
Introduction to Robotics

Lecture 2: Wiring Digital Circuits & Building the Robot

24. 9. 2018

ParaDiSe

Today Goal

• get (roughly) familiar with the components

• build the mechanics of the robot

• wire it all together

• test it all using a simple program (via Arduino framework)

Next week goal:

• learn about bare-metal CPU in depth

• learn the difference between Arduino & classical programming

• dump the Arduino framework and start writing a proper firmware

1

Preliminaries

What Is a Microcontroller

Microcontroller (MCU) is a small computer on a chip usually consisting of:

• a computational core (with ALU, memories, etc.),

• a set of HW peripherals,

• from which one of them is general purpose I/O (GPIO)

→ MCU is capable of direct, low level interaction with the environment.

→ the skill of MCU programming is in mastering the peripherals

2

Logic One and Zero

(based on SparkFun images)

https://learn.sparkfun.com/tutorials/

logic-levels/arduino-logic-levels

Digital signals are usually encoded as

voltage:

• all the voltages are referenced to a

common potential (usually denoted as

ground, GND)

• commonly used 5V, 3.3V systems

• more and more popular: 2V, 1.8V, 1.5V

and 1V systems

• dead region – prevent signal ringing on

edges

3

https://learn.sparkfun.com/tutorials/logic-levels/arduino-logic-levels
https://learn.sparkfun.com/tutorials/logic-levels/arduino-logic-levels

Model of Digital Output – Advanced

Push pull Open collector

An output can usually sink about 20mA.
4

Model of Digital Input – Advanced

5

Wiring Digital Circuits

Dos:

• connect inputs together

• connect input to output

• connect open collector outputs

• connect grounds together

• connect the same VCCs together

Don’ts

• connect push-pull outputs together

• connect outputs to power rails

• exceed the rated voltage

6

Components

Arduino Uno

7

Arduino Uno

• development kit for Atmega328P MCU aiming for beginners

• built-in firmware flasher

• different (simpler) pin labeling compared to a bare MCU

8

Atmega328P

Datasheet:

https://www.mouser.com/pdfdocs/Gravitech_ATMEGA328_datasheet.pdf

• 8-bit MCU

• 16 Mhz, 2 KBytes of RAM, 32 KBytes of flash

• 23 GPIO

• timers, UART, SPI, I2C, ADC

• can be programmed in ASM, C, C++, (Haskell, Rust)

9

https://www.mouser.com/pdfdocs/Gravitech_ATMEGA328_datasheet.pdf

Arduino Uno Pinout

http://marcusjenkins.com/arduino-pinout-diagrams/

10

http://marcusjenkins.com/arduino-pinout-diagrams/

Sensor Shield

11

Sensor Shield

”There’s not enough GND and VCC pins. Never, ever.” – folk wisdom

• expands the pins of Arduino so that for every GPIO there is:

• GPIO pin

• VCC

• GND

• break outs standard connectors for:

• LCD

• Bluetooth module

• RF module

• SD card

• etc.

12

Motor with Gearbox

13

Motor with Gearbox

• rated voltage 7V

• stall current 1A

• 120 RPM

• polarity of the leads determine direction of rotation

• smaller voltage, lower RPM (but not linear)

• no feedback – with higher load, lower RPM

14

Motor Driver

15

Motor Driver – What is it?

16

Motor Driver

Datasheet:

https://www.sparkfun.com/datasheets/Robotics/L298_H_Bridge.pdf

• allows us to drive motor by MCU pins

• 2A, up to 40V

17

https://www.sparkfun.com/datasheets/Robotics/L298_H_Bridge.pdf

Ultrasonic Sensor HC–SR04

18

Ultrasonic Sensor HC–SR04

Datasheet: https://www.mouser.com/ds/2/813/HCSR04-1022824.pdf

• measures distance by sending a sound wave and listening back

• powered by 5V and 5V compatible

• measurement:

• put trig high for at least 10 us

• measure pulse with on echo

• distance = pulse width · speed of sound / 2

19

https://www.mouser.com/ds/2/813/HCSR04-1022824.pdf

RC Servomotor SG90

20

RC Servomotor SG90

• rotates ±70 degrees

• powered by 5V

• controlled by PWM at 50 Hz:

• 1.5 ms = neutral position

• 1 ms = max left

• 2 ms = max right

• no feedback to the controller (best effort)

• wiring

• brown = GND

• red = 5V

• oragne = pulse

21

Building the Robot

Instructions

• the order of the assembly does not matter (use common sense)

• all part are in the bags

• follow the images

• wire it (all GPIO are for our purposes equal except GPIO0 and 1 – avoid them)

Mechanical tunings are welcomed!

22

Overall View – Front

23

Overall View – Back

24

Bottom View

25

Eyes Detail

26

Rear Wheel

27

Programming

The Arduino Framework

”Everyone should be able to code and build HW” – https://www.arduino.cc/

• several HW modules with simple interface (but limited capabilities)

• C++ libraries for easy use (dumps many C++ features)

• good for:

• hobbyists

• quick prototyping

• many libraries for external HW

• problems:

• not so intuitive for experienced programmer (many antipatterns)

• cannot use all the features of MCU (especially asynchronosity)

• quite high overhead

28

https://www.arduino.cc/

Our Viewpoint on Arduino

• good for hardware validation & motivation

• hides something we want to learn

• use it for this lecture

• we will show alternative in the next lecture

• since then, it is up to you if you continue to use Arduino

29

PlatformIO

• CLI tools for easy management of embedded toolchains, frameworks & libraries

• GUI plugins for many editors (VS Code, Atom, Emacs...)

• provides automatic build system with multi-platform support

Why to use it:

• simplifies toolchain setup

• manages repository of libraries and allows for easy dependency specification

Why not to use it:

• you enjoy writing cross-platform makefiles and it takes the joy away from your

30

Hello World

#include <Arduino.h>

void setup() {

Serial.begin(9600);

}

void loop() {

Serial.println("Hello world!");

delay(500);

}

• start a new project in PlatformIO

• choose Arduino Uno as the board

• choose Arduino as the framework

• build it by ctrl + b

• upload it by ctrl + u

• view serial terminal by ctrl + s

Arduino reference: https://www.arduino.cc/reference/en/#functions

31

https://www.arduino.cc/reference/en/#functions

Working With GPIOs

#include <Arduino.h>

const int LED_PIN = 13;

void setup() {

Serial.begin(9600);

pinMode(LED_PIN, OUTPUT);

}

void loop() {

digitalWrite(LED_PIN, LOW);

delay(300);

digitalWrite(LED_PIN, HIGH);

delay(300);

}

#include <Arduino.h>

const int BTN_PIN = 13;

void setup() {

Serial.begin(9600);

pinMode(BTN_PIN, INPUT_PULLUP);

}

void loop() {

if (!digitalRead(BTN_PIN)) {

Serial.println("Pressed");

delay(500);

}

}
32

Working With Servos

#include <Arduino.h>

#include <Servo.h>

Servo servo;

void setup() {

Serial.begin(9600);

servo.attach(9);

}

void loop() {

servo.write(0);

delay(500);

servo.write(180);

delay(500);

}

• moves the servo from min to max

• instead of begin, you have to attach

(stupid)

• write accepts angle in degrees (0–180)

33

Task 1 – Turn the Motors

Baby steps; write a simple program that:

• turns the wheels to the both directions

• controls the speed of the wheels (analogWrite might help you)

Final Task: Write a program that allows you to control the robot using the WASD

keys on your computer.

34

Task 2 – The Ultrasonic Sensor

Write a simple program that repeatedly prints to the serial terminal distance in

centimeters from the sensor.

• read the datasheet (link previously in the slides) to see the measurement procedure

• pulseIn might help you

• speed of sound in the air at 25 C is 34 cm
ms

Then test the sensor

• does it work with small objects?

• how does it behave with soft/fluffy stuff (e.g. a soft toy)

• how does it behave in corners?

• how does it behave when two sensors look at each other?

35

Task 3

Program the robot such that:

• given a long corridor the robot can go through

the corridor not hitting the walls

• it is not hard-coded to a fixed corridor width

• try to achieve smooth motion

• hint: you have an ultrasonic sensor on rotational

mount

We will compare our approaches in the next lecture.

36

	Preliminaries
	Components
	Building the Robot
	Programming

