
The C/C++ Concurrency
and Effective Stateless Model Checking for C/C++ Concurrency

presented by Vladimír Štill

5th March 2018

Concurrency in C and C++

Pre C11/C++11

no support for concurrency in the language and standard library
no standard-defined behaviour for parallel programs

C11/C++11

standard defines behaviour of parallel programs
standard library defines:

thread manipulation: threads, futures
synchronization: mutexes, condition variables, atomics

1 / 20

C11 Variable Access Modes in Parallel Programs I

not-atomic/unordered

cannot be used for synchronization
two threads can access non-atomic variable at the same time
and at least one of them modifies it – data race → undefined
behaviour

volatile does not change anything

2 / 20

C11 Variable Access Modes in Parallel Programs I

not-atomic/unordered

cannot be used for synchronization
two threads can access non-atomic variable at the same time
and at least one of them modifies it – data race → undefined
behaviour
volatile does not change anything

2 / 20

C11 Variable Access Modes in Parallel Programs II
#include <stdatomic.h> // <atomic> in C++
#include <pthread.h>
#include <assert.h>

_Atomic int x; // or atomic_int x;
// std::atomic< int > x; in C++

void *worker1(void *_) {
atomic_fetch_add(&x, 1); // atomic, synchronizes
return NULL; // C++: x.fetch_add(1);

}
int main() {

pthread_t t1;
pthread_create(&t1, NULL, worker1, NULL);
++x; // atomic, synchronizes
pthread_join(t1, NULL);
assert(x == 2); // OK

}
3 / 20

C11 Variable Access Modes in Parallel Programs III

atomic access

for variables declared with atomic_* type or with _Atomic
qualifier
by default all access is fully atomic

all accesses to all atomic variables have a single total order in
each run
i.e. interleaving semantics

atomic ordering can be relaxed

4 / 20

C11 Variable Access Modes in Parallel Programs III

atomic access

for variables declared with atomic_* type or with _Atomic
qualifier
by default all access is fully atomic

all accesses to all atomic variables have a single total order in
each run
i.e. interleaving semantics

atomic ordering can be relaxed

4 / 20

Memory Model

semantics of memory access
of hardware: x86/x86_64, ARM, POWER
of programming language: C11/C++11, Java, C#

what primitives/instructions are supported (fences, CAS,
RMW. . .)
what synchronization is guaranteed
what reordering can be observed

5 / 20

C11/C++11 Memory Model

designed to allow high-performance even of very relaxed
hardware (POWER/ARM)
different levels of synchronization: memory order
x.fetch_add(1, std::memory_order_relaxed); // C++

ranges from almost no guarantees to interleaving semantics

6 / 20

Memory Orders I

relaxed – only guarantees that operations on the single
location are ordered

safe counters
termination indication (from signal handler, . . .)
can be reordered with other operations

7 / 20

Memory Orders II
release – for write operations
acquire – for read operations
together ensure all previous writes will be visible when a release
write is observed by an acquire read (simplified)

previous is anything happening control-flow-before in the writing
thread

int x;
std::atomic< bool > f;

void t1() {
x = 42;
f.store(true, std::memory_order_release);

}
void t2() {

while (!f.load(std::memory_order_acquire)) { }
assert(x == 42); // OK

}
8 / 20

Memory Orders III

acquire+release – for read-modify-write/compare-and-swap
operations
sequential consistency – all SC operations are in a total order

the default
atomics in other programming languages are usually SC

SC can be very expensive
not all data structures need SC

acquire/release usually sufficient for queues
relaxed for just counting/flagging objects

mutexes synchronize as SC

9 / 20

Memory Orders III

acquire+release – for read-modify-write/compare-and-swap
operations
sequential consistency – all SC operations are in a total order

the default
atomics in other programming languages are usually SC

SC can be very expensive
not all data structures need SC

acquire/release usually sufficient for queues
relaxed for just counting/flagging objects

mutexes synchronize as SC

9 / 20

Effective Stateless Model Checking
for C/C++ Concurrency

Michalis Kokologiannakis Ori Lahav

Konstantinos Sagonas Viktor Vafeiadis

10 / 20

Prelude: The Two Main Analysis Approaches

Operational-Semantics Based Analysis

how program executes on an abstract machine?
interleavings
instruction reordering simulation
tools: DIVINE, CBMC, Nidhugg, . . .

Axiomatic-Semantic Based Analysis

where is a read allowed to take value from?
what reordering is allowed?
executions graphs
tools: Herd, RCMC, . . .

11 / 20

Introduction

Stateless Model Checking

for parallel programs, often in real-world languages
originally based on operational (interleaving) semantics
explores state space
does not store closed set

cannot handle non-terminating programs
can explore some states repeatedly

Dynamic Partial Order Reduction

eliminates some traces, reduces redundant exploration
usually based on some notion of equivalence of traces
there are optimal techniques for certain equivalences

12 / 20

Introduction

Stateless Model Checking

for parallel programs, often in real-world languages
originally based on operational (interleaving) semantics
explores state space
does not store closed set
cannot handle non-terminating programs
can explore some states repeatedly

Dynamic Partial Order Reduction

eliminates some traces, reduces redundant exploration
usually based on some notion of equivalence of traces
there are optimal techniques for certain equivalences

12 / 20

Introduction

Stateless Model Checking

for parallel programs, often in real-world languages
originally based on operational (interleaving) semantics
explores state space
does not store closed set
cannot handle non-terminating programs
can explore some states repeatedly

Dynamic Partial Order Reduction

eliminates some traces, reduces redundant exploration
usually based on some notion of equivalence of traces
there are optimal techniques for certain equivalences

12 / 20

Execution Graphs I

the technique from the paper is based on execution graphs, not
interleaving & DPOR

records memory operations
values of writes
origin of value for reads
dependencies

R(x)W (x , 1)W (x , 1)

W (x , 0)

sb sb

rf

sb

sb = sequenced before; rf = read-from

13 / 20

Execution Graphs II

not all execution graphs are valid = consistent

W (x , 1)

W (x , 0)

R(x)

R(x)

R(x)

R(x)

W (x , 1)

W (x , 0)

rf sb

rf

sb

sb sb

sb

sb

rf

rf

14 / 20

Execution Graph Generation

a = x; || x = 1;
b = x; ||

W (x , 0)

initialization

15 / 20

Execution Graph Generation

a = x; || x = 1;
b = x; ||

W (x , 0)

in what order should actions be added?

15 / 20

Execution Graph Generation

a = x; || x = 1;
b = x; ||

W (x , 0)

R(x)

sb rf

add a = x

15 / 20

Execution Graph Generation

a = x; || x = 1;
b = x; ||

W (x , 0)

R(x)

R(x)

sb rf

rf

sb

add b = x

15 / 20

Execution Graph Generation

a = x; || x = 1;
b = x; ||

W (x , 0)

R(x)

R(x)

W (x , 1)

sb rf

rf

sb

sb

add x = 1

15 / 20

Execution Graph Generation

a = x; || x = 1;
b = x; ||

W (x , 0)

R(x)

R(x)

W (x , 1)

sb rf

rf

sb

sb

explore again adding x = 1 first?

15 / 20

Execution Graph Generation

a = x; || x = 1;
b = x; ||

W (x , 0)

R(x)

R(x)

W (x , 1)

sb rf

rf

sb

sb

no. . . revisit reads

15 / 20

Execution Graph Generation

a = x; || x = 1;
b = x; ||

W (x , 0)

R(x) W (x , 1)

sb sb

rf

option 1: revisit a = x

15 / 20

Execution Graph Generation

a = x; || x = 1;
b = x; ||

W (x , 0)

R(x)

R(x)

W (x , 1)

sb

sb

sb

rf

rf

option 1: revisit a = x + add b = x

15 / 20

Execution Graph Generation

a = x; || x = 1;
b = x; ||

W (x , 0)

R(x)

R(x)

W (x , 1)

sb rf

sb

sb

rf

option 2: revisit b = x

15 / 20

Exploration Requirements

generate all consistent graphs and

1 don’t generate any inconsistent graphs
2 don’t generate any graph multiple times
3 don’t store generated graphs

16 / 20

Revisitable Reads

revisiting reads all the time causes redundant explorations
only one instance of read needs to be revisitable

W (x , 0)

R(x) W (x , 1)

sb rf

W (x , 0)

R(x) W (x , 1)

sb rf sb

no revisit

W (x , 0)

R(x) W (x , 1)

sb

rf

sb

revisit

17 / 20

Revisitable Reads

revisiting reads all the time causes redundant explorations
only one instance of read needs to be revisitable

W (x , 0)

R(x) W (x , 1)

sb rf

W (x , 0)

R(x) W (x , 1)

sb rf sb

no revisit

W (x , 0)

R(x) W (x , 1)

sb

rf

sb

revisit

17 / 20

Revisitable Reads

revisiting reads all the time causes redundant explorations
only one instance of read needs to be revisitable

W (x , 0)

R(x) W (x , 1)

sb rf

W (x , 0)

R(x) W (x , 1)

sb rf sb

no revisit

W (x , 0)

R(x) W (x , 1)

sb

rf

sb

revisit

17 / 20

Efficient Execution Graph Generation

generate all consistent graphs and

1 don’t generate any inconsistent graphs
2 don’t generate any graph multiple times
3 don’t store generated graphs

what is needed?

(non)revisitable reads

prefix closed execution graphs – all prefixes of consistent EG
are also consistent

not really for C11/C++11 standard’s memory model!
paper uses repaired C11 memory model
prefix closed in absence of RMW/CAS & SC atomics
special handling for these (can generate duplicities)

18 / 20

Efficient Execution Graph Generation

generate all consistent graphs and

1 don’t generate any inconsistent graphs
2 don’t generate any graph multiple times
3 don’t store generated graphs

what is needed?

(non)revisitable reads
prefix closed execution graphs – all prefixes of consistent EG
are also consistent

not really for C11/C++11 standard’s memory model!
paper uses repaired C11 memory model

prefix closed in absence of RMW/CAS & SC atomics
special handling for these (can generate duplicities)

18 / 20

Efficient Execution Graph Generation

generate all consistent graphs and

1 don’t generate any inconsistent graphs
2 don’t generate any graph multiple times
3 don’t store generated graphs

what is needed?

(non)revisitable reads
prefix closed execution graphs – all prefixes of consistent EG
are also consistent

not really for C11/C++11 standard’s memory model!
paper uses repaired C11 memory model
prefix closed in absence of RMW/CAS & SC atomics
special handling for these (can generate duplicities)

18 / 20

Results

http://plv.mpi-sws.org/rcmc/paper.pdf

19 / 20

http://plv.mpi-sws.org/rcmc/paper.pdf

Summary

tool RCMC
analysis of C under the repaired C11 memory model
stateless model checking, building execution graphs
loop unrolling to ensure termination

20 / 20

	Effective Stateless Model Checkingfor C/C++ Concurrency

