The C/C++ Concurrency
and Effective Stateless Model Checking for C/C++ Concurrency

presented by Vladimir Still

5th March 2018

Concurrency in C and C++ E |

Pre C11/C++11

m no support for concurrency in the language and standard library
m no standard-defined behaviour for parallel programs

C11/C++11

m standard defines behaviour of parallel programs
m standard library defines:

m thread manipulation: threads, futures
m synchronization: mutexes, condition variables, atomics

1/20

_C11 Variable Access Modes in Parallel Programs | K

ulm}

not-atomic/unordered

m cannot be used for synchronization

m two threads can access non-atomic variable at the same time

and at least one of them modifies it — data race — undefined
behaviour

2/20

_C11 Variable Access Modes in Parallel Programs | K

ulm}

not-atomic/unordered

m cannot be used for synchronization

m two threads can access non-atomic variable at the same time

and at least one of them modifies it — data race — undefined
behaviour

m volatile does not change anything

2/20

_C11 Variable Access Modes in Parallel Programs | B |

#include <stdatomic.h> // <atomic> in C++
#include <pthread.h>
#include <assert.h>

_Atomic int x; // or atomic_int z;
// std::atomic< int > z; in C++
void *worker1(void *_) {
atomic_fetch_add(&x, 1); // atomic, synchronizes
return NULL; // C++: z.fetch_add(1);
}
int main() {
pthread_t ti;
pthread_create(&t1, NULL, workerl, NULL);
++x; // atomic, synchronizes
pthread_join(t1, NULL);
assert(x == 2); // UK

3/20

C11 Variable Access Modes in Parallel Programs |l| B |

atomic access
m for variables declared with atomic_* type or with _Atomic
qualifier
m by default all access is fully atomic

m all accesses to all atomic variables have a single total order in
each run
m i.e. interleaving semantics

4/20

C11 Variable Access Modes in Parallel Programs |l| B |

atomic access

m for variables declared with atomic_* type or with _Atomic
qualifier
m by default all access is fully atomic

m all accesses to all atomic variables have a single total order in
each run
m i.e. interleaving semantics

m atomic ordering can be relaxed

4/20

) m)
Memory Model E:

m semantics of memory access
m of hardware: x86/x86_64, ARM, POWER
m of programming language: C11/C++11, Java, C#

m what primitives/instructions are supported (fences, CAS,
RMW. . .)

m what synchronization is guaranteed

m what reordering can be observed

5/ 20

| C11/C++11 Memory Model Ik |

m designed to allow high-performance even of very relaxed
hardware (POWER/ARM)

m different levels of synchronization: memory order
x.fetch_add(1, std::memory_order_relaxed); // C++

m ranges from almost no guarantees to interleaving semantics

6/ 20

) m)
Memory Orders | E:

m relaxed — only guarantees that operations on the single
location are ordered

m safe counters
m termination indication (from signal handler, ...)
m can be reordered with other operations

7/20

) m)
Memory Orders Il E:

m release — for write operations

m acquire — for read operations

m together ensure all previous writes will be visible when a release

write is observed by an acquire read (simplified)
m previous is anything happening control-flow-before in the writing
thread

int x;
std::atomic< bool > f;

void t1() {
x = 42;
f.store(true, std::memory_order_release);
}
void t2() {
while (!f.load(std::memory_order_acquire)) { }
assert(x == 42); // UK
}

8/ 20

) m)
Memory Orders Il E:

m acquire+release — for read-modify-write/compare-and-swap
operations

m sequential consistency — all SC operations are in a total order

m the default
m atomics in other programming languages are usually SC

9/20

10
Memory Orders Il | &

m acquire+release — for read-modify-write/compare-and-swap
operations

m sequential consistency — all SC operations are in a total order

m the default
m atomics in other programming languages are usually SC

m SC can be very expensive
m not all data structures need SC

m acquire/release usually sufficient for queues
m relaxed for just counting/flagging objects

m mutexes synchronize as SC

9/20

Effective Stateless Model Checking
for C/C++ Concurrency

Michalis Kokologiannakis Ori Lahav

Konstantinos Sagonas Viktor Vafeiadis

10 /20

_Prelude: The Two Main Analysis Approaches E: |

Operational-Semantics Based Analysis

m how program executes on an abstract machine?
m interleavings

m instruction reordering simulation

m tools: DIVINE, CBMC, Nidhugg, ...

Axiomatic-Semantic Based Analysis

m where is a read allowed to take value from?
m what reordering is allowed?

m executions graphs

m tools: Herd, RCMC, ...

11/20

. g
Introduction B

Stateless Model Checking

m for parallel programs, often in real-world languages
m originally based on operational (interleaving) semantics
m explores state space

m does not store closed set

12 /20

. 0
Introduction B

Stateless Model Checking

m for parallel programs, often in real-world languages
originally based on operational (interleaving) semantics

explores state space

[
[

m does not store closed set

m cannot handle non-terminating programs
[

can explore some states repeatedly

12 /20

. no
Introduction B

Stateless Model Checking

for parallel programs, often in real-world languages
originally based on operational (interleaving) semantics
explores state space

does not store closed set

cannot handle non-terminating programs

can explore some states repeatedly

Dynamic Partial Order Reduction

m eliminates some traces, reduces redundant exploration
m usually based on some notion of equivalence of traces
m there are optimal techniques for certain equivalences

12 /20

Execution Graphs | E:

the technique from the paper is based on execution graphs, not
interleaving & DPOR

m records memory operations
m values of writes

m origin of value for reads

m dependencies

W(x,0)
sb |sb sb
rf
W(x,1) W(x,1)------ » R(x)

m sb = sequenced before; rf = read-from

13 /20

) m)
Execution Graphs Il E:

not all execution graphs are valid = consistent

'rf
.rf |sb sb/
\‘ ’/
R(x) R(x)

14 /20

. . 0
Execution Graph Generation B

a = x; [x = 1;
= X; I

o’
|

W(x,0)

m initialization

15 /20

) m)
Execution Graph Generation E:

W(x,0)

m in what order should actions be added?

15 /20

. .) m)
Execution Graph Generation E:

a = x; [x=1;
b = x; [
W(x,0)
sb rf/’/
R(x)

madda = x

15 /20

. .) m)
Execution Graph Generation E:

a = x; [x = 1;
= X; I

o
|

maddb = x

15 /20

. .) m)
Execution Graph Generation E:

a = X; || X = 1,
b = x; I
W(x,0)
sb rf///// sb
R(x) / W(x,1)
rf///
sb //
'//
R(x)
maddx =1

15 /20

Execution Graph Generation E:

a = x; [x = 1;
= X; I

o
|

m explore again adding x = 1 first?

15 /20

Execution Graph Generation E:

®m no... revisit reads

15 /20

. .) m)
Execution Graph Generation E:

a = x; |] x =1;
b = x; I
W(x,0)
sb \b
rf
R(x) <----------- W(x,1)

m option 1: revisita = x

15 /20

. .) m)
Execution Graph Generation E:

a = x; [x = 1;
b = x; I
W(x,0)
sb \b
R(x) < w(x,1)
rf///
sb
R(x)

m option 1: revisita = x + add b = x

15 /20

Execution Graph Generation E:

a = x; [x=1;
= X; I

o
|

m option 2: revisit b = x

15 /20

. .) m)
Exploration Requirements E:

generate all consistent graphs and

don’t generate any inconsistent graphs
don’t generate any graph multiple times
don’t store generated graphs

16 / 20

| Revisitable Reads

10
Alm}
10

m revisiting reads all the time causes redundant explorations
m only one instance of read needs to be revisitable

sb rf//
K

R(x)

W(x,0)

s

17 /20

Revisitable Reads B

m revisiting reads all the time causes redundant explorations
m only one instance of read needs to be revisitable

W(x,0)
sb f g
R(x)
no revisi_’vc_..»"";‘

2

W(x,0)
s% \sb
R(x)‘ W(x,1)

17 /20

Revisitable Reads B

m revisiting reads all the time causes redundant explorations
m only one instance of read needs to be revisitable

W(x,0)
5%
R(x)
no revisit_-v'"'ﬁ :"'*..,revisit
’_,» .__‘
W(x,0) W(x,0)
s% \517 sb \5b
R(x) W(x,1) R(x) < wix)

17 /20

Efficient Execution Graph Generation E:

generate all consistent graphs and

don't generate any inconsistent graphs
don’t generate any graph multiple times
don’t store generated graphs

what is needed?

m (non)revisitable reads

18 /20

Efficient Execution Graph Generation | &

generate all consistent graphs and

don't generate any inconsistent graphs
don’t generate any graph multiple times
don’t store generated graphs

what is needed?

m (non)revisitable reads

m prefix closed execution graphs — all prefixes of consistent EG
are also consistent

m not really for C11/C++11 standard’s memory model!
m paper uses repaired C11 memory model

18 /20

Efficient Execution Graph Generation | &

generate all consistent graphs and

don't generate any inconsistent graphs
don’t generate any graph multiple times
don’t store generated graphs

what is needed?

m (non)revisitable reads
m prefix closed execution graphs — all prefixes of consistent EG
are also consistent

m not really for C11/C++11 standard’s memory model!
m paper uses repaired C11 memory model

m prefix closed in absence of RMW /CAS & SC atomics
m special handling for these (can generate duplicities)

18 /20

0
Results B

http://plv.mpi-sws.org/rcmc/paper.pdf

19 /20

http://plv.mpi-sws.org/rcmc/paper.pdf

) m)
Summary E:

m tool RCMC
m analysis of C under the repaired C11 memory model
m stateless model checking, building execution graphs

m loop unrolling to ensure termination

20 / 20

	Effective Stateless Model Checkingfor C/C++ Concurrency

