
Bounded Model Checking of Multi-threaded C
Programs

Lazy-CSeq and MU-CSeq

presented by Vladimír Štill

Masaryk University
Brno, Czech Republic

7th March 2015

presented by Vladimír Štill Lazy-CSeq and MU-CSeq 7th March 2015 1 / 27



Lazy-CSeq and MU-CSeq

bounded model checking of parallel C via sequentialization

ANSI C (C89) + pthreads

multi-threaded programs translated to nondeterministic
sequential programs
bounded in the number of cycle iterations and recursion depth

cycle/function unwinding
each thread represented by a single function without cycles

bounded and sequentialized program passed to a backend
CBMC is preferred, but both claim to work with multiple
bounded model checkers

presented by Vladimír Štill Lazy-CSeq and MU-CSeq 7th March 2015 2 / 27



Lazy-CSeq [2, 1]

presented by Vladimír Štill Lazy-CSeq and MU-CSeq 7th March 2015 3 / 27



Lazy-CSeq

exploits the simple structure of unwound programs
no function calls
no cycles → no back jumps
very simple control flow (if, forward goto, thread
creation/joining)
every statement is executed at most once

simulates all round-robin schedules
bound on the number of rounds

the actual property violation detection left to the backend
sequentialization preserves safety properties within the bounds

presented by Vladimír Štill Lazy-CSeq and MU-CSeq 7th March 2015 4 / 27



Assumption About the Input

sequentially consistent memory access
each statement (∼ line of code) is atomic
statically known thread function

i.e. no computation of thread function pointers

visible statement – involve read or write operation of a shared
variable

presented by Vladimír Štill Lazy-CSeq and MU-CSeq 7th March 2015 5 / 27



Sequentialization

1 functions which appear in pthread_create and main are
copied as thread entries

every pthread_create corresponds to a new thread entry
we will denote them f0 to fn (f0 = a copy of main)

2 loop and function calls are unwound in f0 to fn
except for calls to pthread_*

3 f0 to fn are instrumented to allow partial execution and to
preserve state between invocations

all locals are turned into static
control flow is instrumented

4 new main is added
dispatches f0 to fn repeatedly in the round-robin fashion

presented by Vladimír Štill Lazy-CSeq and MU-CSeq 7th March 2015 6 / 27



Thread Control Flow Instrumentation

pthread_mutex_t m; int c = 0;
void *prod( void *b ) {

int tmp = *((int*)b);
pthread_mutex_lock( &m );
if ( c > 0 )

c++;
else {

c = 0;
while( tmp > 0 ) {

c++; tmp--;
}

}
pthread_mutex_unlock( &m );
return 0;

}

presented by Vladimír Štill Lazy-CSeq and MU-CSeq 7th March 2015 7 / 27



Thread Control Flow Instrumentation

pthread_mutex_t m; int c = 0;
void *prod( void *b ) {

static int tmp = *((int*)b);
pthread_mutex_lock( &m );
if ( c > 0 )

c++;
else {

c = 0;
while( tmp > 0 ) {

c++; tmp--;
}

}
pthread_mutex_unlock( &m );
return 0;

}

Make variables static.
presented by Vladimír Štill Lazy-CSeq and MU-CSeq 7th March 2015 8 / 27



Thread Control Flow Instrumentation

pthread_mutex_t m; int c = 0;
void *prod( void *b ) {

static int tmp = *((int*)b);
pthread_mutex_lock( &m );
if ( c > 0 )

c++;
else {

c = 0;
if( !( tmp > 0 ) ) goto _l1;
c++; tmp--;
if( !( tmp > 0 ) ) goto _l1;
c++; tmp--;
assume( !( tmp > 0 ) );

_l1: }
pthread_mutex_unlock( &m );

Loop unwinding.
presented by Vladimír Štill Lazy-CSeq and MU-CSeq 7th March 2015 9 / 27



Thread Control Flow Instrumentation

#define J(A, B) if (pc[t] > A || A >= cs) goto B;
pthread_mutex_t m; int c = 0;
void *prod( void *b ) {

0: J(0,1) static int tmp = *((int*)b);
1: J(1,2) pthread_mutex_lock( &m );
2: J(2,3) if ( c > 0 )
3: J(3,4) c++;

else {
4: J(4,5) c = 0;

if( !( tmp > 0 ) ) goto _l1;
5: J(5,6) c++; tmp--;

if( !( tmp > 0 ) ) goto _l1;
6: J(6,7) c++; tmp--;

assume( !( tmp > 0 ) );
_l1: }

7: J(7,8) pthread_mutex_unlock( &m );

Add support for jumping over statements (invisible not considered).
presented by Vladimír Štill Lazy-CSeq and MU-CSeq 7th March 2015 10 / 27



Thread Control Flow Instrumentation

#define G(L) assume(cs >= G)
#define J(A, B) if (pc[t] > A || A >= cs) goto B;
pthread_mutex_t m; int c = 0;
void *prod( void *b ) {

0: J(0,1) static int tmp = *((int*)b);
1: J(1,2) pthread_mutex_lock( &m );
2: J(2,3) if ( c > 0 )
3: J(3,4) c++;

else { G(4);
4: J(4,5) c = 0;

if( !( tmp > 0 ) ) goto _l1;
5: J(5,6) c++; tmp--;

if( !( tmp > 0 ) ) goto _l1;
6: J(6,7) c++; tmp--;

assume( !( tmp > 0 ) );
_l1: G(7); }

7: J(7,8) pthread_mutex_unlock( &m );

Guard control flow validity.
presented by Vladimír Štill Lazy-CSeq and MU-CSeq 7th March 2015 11 / 27



Thread Dispatch
In the new main

executes threads in the round-robin fashion with a fixed
number of rounds
each time a thread executes for a nondeterministically guessed
number of steps
executions of thread entry resumes where it left in last round
thanks to control flow instrumentation (J) and saved pc values
thread executes until its PC equals cs (context-switch point)
keeps an array of active thread IDs, PCs for each thread

for K rounds:

for each active thread t
1 guess next context switch point (cs) nondeterministically
2 run ft
3 set pc[t] = cs

presented by Vladimír Štill Lazy-CSeq and MU-CSeq 7th March 2015 12 / 27



Lazy-CSeq

in principle very simple
but wins SV-COMP since 2014 (together with MU-CSeq)
works with many bounded model checkers
supports deadlock detection, counterexamples
ignores array bounds
seems to support small part of C library (for example malloc,
strcpy, but not assert, qsort)

How to Use It
download at
http://users.ecs.soton.ac.uk/gp4/cseq/cseq.html
requires CBMC (or BLITZ, ESBMC, LLBMC, . . . ), Python 2,
pycparser

CBMC needs to be in PATH

./cseq.py -i file.c

presented by Vladimír Štill Lazy-CSeq and MU-CSeq 7th March 2015 13 / 27

http://users.ecs.soton.ac.uk/gp4/cseq/cseq.html


Lazy-CSeq

in principle very simple
but wins SV-COMP since 2014 (together with MU-CSeq)
works with many bounded model checkers
supports deadlock detection, counterexamples
ignores array bounds
seems to support small part of C library (for example malloc,
strcpy, but not assert, qsort)

How to Use It
download at
http://users.ecs.soton.ac.uk/gp4/cseq/cseq.html
requires CBMC (or BLITZ, ESBMC, LLBMC, . . . ), Python 2,
pycparser

CBMC needs to be in PATH

./cseq.py -i file.c

presented by Vladimír Štill Lazy-CSeq and MU-CSeq 7th March 2015 13 / 27

http://users.ecs.soton.ac.uk/gp4/cseq/cseq.html


Does It Work?

int x;
void *thread( void *_ ) {

++x;
return 0;

}
int main() {

pthread_t t;
pthread_create( &t, 0, thread, 0 );
++x;
pthread_join( t, 0 );
assert( x == 2 );

}

$ python2 cseq.py --rounds=10 --unwind=10 \
--softunwindbound -i inc.c

warning: warnings on stderr from the backend)
inc.c, SAFE, 0.89

presented by Vladimír Štill Lazy-CSeq and MU-CSeq 7th March 2015 14 / 27



Does It Work?

int x;
void *thread( void *_ ) {

++x;
return 0;

}
int main() {

pthread_t t;
pthread_create( &t, 0, thread, 0 );
++x;
pthread_join( t, 0 );
assert( x == 2 );

}

$ python2 cseq.py --rounds=10 --unwind=10 \
--softunwindbound -i inc.c

warning: warnings on stderr from the backend)
inc.c, SAFE, 0.89

presented by Vladimír Štill Lazy-CSeq and MU-CSeq 7th March 2015 14 / 27



MU-CSeq [3, 4]

presented by Vladimír Štill Lazy-CSeq and MU-CSeq 7th March 2015 15 / 27



Memory Unwindings

MU-CSeq based on the idea of bounded memory unwindings

targets C, but explained on a simplified language

Memory unwinding = a sequence of write operations into the shared
memory

guessed nondeterministically
program scheduling must match MUs
MU-CSeq bounds the number of writes into
concurrently-accessed memory locations (shared variables)

presented by Vladimír Štill Lazy-CSeq and MU-CSeq 7th March 2015 16 / 27



Definitions I

n-memory unwinding M
a sequence of writes w1 . . .wn of shared variables
each wi is a triple (ti , vari , vali)

ti is the identifier of the thread which performed the write
vari is the name of the written variables
vali is the new value of vari

Position in an n-memory unwinding M
an index in the interval [1, n]

presented by Vladimír Štill Lazy-CSeq and MU-CSeq 7th March 2015 17 / 27



Definitions II

Execution of program P conforms to a memory unwinding M
if the sequence of its writes in the shared memory exactly
matches M

Unfeasible unwinding M for program P
no execution of P conforms to M

presented by Vladimír Štill Lazy-CSeq and MU-CSeq 7th March 2015 18 / 27



Simulation of Program P under Unwinding M

with thread number bound τ

the aim is to simulate all runs of P which conforms to M
threads communicate by

shared variables, which are in the unwinding
locks and thread creation/joining functions

therefore, for the given unwinding M, threads can be executed
sequentially

thread creation → function call
joins and locks prune infeasible runs

presented by Vladimír Štill Lazy-CSeq and MU-CSeq 7th March 2015 19 / 27



Simulation of Program P under Unwinding M

simulation of thread t

keeps track of last position in M
operations over non-shared variables are not changed
a write of val to shared a variable var check that the closest
entry in M for t is (t, var , val) (write of the same value to the
same variable)

otherwise the run is abandoned

a read of variable var nondeterministically guesses a position of
write in the unwinding which writes to var between the last
position of t in M and the position of next write from t and
reads this value

presented by Vladimír Štill Lazy-CSeq and MU-CSeq 7th March 2015 20 / 27



Memory Unwinding Implementations

authors discuss several implementations
fine-grained MU

all writes to shared variable are stored in MU
this was presented so far

coarse-grained MU
only some writes are visible in MU
writes can be grouped together

intra-thread coarse-grained MU (grouping only in one thread)
inter-thread coarse-grained MU (writes from multiple threads
can occur at a single MU position)

nondeterministically selects which writes are visible to other
threads

presented by Vladimír Štill Lazy-CSeq and MU-CSeq 7th March 2015 21 / 27



Coarse-Grained MU

Intra-Thread Coarse-Grained MU
stores sequence of clusters of writes

thread id + partial mapping from shared variables to values

simulation of thread t at position i :
if t does not write into memory at i it can only read;
otherwise:

the write must be to the variable in the mapping,
all the writes in the cluster must be matched before advancing
to the next position
(the last written value to each variable in the cluster must
match the mapping)

Inter-Thread Coarse-Grained MU
multiple threads can be assigned to a single cluster/position
unexposed writes can be seen by other threads of the cluster

presented by Vladimír Štill Lazy-CSeq and MU-CSeq 7th March 2015 22 / 27



Individual Memory Location Unwindings [4]

separate unwinding for each individual shared memory location
for locations corresponding to scalar types or pointers

timestamps of writes to recover global total order of writes
supports dynamic memory and pointer arithmetics
detailed description not available

presented by Vladimír Štill Lazy-CSeq and MU-CSeq 7th March 2015 23 / 27



MU-CSeq

works with CBMC as a backend
does loop and recursion bounding (but not context-switch
bounding)
winner of SV-COMP 2016 (beats Lazy-CSeq in speed)

How to Use It
http://users.ecs.soton.ac.uk/gp4/cseq/cseq.html

needs CBMC + Python 2 + pycparser

needs SV-COMP-style specification file (ALL.prp):
CHECK(init(main()), LTL(G ! call(__VERIFIER_error())))

./mu-cseq.py -i file.c --spec ALL.prp

presented by Vladimír Štill Lazy-CSeq and MU-CSeq 7th March 2015 24 / 27

http://users.ecs.soton.ac.uk/gp4/cseq/cseq.html


Does it work?

the transformation seems to be buggy
is not able to handle prefix increment (++x)

seems to support very little of C library
ignores memory errors
but with postfix increment finds the bug omitted by Lazy-CSeq

presented by Vladimír Štill Lazy-CSeq and MU-CSeq 7th March 2015 25 / 27



Bibliography I

Omar Inverso, Truc L. Nguyen, Ermenegildo Tomasco,
Bernd Fischer 2, Salvatore La Torre, and Gennaro Parlato.
Lazy-CSeq 1.0 (Competition Contribution), rejected,
http://eprints.soton.ac.uk/387010/.

Omar Inverso, Ermenegildo Tomasco, Bernd Fischer, Salvatore
La Torre, and Gennaro Parlato.
Computer Aided Verification: 26th International Conference,
CAV 2014, Held as Part of the Vienna Summer of Logic, VSL
2014, Vienna, Austria, July 18-22, 2014. Proceedings, chapter
Bounded Model Checking of Multi-threaded C Programs via
Lazy Sequentialization, pages 585–602.
Springer International Publishing, Cham, 2014.

presented by Vladimír Štill Lazy-CSeq and MU-CSeq 7th March 2015 26 / 27

http://eprints.soton.ac.uk/387010/


Bibliography II

Ermenegildo Tomasco, Omar Inverso, Bernd Fischer,
Salvatore La Torre, and Gennaro Parlato.
Verifying concurrent programs by memory unwinding.
In 21st International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), April 2015.

Ermenegildo Tomasco, Truc L. Nguyen, Omar Inverso, Bernd
Fischer, Salvatore La Torre, and Gennaro Parlato.
MU-CSeq 0.4: Individual Memory Location Unwindings
(Competition Contribution).
In 22st International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), to appear,
2016.

presented by Vladimír Štill Lazy-CSeq and MU-CSeq 7th March 2015 27 / 27


	Lazy-CSeq 
	MU-CSeq 

