Adapting Biochemical Kripke Structures for **Distributed Model Checking**

Susmit Jha, R. K. Shyamasundar

India

Transactions on Computational Systems Biology VII, 2006

Susmit Jha, R. K. Shyamasundar (India)

Bounded Hamming Distance Kripke Structures

Distributed model checking

Fragmenting Kripke structures

∃ → (∃ →

Susmit Jha, R. K. Shyamasundar (India)

Model checking on chemical reactions

- Reactants → products
- Non-deterministic

$$\begin{array}{cccc} A+B & \rightarrow & B+C \\ A+B+\neg C & \rightarrow & \neg A+B+C \\ A+B+\neg C & \rightarrow & A+B+C \\ A+B+C & \rightarrow & \neg A+B+C \\ A+B+C & \rightarrow & A+B+C \end{array}$$

• Few entities on each side (maximum is 6 in all public databases)

The resulting Kripke Structure

 $M = (S, I, R, \mathcal{L})$ is a k-Bounded Hamming Distance Kripke Structure (k-BHDKS) when: $\forall s, s' \in S, \quad R(s, s') \Rightarrow (H(\mathcal{L}(s), \mathcal{L}(s')) \leq k)$

Properties:

- Relatively sparse: each state has at most $|\mathcal{AP}|^k$ neighbours
- Can be effectively distributed into fragments

< ロ ト < 同 ト < 三 ト < 三 ト

Assumption based model checking

A Kripke Structure is decomposed into fragments

Each distributed node stores only one fragment, thus allowing to process larger model checking problems

A fragment is created by extending a subset of the state-space to its immediate neighbors

Kripke structure fragments

Obrázek: Dividing a KS in two fragments

Obrázek: KS with no possible fragmentation

 $\exists \rightarrow$

Susmit Jha, R. K. Shyamasundar (India)

Biochemical KS for DMC

Distributed fragment

A distributed fragment M' of M = (S, R) around a set of core states $T \subseteq S$:

$$egin{aligned} M' &= (S_T, R_T) \ S_T &= \{ s \in S | s \in T \lor \exists s' \in T \text{ such that } (s', s) \in R \} \ R_T &= \{ (s_1, s_2) \in R | s_1 \in T, s_2 \in S_T \} \end{aligned}$$

Separator V of a set T is the minimal set of states, satisfying that there is no path from T to $S \setminus T$ avoiding all states in V

< ロ ト < 同 ト < 三 ト < 三 ト

Existence of fragmentation in k-BHDKS

- Let |T| be the size of the core set
- Each state in a *k*-BHDKS has at most $|\mathcal{AP}|^k$ neighbors
- The size of the fragment is at most $|T| + |T| \cdot |AP|^k$ grows polynomially with the number of propositions

A hypercube

- A *k*-BHDKS with |AP| propositions can be partitioned to an *l*-dimensional hypercube as long as l < |AP|/k
- Construction of the partitioning:
 - Create 2^{*l*} symmetrically placed centers a_0 to a_{2^l-1} as states $0^{l,p}$, $0^{(l-1).p}1^p, \ldots, 1^{l,p}$ where p is $\left\lceil \frac{|\mathcal{AP}|}{l} \right\rceil$
 - Add a state *s* to fragment *n* if *a_n* is the nearest center from *s* with respect to Hamming distance
 - Include each fragment *n* include all immediate successors (the border)

< ロ ト < 同 ト < 三 ト < 三 ト

Properties of the partitioning

- The size of the core is approx. $\frac{1}{2^{l}}$. |KS|
- The size of the border associated with the core is below $\frac{1}{2^{l}}$. |KS|
- Transition can exist only between states in adjacent nodes of the hypercube

The End

Thank you for your attention Discussion

Susmit Jha, R. K. Shyamasundar (India)

Biochemical KS for DMC

ヨトィヨト

11/11