Compositional Program Analysis & Invariant Generation using Program Abstraction

Jakub Šárník

ParaDiSe seminar, Spring 2021

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction

Solution

Implementation, problems and future directions

Conclusion

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Motivation

- We want: program analysis with nondeterministic data
- We saw: abstraction support in DIVINE with abstract and symbolic representations

(ロ)、

Motivation

- We want: program analysis with nondeterministic data
- We saw: abstraction support in DIVINE with abstract and symbolic representations
- ► We have: problems
 - intractable to analyse whole programs at once (i.e. a single verification run from the entry point to all reachable states)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Motivation

- We want: program analysis with nondeterministic data
- We saw: abstraction support in DIVINE with abstract and symbolic representations
- We have: problems
 - intractable to analyse whole programs at once (i.e. a single verification run from the entry point to all reachable states)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

We need: decomposition and verification of smaller units

Idea

- 1. Decompose the program into functions
- 2. Analyse each functions in isolation
- 3. Remember an overapproximation of the function's behavior, use it in further analysis instead of the function itself
 - function summaries ¹

¹Patrice Godefroid, Compositional Dynamic Test Generation. $\langle \Xi \rangle = \langle \Xi \rangle = 0 \land \mathbb{C}$

Idea

- 1. Decompose the program into functions
- 2. Analyse each functions in isolation
- 3. Remember an overapproximation of the function's behavior, use it in further analysis instead of the function itself
 - function summaries ¹
- Warning: most of this work exists mainly in minds of Mornfall and me. Rough edges and outright problems lie ahead.

¹Patrice Godefroid, Compositional Dynamic Test Generation. $\langle \Xi \rangle = \langle \Xi \rangle = 0 \land \mathbb{C}$

Outline

1. Compute the call graph of module M under analysis 2. Let M' be a topologically sorted SCC decomposition of M^R

a node can now have more than one entry point

- 3. Compute a summary s for each unit entry point f in M'
 - further analysis uses s on call-sites where f would be called

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Call graph decomposition

```
Example
int main() {
  return foo(5) + bar(4);
}
int foo(int i) {
  if (i == 0)
    return 0;
  return 1 + bar(i - 1);
}
int bar(int i) {
  if (i == 0)
    return 0;
  return 1 + foo(i - 1);
}
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Call graph decomposition

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

Remark: Craig interpolation

Definition

Let (A, B) be a pair of formulae such that $A \wedge B$ is unsatisfiable. We say that formula I is an (A, B)-interpolant if the following properties hold:

- ► $A \rightarrow I$,
- $I \wedge B$ is unsatisfiable,
- every variable in I occurs both in A and B.²

Theorem (Craig)

If (A, B) is a pair of first-order formulae such that $A \wedge B$ is unsatisfiable, an (A, B)-interpolant exists.

 $^{^2}$ K.L. McMillan, Applications of Craig Interpolants in Model Checking $_{\rm M}$ $_{\rm H}$ $_{\rm M}$

Summary computation

- Let $f : T_1 \times T_2 \times \ldots \times T_n \to T_r$ be a function
- ▶ We want to summarise *f*, we will use interpolation

³Technically $x_1 \vee \neg x_1 \vee x_2 \vee x_3 \vee \ldots \vee x_n$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへの

Summary computation

- Let $f : T_1 \times T_2 \times \ldots \times T_n \to T_r$ be a function
- We want to summarise f, we will use interpolation
- 1. Assume a trivial precondition $A \leftarrow \top$ ³
- 2. Set all parameters to unbounded symbolic terms $(x_1, x_2, ...)$

- 3. Run DIVINE on $f(x_1, x_2, ...)$. If no error \rightarrow done
- 4. If failed, extract the path condition B from the error state
- 5. Set $A \leftarrow interpolate(\neg B, A)$
- 6. Repeat 3 with the new precondition

³Technically $x_1 \vee \neg x_1 \vee x_2 \vee x_3 \vee \ldots \vee x_n$

Summary computation

• If we get from A to B, $A \rightarrow B$ holds, $A \wedge \neg B$ is unsatisfiable

we can compute the interpolant

- The new precondition is built so that it disallows the counterexample (and does not allow previous counterexamples)
 - eventually converges to a precondition that disallows all error runs

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Once a correct precondition is computed, a constraint on the return value can be determined
 - this gives us the summary

Interesting parameters

- Not every function contains a reachable error
- Not every parameter can influence error manifestation
 - need to determine which parameters are interesting

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Interesting parameters

Not every function contains a reachable error

- Not every parameter can influence error manifestation
 - need to determine which parameters are interesting

Definition

Let f be a function with parameter x. Parameter x is interesting if there are values x_1 , x_2 such that:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- f(x₁) returns successfully,
- $f(x_2)$ yields an error.

Interesting parameters

Example

```
void foo(int i) {
    assert(i == 1);
}
```

i is an interesting parameter

Example

```
void foo(int i) {
    assert(false);
}
```

no interesting parameters

Example

```
int foo(int i, int j) {
    assert(i > 0);
    return i * j;
}
```

only *i* is an interesting parameter

Example

```
int foo(int i, int j) {
    int res = i * j;
    assert(res > 0);
    return res;
}
```

both parameters are interesting

Interesting sets of parameters

- We compute function preconditions
- Uninteresting parameters can be ignored
- We have to find the greatest set of interesting parameters
 - Systematically explore all partitions of parameters into interesting (+) and uninteresting (-)
 - Track which parameters participate in which values
 - parameters stop exploration on branches
 - If an error is found when flipping from to +, a parameter is interesting (not necessarily the one flipped)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Implementation state

- We can use the LA LA Land infrastructure to find interesting parameters
 - Abstract domains unit, counit, idtrack
 - This part is done
- Everything happens on LLVM bitcode layer
 - a tool named SHOOP⁴

⁴No one remembers what the abbreviation means $\langle \Box \rangle \langle \Box$

Problems and future directions

- Good interpolants in bitvector logic an open problem ⁵
- Interaction of decomposition and parallel programs possibly problematic
- Loss of precision in summarization maybe some kind of refinement is needed ⁶
- So far only functions with *n* inputs and a single output
 - Need to analyse pointer arguments and determine *in*/out usage
 - Global state is another problem
- Possible use for test synthesis

⁵Alberto Griggio, Effective Word-Level Interpolation for Software Verification

⁶Ondrej Sery et al., Interpolation-Based Function Summaries in Bounded Model Checking

Summary

- Modular approach to verification in DIVINE using function summaries through interpolation
- Still in early implementation phase
- Conceptual problems need to be overcome
 - mainly precise usage of interpolants and effective interpolant generation in bitvector logic

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

In the future, hopefully another helpful part of DIVINE