific
formalism and property.

Even though several logics of varying strength can be used to express
properties to be verified, the linear temporal logic (LTL) and computation
tree logic (CTL) are — aside from simple reachability properties — the
most commonly used ones since they provide a good balance between the
expressive power and verification complexity.

Uppaal supports five kinds of properties from the fragment common to
LTL and CTL, namely:

∙ A[] p describes that 𝑝 is an invariant — holds in every state. This
can be written in CTL as AG 𝑝, which is equivalent to G 𝑝 in LTL.

∙ E<> p says that a state satisfying 𝑝 is reachable, which is EF 𝑝 or
¬AG¬𝑝 in CTL. Even though LTL can not express this property
directly, a system violates the LTL property G¬𝑝 (≡ ¬F 𝑝) if and
only if it satisfies EF 𝑝.

∙ A<> p expresses an eventuality — all possible executions will eventually
reach a state satisfying 𝑝. The corresponding CTL formula is AF 𝑝,
which is expressible in LTL as F 𝑝.

∙ E[] p says that there is a finite or infinite execution of the system such
that 𝑝 holds in all its states. The CTL formula EG 𝑝, or equivalently
¬AF¬𝑝, is not directly expressible in LTL, but again, we can use its
negation F¬𝑝 (≡ ¬G 𝑝) instead and interpret the result differently.

∙ p --> q is considered to be a shortcut for A[] (p imply A<> q) even
though nested formulae are otherwise not supported by Uppaal. This
corresponds to the CTL formula AG(𝑝 =⇒ AF 𝑞) and its LTL
equivalent is G(𝑝 =⇒ F 𝑞).

3.1 LTL

The linear temporal logic (LTL) is used to describe properties of infinite runs.
We will first define its syntax and semantics on infinite words from 𝐴𝑃𝜔,
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where 𝐴𝑃 is a set of atomic propositions, and then extend this definition to
infinite runs. For any transition system, a run can be defined as a sequence of
states connected by transitions, but for timed systems, only runs consisting
of alternating delay and action transitions are usually considered. Let the
transition 𝛿,𝑎−→ represent a non-negative delay followed by an action transition,
then a run of a timed system is an infinite sequence of the form 𝑠0

𝛿,𝑎−→ 𝑠1
𝛿,𝑎−→

𝑠2 · · · .
Syntactically, each 𝑎 ∈ 𝐴𝑃 is an LTL formula and if 𝜑 and 𝜑′ are LTL

formulae, then ¬𝜑, 𝜑 ∧ 𝜑′, X𝜑 and 𝜑 U 𝜑′ are also valid LTL formulae. The
intuitive meaning of the X𝜑 is that 𝜑 holds in the next state and the formula
𝜑 U 𝜓 holds if 𝜓 will eventually hold and 𝜑 is true until then. Aside from
the common syntactic shortcuts ∨, =⇒ , 𝑡𝑟𝑢𝑒 and 𝑓𝑎𝑙𝑠𝑒, we will later define
unary temporal operators F, G and binary operators R and W by the means
of the operator U. Also note that operators X, F and G are written as ○,
♦ and � in some literature.

For an infinite word 𝑤 = 𝑤0𝑤1𝑤2 . . ., we define the 𝑖-th suffix of 𝑤 as
𝑤𝑖 = 𝑤𝑖𝑤𝑖+1 . . .. For an LTL formula 𝜑, the relation 𝑤 |= 𝜑 is defined
inductively:

∙ 𝑤 |= 𝑎 for 𝑎 ∈ 𝐴𝑃 if 𝑎 ∈ 𝑤0

∙ 𝑤 |= ¬𝜑 if 𝑤 ̸|= 𝜑

∙ 𝑤 |= 𝜑1 ∧ 𝜑2 if 𝑤 |= 𝜑1 and 𝑤 |= 𝜑2

∙ 𝑤 |= X𝜑 if 𝑤1 |= 𝜑

∙ 𝑤 |= 𝜑1 U 𝜑2 if there is 𝑖 ∈ N0 so that 𝑤𝑖 |= 𝜑2 and for each 0 ≤ 𝑗 < 𝑖,
𝑤𝑗 |= 𝜑1

Even though it suffices to define only the operators “next” (X) and “until”
(U), LTL usually uses following syntactic shortcuts:

∙ The “future” operator F𝜑 ≡ 𝑡𝑟𝑢𝑒 U 𝜑

∙ The “globally” operator G𝜑 ≡ ¬F¬𝜑

∙ The “weak until” has the same meaning as U, except it does not
require the right side to eventually become true, and can be defined
as 𝜑 W 𝜓 ≡ (𝜑 U 𝜓) ∨G𝜑

∙ The “release” operator 𝜑 R 𝜓 ≡ ¬(¬𝜑 U ¬𝜓) ≡ 𝜓 W (𝜑 ∧ 𝜓) states
that 𝜓 either always holds or holds until the point, where 𝜑 becomes
true (including that point).
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Motivation for the last two operators is to simplify the transformation of
LTL formulae to normal forms and other algorithmic processing by providing
a way to negate the “until” operator. Instead of using the equality ¬(𝜑 U 𝜓) ≡
(𝜑∧¬𝜓) U (¬𝜑∧¬𝜓)∨G(𝜑∧¬𝜓), that can cause exponential blow-up if we use
it to negate U, we can use the equivalence ¬(𝜑 U 𝜓) ≡ (𝜑∧¬𝜓) W (¬𝜑∧¬𝜓)
instead, which avoids adding additional temporal operator, but still duplicates
sub-formulae, or ¬(𝜑 U 𝜓) ≡ ¬𝜑 R ¬𝜓, which completely avoids it.

Let 𝜌 = 𝑠0
𝛿,𝑎−→ 𝑠1

𝛿,𝑎−→ 𝑠2 · · · be an infinite run of a timed system. Then
we can define an infinite word 𝑡𝑟𝑎𝑐𝑒(𝜌) = 𝑤0𝑤1𝑤2 . . ., where 𝑤𝑖 = {𝑎 ∈ 𝐴𝑃 |
𝑠𝑖 |= 𝑎} and say that 𝜌 satisfies an LTL formula 𝜑 (written as 𝜌 |= 𝜑) if
and only if 𝑡𝑟𝑎𝑐𝑒(𝜌) |= 𝜑. An LTL property holds for the given system if it
holds for all its runs starting in its initial state. Due to the nature of this
definition, LTL has a non-intuitive property that, even though 𝜑 holds for
a run iff ¬𝜑 does not hold for this run, a system may satisfy neither 𝜑 nor
¬𝜑. However, this property is essential for LTL model checking. In the case
when LTL formula 𝜑 does not hold for the system in question, it does not
hold for at least one of its runs. Such run has to satisfy ¬𝜑, so we can prove
that 𝜑 holds for a system by showing that it has no run satisfying ¬𝜑 (a
counter-example).

For any LTL formula 𝜑, we can construct a Büchi automaton that accepts
exactly the infinite words, that satisfy 𝜑. Formally, a Büchi automaton is
a tuple ℬ = (𝑄,Σ, 𝑞0, 𝛿, 𝐹 ), where 𝑄 is a finite set of states, 𝑞0 ∈ 𝑄 is
an initial state, 𝛿 : 𝑄 × Σ → 2𝑄 is the transition function and 𝐹 ⊆ 𝑄

is the set of accepting states. A run of a Büchi automaton for an infinite
word 𝑤 = 𝑤1𝑤2 . . . ∈ Σ𝜔 is an infinite sequence of states 𝑞0𝑞1𝑞2 . . ., where
𝑞𝑖 = 𝛿(𝑞𝑖−1, 𝑤𝑖). The word 𝑤 is accepted if any such run contains a state
from 𝐹 infinitely many times. A Büchi automaton accepts a non-empty set
of words if and only if it has a cycle containing an accepting state that is
reachable from 𝑞0 [21].

To determine if a transition system 𝒯 𝒮 = (𝑆, 𝑠0,→) contains a run whose
trace is accepted by a Büchi automaton ℬ = (𝑄,Σ, 𝑞0, 𝛿, 𝐹 ) with Σ = 2𝐴𝑃 ,
we can construct their product and check its non-emptiness. This is the
basic idea of the automata-based approach to model checking. The product
automaton 𝒯 𝒮 × ℬ has a set of states corresponding to 𝑆 ×𝑄. Each state
(𝑠, 𝑞) is accepting if 𝑞 ∈ 𝐹 and the transition (𝑠1, 𝑞1) −→ (𝑠2, 𝑞2) is possible
whenever 𝑠1 → 𝑠2 and 𝑞2 ∈ 𝛿(𝑞1, {𝑎 ∈ 𝐴𝑃 | 𝑠2 |= 𝑎}). For timed systems, this
construction effectively results in a timed Büchi automaton. The correctness
of its construction with the presence of various zone-based abstraction is not
obvious and we refer to [3] and [4] for complete proofs.
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3.2 Timed LTL

For comparison to the untimed case, this section introduces a timed variant
of the linear temporal logic (TLTL). Motivation for a timed logic is that even
if we allow clock constraints to appear as atomic propositions, it is impossible
to express properties like: Whenever 𝐴 happens, then 𝐵 has to happen in 10
time units.

Timed LTL is described in [22] as an extension of LTL by two kind of
expressions:

∙ �𝑎 ∈ 𝐼 holds if the time since the action 𝑎 occurred last time lies in
the interval 𝐼.

∙ �𝑎 ∈ 𝐼 holds if the time until the action 𝑎 will occur next lies in the
interval 𝐼.

Intervals can be closed, open or half-open, but their boundaries have to be
from the set N0 ∪ {∞}.

TLTL defined in this way is suited for the action-based approach to
model checking and even though it is possible to define a state-based variant,
it would get more complicated since it needs to distinguish cases where
propositions 𝐴 and 𝐵 are required to hold in 5 time units and where their
conjunction is required to hold in 5 time units.

Instead of supporting TLTL, we decided to allow clock constraints, in-
cluding diagonal ones, to be used as atomic propositions in LTL formulae.

3.3 Zeno runs

Some infinite runs of timed systems, as we defined them, do not correspond
to any realistic behaviour. These so-called Zeno runs are defined as infinite
runs for which the sum of all delays is finite. The presence of Zeno runs is
undesirable in the timed automata verification since they can cause some
properties to be falsely identified as unsatisfied in the case that all violating
runs are Zeno.

The simplest solution for this problem is described in [23]. It ensures that
at least one time unit has to pass in every accepting cycle, which can be
done by modifying the product of the timed system and Büchi automaton in
a following way:

∙ An auxiliary clock 𝑎𝑢𝑥 is added.

∙ For each accepting state 𝑞, an accepting copy 𝑞′ is created and 𝑞 is no
longer accepting. 𝑞′ has the same outgoing edges as 𝑞.
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∙ If 𝑞 previously was accepting and there is an edge (𝑠, 𝑔,𝑅, 𝑞) ∈ 𝐸, it
is replaced by edges (𝑠, 𝑔 ∧ 𝑎𝑢𝑥 < 1, 𝑅, 𝑞) and (𝑠, 𝑔 ∧ 𝑎𝑢𝑥 ≥ 1, 𝑅 ∪
{𝑎𝑢𝑥}, 𝑞′)

It is a well-known fact that due to this construction, the size of the
zone-graph can increase exponentially in the number of clocks. It was shown
in [15], that in the presence of coarse abstractions, such as the LU-based one,
it is an 𝒩𝒫-complete problem to decide if an abstract run in the zone-graph
instantiates to at least one non-Zeno run. Therefore, the exponential blow-up
seems to be unavoidable for this case.

On the other hand, weaker abstractions allow for more efficient solutions.
The algorithm presented in [4] does not eliminate all Zeno runs, but guarantees
that each abstract run can be instantiated to at least one non-Zeno run and
requires only linear overhead. However, their solution seems to be tied to
DFS, which is unsuitable for parallelization and it is also arguable whether
the potential gains can justify the use of weaker abstraction.

3.4 Accepting cycle detection algorithms

As we shown in previous sections, LTL verification can be reduced to a graph
problem called accepting cycle detection problem (or fair cycle detection
problem) on a graph whose vertices correspond to states of the product of
a Büchi automaton and the system under verification. Explicit-state model
checkers process every state separately, symbolic ones work with whole sets of
states described by predicates in a suitable formalism. Both approaches have
their advantages and disadvantages, but since our main concern is DiVinE,
we will focus on explicit-state model checkers.

The well-known time-optimal algorithm for accepting cycle detection —
the nested DFS — runs in linear time, but its correctness depends on the
order in which vertices are explored (so-called post-order), so there is no
straight-forward way to parallelize it. One possible way to utilize more threads
is to run Nested-DFS on all of them, but change the order of successors for
each thread. This, so-called swarmed approach, can find a counter-example
very quickly, but if none exists, all workers have to explore the whole graph.
Other approaches have built upon this idea by adding limited information
sharing between individual workers, which leads to a better distribution of
work among the individual threads and performs really well if there is a
counter-example [24]. However, all workers may still explore the whole graph
in the worst case.

A different branch of accepting cycle detection algorithms is based on
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BFS, which can be parallelized easily, but these algorithms have to either
sacrifice the time optimality or they are no longer on-the-fly, which means
the whole graph has to be explored even if there is a counter-example. This
includes both MAP and OWCTY which are implemented in DiVinE.

The maximal accepting predecessor algorithm (MAP) [25] is based on
propagating an identifier of each accepting vertex along edges. Identifiers
can have arbitrary (but fixed) order and if a vertex can receive multiple
identifiers, the maximal one is chosen and propagated further. The aim is
to compute the maximal accepting predecessor for each state and if it is the
state itself, it has to be a part of a reachable accepting cycle. Since identifiers
may be propagated multiple times along the same edge, each iteration can
be super-linear and the time complexity of the whole algorithm is 𝒪(𝑎2 ·𝑚),
where 𝑚 is the number of edges and 𝑎 is the number of accepting states, but
typical complexity is much lower according to the original paper.

The one way catch them young (OWCTY) algorithm was originally
proposed in [26] as an adaptation of an algorithm used for symbolic model
checking and later improved in [27]. It computes the set 𝐴 of states that
are reachable from an accepting cycle by first initializing it to the set of all
reachable states and then iteratively removing states that are not reachable
from accepting states in 𝐴 and states unreachable from cycles contained in 𝐴.
To do that, the number of predecessors still contained in 𝐴 is computed for
each state and then states for which this number is zero are removed from 𝐴.
Each iteration is linear in the number of edges and the number of iterations
can be at most equal to the height of the graph, but it is very low in practice.
The improvement presented in [27] adds one iteration of the MAP algorithm
without re-propagation to the initialization phase, which does not change the
time complexity, but allows early termination. The resulting algorithm was
shown to be time-optimal for an important class of weak LTL properties.
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4 Implementation

4.1 Used technologies

We developed an interpreter of timed automata in the Uppaal format and
incorporated it into DiVinE [5, 6]. DiVinE is an explicit-state LTL model-
checker written in C++ with heavy use of features from C++11 and templates
to maximize its run-time performance. Even though its focus platform is
Linux, DiVinE can also be compiled and run on Windows, since most of the
code is platform-independent.

To implement the timed automata interpreter, we used the UTAP1 li-
brary to read the Uppaal models from xml files and to provide an efficient
representation of timed automata and expressions on their edges.

States of the system are constructed from this representation and the
Uppaal DBM library2 is used to manipulate the part of each state that
represents a matrix of clock constraints. This library also provides tools
to work with DBM federations that can represent arbitrary sets of clock
valuations, which is necessary when performing zone subtractions necessary
for Algorithm 2.1.

If an ltl file is provided alongside the xml file containing the Uppaal
model, LTL properties are loaded from it and when a specific property is
chosen, it is negated and a Büchi automaton is created from it using the
toolkit already present in DiVinE. The Büchi automaton is multiplied with
the timed automata on-the-fly to create a transition system on which the
reachability analysis or accepting cycle detection algorithms are run.

4.2 Source code organization

Both the tool iself and its source code is available at its website3 under the
simplified BSD and GNU licenses. Parts relevant to timed automata can
be found in the divine/timed subdirectory with the exception of the file
divine/generator/timed.h and both aforementioned libraries that reside
in external.

The file timed.h contains the interface between DiVinE and the inter-
preter. Additionally, the handling of LTL properties including the on-the-fly
multiplication with the resulting Büchi automaton is done here. Most of the

1. Available under the LGPL license at http://people.cs.aau.dk/~adavid/utap/
2. Available under the GPL license at http://people.cs.aau.dk/~adavid/UDBM/
3. http://divine.fi.muni.cz/
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4. Implementation

Input: Source state (𝑙, 𝑍)
Output: Set of successors

1 𝑆𝑢𝑐𝑐𝑠← ∅
2 foreach edge (𝑙, 𝑔, 𝑅, 𝑙′) ∈ 𝐸 do
3 𝑍 ′ ← 𝑍 Z 𝑔
4 if 𝑍 ′ ̸= ∅ then
5 𝑍 ′ ← 𝑍 ′[𝑅 := 0]

// See the definition of 𝐸𝑥𝑡𝑟𝑎𝑑𝑖𝑓𝑓 on the page 14
6 foreach 𝑍 ∈ 𝐸𝑥𝑡𝑟𝑎𝑑𝑖𝑓𝑓 (𝑍 ′) do
7 if (𝑙′, 𝑍) is not urgent then
8 𝑍 ← 𝑍

↑

9 end
10 𝑍 ← 𝑍 Z 𝐼𝑛𝑣(𝑙′)
11 if 𝑍 ̸= ∅ then
12 𝑆𝑢𝑐𝑐𝑠← 𝑆𝑢𝑐𝑐𝑠 ∪ {(𝑙′, 𝑍)}
13 end
14 end
15 end
16 end
17 return 𝑆𝑢𝑐𝑐

Algorithm 4.1: Successor generation.

methods present in this file end up calling corresponding methods of the class
TAGen, where the actual state generation is done.

The successor generation is outlined as Algorithm 4.1. It uses the extrapo-
lation procedure 𝐸𝑥𝑡𝑟𝑎𝑑𝑖𝑓𝑓 defined on the page 14 and to support process and
channel priorities, the whole algorithm has to be enclosed in the procedure
listed as Algorithm 2.1 on the page 7.

Files gen.h and gen.cpp contain the definition and implementation of
the class TAGen, that takes care of reading the input model, extrapolation
with the presence of clock difference constraints (as described in Section 2.5.5)
and the actual successor generation.

The class Evaluator, defined in eval.h and eval.cpp, was designed to
encapsulate variable representation, expression evaluation, clocks and also
the computation of the location-dependent bounds. Since the type system
is quite complex, this class has to contain quite a lot of code to implement
every possible operation.

Other files contain utility classes and functions. For example, the class
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Clocks is used to encapsulate all calls to the DBM library.

4.3 User manual

Almost all models supported by Uppaal can be verified using DiVinE. The
basic syntax and semantics of the Uppaal modeling language is summarized
in Section 2.6. We tried to achieve as high compatibility as possible, but
some features are still left unimplemented in the current version, namely:

∙ Meta variables are treated as regular variables, which means that their
value is deterministic and states that differ only in meta variables are
treated as different states. This does not affect verification results, but
may lead to a bigger state space.

∙ Only structures containing integers are supported. If the input model
uses any structures consisting of arrays or other structures, it cannot
be loaded by DiVinE.

∙ Clock constraints involving non-constant integers are limited. Even
though we implemented basic heuristics that try to find the maximal
and minimal possible value of a non-constant expressions and it is
possible to compare single clocks to such expressions, we only support
the option to compare clock differences to constants.

We offer an important feature that is not available in Uppaal — the
generation of error states. If an error occurs during the verification, Uppaal
terminates, but provides no information about the kind of the error or where it
occurred. DiVinE, on the other hand, generates an error state corresponding
to the type of the error and continues with the verification. These error states
are found automatically during the reachability analysis and full trace from
the initial state is generated, which makes it easy to track down the sequence
of steps that caused the error and possibly fix it.

To run DiVinE on a Uppaal model, use the command:
divine verify model.xml

It runs the reachability analysis which tries to find any error states or
deadlocks. By default, the LU extrapolation is in use, so the time-lock
detection is disabled (reasons for this are explained in Section 2.5). The
--no-reduce option can be used to force the maximal bounds extrapolation,
thus allowing the time-lock detection.

To check LTL properties, a file with the same base name as the model
and an ltl extension has to be created. This file can contain one or more
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properties constructed using temporal operators G, F, X, U, R, W, boolean
operators written as &&, ||, !, ->, <->, brackets and atomic propositions.
Due to limitations of the tool that DiVinE uses to transform LTL formulae
to corresponding Büchi automata, atomic propositions can contain only lower
case letters, digits, underscore and must not begin with a digit. For this
reason, C-like defines can be used before property declarations to name any
boolean expression in the Uppaal modeling language with a suitable name.
The only additional limitation is that all clock constrains have to be defined
as separate atomic propositions.

All lines in the LTL file that do not begin with #define or #property
are ignored and can be used for comments. An example of a valid LTL file is
given below, other ones are shipped with DiVinE.
#define time1 (time <= 60)
#define time2 (time < 70)
#define safe1 (V1.safe)
#define safeall (V1.safe && V2.safe && V3.safe && V4.safe)

#property !F(time1 && safeall)
#property !((!safe1) U (time2 && safeall))

Verification of the first property in the corresponding LTL file is run using
the following command:
divine verify model.xml -p 0

To exclude all Zeno runs during the LTL verification (see Section 3.3 for
description of Zeno runs), the -f option can be used, and to obtain a full
report of the verification including an error trace, add -r to the arguments.
DiVinE also provides options to choose the number of worker threads, request
a specific algorithm to be run or enable specific reductions. The complete list
of available options can be found using the divine help command or in the
manual that is a part of DiVinE installation.

4.4 Property semantics

Semantics of timed models come from Uppaal and we have briefly described
them in Section 2.6. However, semantics of property specifications are slightly
different from Uppaal. First of all, our tool considers only runs where action
and delay transitions alternate. This means that DiVinE, unlike Uppaal,
does not consider runs where the system stays in one location for an infinite
amount of time.

The temporal operator X considers the next state to be a state that
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can be reached by performing exactly one action transition followed by an
arbitrary delay transition. For the purpose of LTL verification, all runs ending
in a deadlock are transformed to infinite ones by adding an artificial loop
over the final state. This ensures that the LTL verification is meaningful
even on systems, where not all runs are infinite. Without this transformation,
the property F𝐹𝑎𝑙𝑠𝑒 would hold on a timed automaton with one state and
no transitions, because it does not have any infinite runs, which means it
cannot have any infinite runs violating this property. If the LU reduction is
not applied, time-locks are also considered for this transformation.
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5 Experiments

5.1 Source models

To evaluate the performance of our implementation, we have run several tests
on the following models and properties:

∙ bridge.xml (distributed with Uppaal) — reachability analysis

∙ boxes.xml (distributed with Uppaal) — reachability analysis

∙ Variants of fischer.xml (distributed with Uppaal) with 4 to 9
processes. The properties being verified are:

1. G F 𝑐0 ∧G F 𝑐1, where 𝑐𝑖 is true if exactly 𝑖 processes are in a
critical section

2. G(𝑃.𝑟𝑒𝑞 =⇒ F𝑃.𝑤𝑎𝑖𝑡), where 𝑃 one of the processes

∙ Variants of train-gate.xml (distributed with Uppaal) with 4 to 9
processes. The properties being verified are:

1. safety property — the queue never overflows
2. G(𝑇.𝐴𝑝𝑝𝑟 =⇒ F𝑇.𝐶𝑟𝑜𝑠𝑠), where 𝑇 is one of the trains

∙ A model of energy regulatory networks discussed in [28]. We will refer
to it as bio_bistable1.

All measurements were performed on a machine with Intel Xeon X7560
2.27 GHz processors (64 cores total) using DiVinE 3.0 release candidate and
Uppaal 4.0.13. All listed numbers are averages of at least three measurement
results, except the one case when the verification took over three days.

5.2 Comparison with Uppaal

First of all, we compared time and memory requirements of our implementa-
tion to Uppaal and then measured how much can our results be improved
by employing multiple parallel workers.

Table 5.1 shows the time and memory required to perform verification
using DiVinE and Uppaal as well as the number of states that DiVinE

1. The model is available as new_br_NoTab_time_g1s_bistable.xml at http://anna.fi.
muni.cz/~xsafran1/Work/cs2bio/
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5. Experiments

DiVinE Uppaal
Model Time Memory State Time Memory

[s] [MB] count [s] [MB]
bio_bistable𝑑 25.6 348 780673 303.9 107
boxes𝑑 0.1 152 8884 0.1 14
bridge𝑑 0.0 143 206 0.0 12
fischer4𝑝2 0.1 143 368 0.0 15
fischer5𝑝2 0.1 143 1615 0.1 17
fischer6𝑝2 0.2 147 7322 1.7 42
fischer7𝑝2 0.7 160 33525 57.2 213
fischer8𝑝2 3.7 220 153044 5073.2 1989
fischer9𝑝2 20.2 581 692699 323234.6 15660
train-gate4𝑝2 0.1 143 698 0.0 13
train-gate5𝑝2 0.1 143 3716 0.0 13
train-gate6𝑝2 0.6 152 22998 0.1 15
train-gate7𝑝2 4.0 216 164078 0.6 26
train-gate8𝑝2 38.4 867 1330442 5.5 127
train-gate9𝑝2 382.1 8014 12097536 60.3 990

𝑑 — the deadlock-freedom property
𝑝2 — property 2 for corresponding model expressed as G(𝜑 =⇒ F𝜓) or 𝜑 --> 𝜓

Table 5.1: Comparison to Uppaal.
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visited. DiVinE was run with default settings, which means either OWCTY
or reachability algorithm is run with two parallel workers. Uppaal was run
with memory optimizations turned off (-C option). The results on small
models turned out according to expectations — DiVinE requires comparable
amounts of time, but needs significantly more memory. This happens due to
the lack of memory optimizations and because of the fact that the DiVinE
executable alone requires around 140 megabytes of memory to run.

On larger models, the results were quite varied. When run on the model
bio_bistable, DiVinE was over ten times faster than Uppaal, but required
three times as much memory. Note that this model uses meta variables, which
are treated as regular variables by DiVinE. This means that DiVinE actually
might have generated more states than Uppaal. The results also show that
DiVinE performs really well on larger variants of the Fischer’s protocol. Not
only does DiVinE need less memory than Uppaal for variants with more
than 7 processes, but the gap in the time requirements is astronomical. The
verification of fischer9 took Uppaal over 3 days, while DiVinE finished in
20 seconds when run on two threads and in 6 seconds when run on 8 threads.
On the other hand, DiVinE was both slower and needed more memory on
train-gate models. However, when 16 threads are used, DiVinE manages
to finish the the same task in 57 seconds, which is already marginally faster
than Uppaal and it can be sped-up even further.

Different effectiveness of extrapolation and subsumption on different mod-
els is most likely the reason why the results are so varied. The larger variants
of the Fisher’s protocol seem to be particularly unfavourable for Uppaal
and after enabling space optimizations on these models, Uppaal needed
even more time — the verification of fischer8 took over 9 hours, which is
seven times slower than verification with the -C option. For comparison, the
difference in time on all versions of train-gate between the run with or
without memory optimizations was less than 10 %.

Because DBMs are stored as a part of every state, DiVinE currently
uses significantly more memory than Uppaal to store the same state space
in many cases. However, in the time of writing of this thesis, a tree-based
compression technique for DiVinE was in development with the aim to
solve this problem and it will most likely be included in DiVinE 3.1 release.
The preliminary results are quite promising — reachability on fischer9
can be done in 220 MB of memory and for fischer11, this compression
reduces memory requirements from 120 GB to 3 GB with negligible impact
on the verification speed. See [29] for detailed description of this compression
technique and its experimental evaluation.

Hash compaction [30] is a different approach to memory requirements
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fischer9 train-gate9
prop. 1 prop. 2 prop. 1 prop. 2

time MB time MB time MB time MB
1 82.0 609 29.6 416 202.7 3357 497.7 5873
2 64.0 973 20.7 579 115.8 3555 395.8 8009
4 35.4 1139 11.2 611 61.0 3645 207.3 8938
8 18.3 1273 6.2 656 32.3 3717 111.0 9448

16 9.6 1449 3.2 820 16.1 3837 54.8 9823
32 5.2 1765 1.8 1119 8.7 4227 29.0 10262

Table 5.2: Scalability — time and memory requirements.

reduction. Its main idea is to store only hashes in the hash table and not
the states themselves. This can greatly reduce memory requirements, but
since some states may be left unvisited due to hash collisions, there is a small
probability that an existing counter-example may be omitted when the hash
comapction is enabled.

5.3 Scalability

The scalability of our implementation was measured on the two biggest
models, train-gate9 and fischer9. The nested DFS algorithm was run in
the case of one worker and the remaining measurements were using OWCTY,
since there is no reason to run OWCTY on one thread. Figures 5.1, 5.2 and
Table 5.2 show that even on 32 threads, the verification can be sped-up at
least 16 times in comparison to the single-threaded NDFS. We have also
measured the scalability on bio_bistable, but it turned out that is has only
1762116 edges for 780673 states and also has a fairly linear structure that
prevents any algorithm to fully utilize multiple threads.

One of the reasons for reasonably good scalability on most models is that
the generation of successor states for timed models is quite expensive when
compared to processing simpler modeling languages as dve, because many
DBM operations have quadratic or cubic complexity in the number of clocks
and operations on federations can be even more expensive. This means a
lot of time is spent by generating states and the communication with other
workers does not occur so frequently.

5.4 Extrapolation comparison

Other batch of measurements aimed to evaluate the effect of different ex-
trapolation techniques on different models. Table 5.3 shows the size of the

36



5. Experiments

12 4 8 16 32
0

0.2

0.4

0.6

0.8

1

Threads

Effi
ci

en
cy

property 1
property 2

12 4 8 16 32

5

10

15

20

25

Threads

Sp
ee

du
p

Figure 5.1: Scalability on fischer9.

12 4 8 16 32
0

0.2

0.4

0.6

0.8

1

Threads

Effi
ci

en
cy

property 1
property 2

12 4 8 16 32

5

10

15

20

25

Threads

Sp
ee

du
p

Figure 5.2: Scalability on train-gate9.
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Model M Md LU LUd LBMd LBLU LBLUd
boxes 117506 12088 117506 11990 8962 12175 8884
bridge 9315 723 206 206 288 206 206
bio_bistable 780673 780673 780673 780673 780673 780673 780673
fischer4 4209 1792 4209 1792 915 293 293
fischer5 63561 15142 63561 15142 7431 1278 1278
fischer6 1146589 140716 1146589 140716 66609 5799 5799
fischer7 24095709 1425818 24095709 1425818 655075 26652 26652
train-gate4 18869 9977 16997 8633 413 413 413
train-gate5 553276 200776 493476 170976 2141 2141 2141
train-gate6 20093023 3923713 17776483 3283573 12955 12955 12955
train-gate7 — 73427012 — 61105808 90833 90833 90833

Table 5.3: Size of the tate space with different extrapolations.

state space of various models under different extrapolations. 7 different ex-
trapolation technique combinations were used, M, Md, LU and LUd stand
for extrapolations 𝐸𝑥𝑡𝑟𝑎𝑀 , 𝐸𝑥𝑡𝑟𝑎+

𝑀 , 𝐸𝑥𝑡𝑟𝑎𝐿𝑈 and 𝐸𝑥𝑡𝑟𝑎+
𝐿𝑈 introduced in

Section 2.5. LB marks extrapolations where all bounds are computed locally
for each location instead of using global bounds.

As you can see from the results, differences between the best extrapolation
and the basic one are immense and it seems that the use of location-dependent
bounds has the biggest impact overall. The benefit of separating lower and
upper bounds or using diagonal variants of extrapolations highly varies for
different models. It may seem strange that the state space of bio_bistable
has the same number of states under all extrapolations. The reason for this
is that all of its clocks are compared to integer variables, which means that
clock bounds can be computed only from ranges of these variables (possibly
improved using heuristics) and are always the same regardless of the way we
compute them.

The release version of DiVinE allows users to use extrapolations LBMd
(--no-reduce option) or LBLUd (default), since there is virtually no reason
to use the other ones. However, they can still be accessed by enabling
respective directives in eval.cpp and clocks.h and recompiling DiVinE.
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6 Conclusions

We have presented an implementation of a timed automata interpreter incor-
porated into DiVinE that allows parallel and distributed LTL verification of
timed systems. Uppaal models with minor restrictions can be directly used
as the input and the support of full LTL allows us to verify of a wider variety
of properties than Uppaal does. We also performed experimental evaluation
showing that our implementation is faster than Uppaal on many models and
can be sped-up many times by employing parallelization. Moreover, our tool
seems to be the fist non-prototype LTL model checker for timed automata
supporting clock difference constraints and very efficient extrapolations.

For the future work, it would be beneficial to implement methods to
reduce the memory consumption and by the time of writing this thesis, one
technique based on tree compression was already under development.
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