
Compositional Program Analysis & Invariant
Generation using Program Abstraction

Jakub Šárńık

ParaDiSe seminar, Spring 2021



Contents

Introduction

Solution

Implementation, problems and future directions

Conclusion



Motivation

I We want: program analysis with nondeterministic data

I We saw: abstraction support in DIVINE with abstract and
symbolic representations

I We have: problems
I intractable to analyse whole programs at once (i.e. a single

verification run from the entry point to all reachable states)

I We need: decomposition and verification of smaller units



Motivation

I We want: program analysis with nondeterministic data

I We saw: abstraction support in DIVINE with abstract and
symbolic representations

I We have: problems
I intractable to analyse whole programs at once (i.e. a single

verification run from the entry point to all reachable states)

I We need: decomposition and verification of smaller units



Motivation

I We want: program analysis with nondeterministic data

I We saw: abstraction support in DIVINE with abstract and
symbolic representations

I We have: problems
I intractable to analyse whole programs at once (i.e. a single

verification run from the entry point to all reachable states)

I We need: decomposition and verification of smaller units



Idea

1. Decompose the program into functions

2. Analyse each functions in isolation

3. Remember an overapproximation of the function’s behavior,
use it in further analysis instead of the function itself
I function summaries 1

I Warning: most of this work exists mainly in minds of Mornfall
and me. Rough edges and outright problems lie ahead.

1Patrice Godefroid, Compositional Dynamic Test Generation.



Idea

1. Decompose the program into functions

2. Analyse each functions in isolation

3. Remember an overapproximation of the function’s behavior,
use it in further analysis instead of the function itself
I function summaries 1

I Warning: most of this work exists mainly in minds of Mornfall
and me. Rough edges and outright problems lie ahead.

1Patrice Godefroid, Compositional Dynamic Test Generation.



Outline

1. Compute the call graph of module M under analysis

2. Let M ′ be a topologically sorted SCC decomposition of MR

I a node can now have more than one entry point

3. Compute a summary s for each unit entry point f in M ′

I further analysis uses s on call-sites where f would be called



Call graph decomposition

Example

int main() {

return foo (5) + bar (4);

}

int foo(int i) {

if (i == 0)

return 0;

return 1 + bar(i - 1);

}

int bar(int i) {

if (i == 0)

return 0;

return 1 + foo(i - 1);

}



Call graph decomposition

main

foo bar



Remark: Craig interpolation

Definition
Let (A,B) be a pair of formulae such that A ∧ B is unsatisfiable.
We say that formula I is an (A,B)–interpolant if the following
properties hold:

I A→ I ,

I I ∧ B is unsatisfiable,

I every variable in I occurs both in A and B. 2

Theorem (Craig)

If (A,B) is a pair of first-order formulae such that A ∧ B is
unsatisfiable, an (A,B)–interpolant exists.

2K.L. McMillan, Applications of Craig Interpolants in Model Checking



Summary computation

I Let f : T1 × T2 × . . .× Tn → Tr be a function

I We want to summarise f , we will use interpolation

1. Assume a trivial precondition A← > 3

2. Set all parameters to unbounded symbolic terms (x1, x2, . . . )

3. Run DIVINE on f (x1, x2, . . .). If no error → done

4. If failed, extract the path condition B from the error state

5. Set A← interpolate(¬B,A)

6. Repeat 3 with the new precondition

3Technically x1 ∨ ¬x1 ∨ x2 ∨ x3 ∨ . . . ∨ xn



Summary computation

I Let f : T1 × T2 × . . .× Tn → Tr be a function

I We want to summarise f , we will use interpolation

1. Assume a trivial precondition A← > 3

2. Set all parameters to unbounded symbolic terms (x1, x2, . . . )

3. Run DIVINE on f (x1, x2, . . .). If no error → done

4. If failed, extract the path condition B from the error state

5. Set A← interpolate(¬B,A)

6. Repeat 3 with the new precondition

3Technically x1 ∨ ¬x1 ∨ x2 ∨ x3 ∨ . . . ∨ xn



Summary computation

I If we get from A to B, A→ B holds, A ∧ ¬B is unsatisfiable
I we can compute the interpolant

I The new precondition is built so that it disallows the
counterexample (and does not allow previous
counterexamples)
I eventually converges to a precondition that disallows all error

runs

I Once a correct precondition is computed, a constraint on the
return value can be determined
I this gives us the summary



Interesting parameters

I Not every function contains a reachable error
I Not every parameter can influence error manifestation

I need to determine which parameters are interesting

Definition
Let f be a function with parameter x . Parameter x is interesting if
there are values x1, x2 such that:

I f (x1) returns successfully,

I f (x2) yields an error.



Interesting parameters

I Not every function contains a reachable error
I Not every parameter can influence error manifestation

I need to determine which parameters are interesting

Definition
Let f be a function with parameter x . Parameter x is interesting if
there are values x1, x2 such that:

I f (x1) returns successfully,

I f (x2) yields an error.



Interesting parameters

Example

void foo(int i) {

assert(i == 1);

}

i is an interesting parameter

Example

void foo(int i) {

assert(false);

}

no interesting parameters

Example

int foo(int i, int j) {

assert(i > 0);

return i * j;

}

only i is an interesting parameter

Example

int foo(int i, int j) {

int res = i * j;

assert(res > 0);

return res;

}

both parameters are interesting



Interesting sets of parameters

I We compute function preconditions

I Uninteresting parameters can be ignored
I We have to find the greatest set of interesting parameters

I Systematically explore all partitions of parameters into
interesting (+) and uninteresting (−)

I Track which parameters participate in which values
I − parameters stop exploration on branches
I If an error is found when flipping from − to +, a parameter is

interesting (not necessarily the one flipped)

+,+

+,− −,+

−,−



Implementation state

I We can use the LA LA Land infrastructure to find interesting
parameters
I Abstract domains unit, counit, idtrack
I This part is done

I Everything happens on LLVM bitcode layer
I a tool named SHOOP4

4No one remembers what the abbreviation means



Problems and future directions

I Good interpolants in bitvector logic — an open problem 5

I Interaction of decomposition and parallel programs — possibly
problematic

I Loss of precision in summarization — maybe some kind of
refinement is needed 6

I So far only functions with n inputs and a single output
I Need to analyse pointer arguments and determine in/out usage
I Global state is another problem

I Possible use for test synthesis

5Alberto Griggio, Effective Word-Level Interpolation for Software
Verification

6Ondrej Sery et al., Interpolation-Based Function Summaries in Bounded
Model Checking



Summary

I Modular approach to verification in DIVINE using function
summaries through interpolation

I Still in early implementation phase
I Conceptual problems need to be overcome

I mainly precise usage of interpolants and effective interpolant
generation in bitvector logic

I In the future, hopefully another helpful part of DIVINE


	Introduction
	Solution
	Implementation, problems and future directions
	Conclusion

