Probabilistic model checking of complex biological pathways

J. Heath, M. Kwiatkowska, G. Norman, D.Parker, O. Tymschyshyn

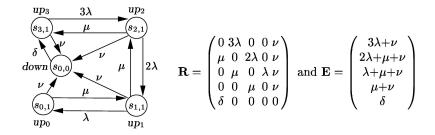
University of Birmingham

Paradise Seminar

10.12.2007

- to analyze a complex biological pathway of the Fibroblast Growth Factor (FGF)
- to adopt a stochastic modelling approach
- to illustrate the applicability of the probabilistic model checker PRISM
- to create a model of FGF
- to define interesting properties of the model
- to calculate the exact quantitative measure of these properties

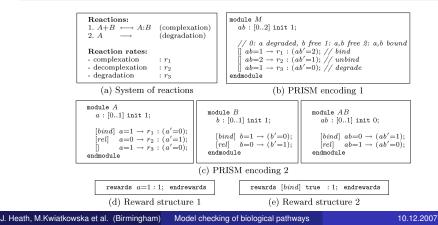
Reaction rules for the pathway of FGF


1. FGF binds to FGFR $FGF+FGFR \leftrightarrow FGFR:FGF (k_{on} = 5e+8M^{-1}s^{-1}, k_{off}=1e-1s^{-1})$ 2. Whilst FGFR:FGF exists FGFR Y653 \rightarrow FGFR Y653P ($k_{cat}=0.1s^{-1}$) FGFR Y654 \rightarrow FGFR Y654P ($k_{cat}=0.1s^{-1}$) 3. When FGFR Y653P and FGFR Y654P FGFR Y463 \rightarrow FGFR Y463P ($k_{cat}=70s^{-1}$) FGFR Y583 \rightarrow FGFR Y583P ($k_{cat}=70s^{-1}$) FGFR Y585 \rightarrow FGFR Y585P $(k_{eet}=70s^{-1})$ FGFR Y766 \rightarrow FGFR Y766P ($k_{ext}=70s^{-1}$) 4. FGFR binds FRS2 $FGFR+ FRS2 \leftrightarrow FGFR:FRS2 \ (k_{on} = 1e+6M^{-1}s^{-1}, \ k_{off}=2e-2s^{-1})$ 5. When FGFR Y653P, FGFR Y654P and FGFR:FRS2 $FRS2 Y196 \rightarrow FRS2 Y196P (k_{cat}=0.2s^{-1})$ FRS2 Y290 \rightarrow FRS2 Y290P ($k_{cat}=0.2s^{-1}$) FRS2 Y306 \rightarrow FRS2 Y306P ($k_{ext}=0.2s^{-1}$) FRS2 Y382 \rightarrow FRS2 Y382P ($k_{cat}=0.2s^{-1}$) FRS2 Y392 \rightarrow FRS2 Y392P ($k_{cat}=0.2s^{-1}$ FRS2 Y436 \rightarrow FRS2 Y436P ($k_{cat}=0.2s^{-1}$) FRS2 Y471 \rightarrow FRS2 Y471P ($k_{cat}=0.2s^{-1}$) 6. Reverse when Shp2 bound to FRS2: FRS2 Y196P \rightarrow FRS2 Y196 ($k_{ext}=12s^{-1}$) FRS2 Y290P \rightarrow FRS2 Y290 ($k_{cat}=12s^{-1}$) FRS2 Y306P \rightarrow FRS2 Y306 ($k_{cat}=12s^{-1}$) FRS2 Y382P \rightarrow FRS2 Y382 ($k_{ext}=12s^{-1}$ FRS2 Y436P \rightarrow FRS2 Y436 $(k_{cat}=12s^{-1})$ FRS2 Y471P \rightarrow FRS2 Y471 ($k_{eat}=12s^{-1}$) FBS2 Y392P \rightarrow FBS2 Y392 $(k_{ext}=12s^{-1})$

7. FRS2 effectors bind phosphoFRS2: Src+FRS2 Y196P \leftrightarrow Src:FRS2 Y2196P $(k_{an} = 1e + 6M^{-1}s^{-1}, k_{aff} = 2e - 2s^{-1})$ Grb2+FRS2 Y306P \leftrightarrow Grb2:FRS2 Y306P $(k_{an} = 1e + 6M^{-1}s^{-1}, k_{aff} = 2e - 2s^{-1})$ Shp2+FRS2 Y471P \leftrightarrow Shp2:FRS2 Y471P($k_{en} = 1e + 6M^{-1}s^{-1}$, $k_{eff} = 2e - 2s^{-1}$) 8. When Src:FRS2 we relocate/remove $Src:FRS2 \rightarrow relocate out (t_{1/2}=15min)$ 9. When Plc:FGFR it degrades FGFR PLC+FGFRY 766 \leftrightarrow PLC:FGFR 766 $(k_{op} = 1e + 6M^{-1}s^{-1}, k_{off} = 2e - 2s^{-1})$ PLC:FGFB 766 → degFGFB $(t_{1/2}=60\min)$ 10. Spry appears in time-dependent manner: \rightarrow Sprv ($t_{1/2}=15$ min) 11. Sprv binds Src and is phosphorvlated: \leftrightarrow Spry Y55:Src $(k_{on} = 1e + 5M^{-1}s^{-1}, k_{off} = 1e - 4s^{-1})$ Sprv+Src Spry Y55:Src \rightarrow Spry Y55P:Src $(k_{cat}=10s^{-1})$ Sprv Y55P+Src \leftrightarrow Sprv Y55P:Src $(k_m = 1e+5M^{-1}s^{-1}, k_{off}=1e-4s^{-1})$ Spry Y55P+Cbl \leftrightarrow Spry Y55P:Cbl $(k_{op} = 1e+5M^{-1}s^{-1}, k_{off} = 1e-4s^{-1})$ Sprv Y55P+Grb2 \leftrightarrow Sprv Y55P:Grb2($k_{op} = 1e+5M^{-1}s^{-1}, k_{off} = 1e-4s^{-1}$) 12. phosphoSpry binds Cbl which degrades/removes FRS2 Sprv Y55P:Cbl+FRS2 \leftrightarrow FRS-Ubi ($k_{cat}=8.5e-4s^{-1}$) FRS2-Ubi \rightarrow degFrs2 ($t_{1/2}$ =5min) 13. Spry is dephosphorylated by Shp2: (when Shp2 bound to FRS2) Sprv Y55P \rightarrow Sprv Y55 ($k_{cot}=12s^{-1}$) 14. Grb2 binds Sos Grb2+Sos \leftrightarrow Grb2:Sos $(k_{on} = 1e + 5M^{-1}s^{-1}, k_{off} = 1e - 4s^{-1})$

Modelling of a biological system in PRISM I

- based on simulation-based techniques for discrete stochastic models
- PRISM provides:
 - modelling language continuous-time Markov chains (CTMCs)
 - extended by rewards associated with states and transitions
 - specification language
 - symbolic approache to probabilistic model checking


Example of CTMCs

- R rate matrix
- *E* total rate matrix $E(s) = \sum_{s' \in S} R(s, s')$
- Probability of leaving *s* within *t* time units: $1 - e^{-E(s) \cdot t}$
- Probability of transition from *s* to *s'* within *t* time units: $P(s, s', t) = \frac{R(s, s')}{E(s)} \cdot (1 - e^{-E(s) \cdot t})$

Modelling of a biological system in PRISM II

- protein to protein reactions complexation, decomplexation and degradation
- model consist of a set of reactive modules
- two alternative approaches to modelling

5/12

Fragment of the PRISM model

```
formula Frs = relocFrs2=0 \land degFrs2=0; // FRS2 not relocated or degraded
module FRS2
  FrsUbi
            : [0..1] init 0; // ubiguitin modification of FRS2
  relocFrs2 : [0..1] init 0; // FRS2 relocated
  degFrs2 : [0..1] init 0; // FRS2 degraded
  Y196P
              : [0,1] init 0; ... Y471P : [0,1] init 0; // phosphorulation of receptors
  // compounds bound to FRS2
  FrsFgfr : [0..1] init 0; // 0: FGFR not bound, 1: FGFR bound
  FrsGrb : [0.2] init 0; // 0: Grb2 not bound, 1: Grb2 bound, 2: Grb2:Sos bound
             : [0..1] init 0; // 0: Shp2 not bound, 1: Shp2 bound
  FrsShp
  FrsSrc
             : [0..8] init 0;
  // 0: Src not bound
                               1: Src bound,
                                                         2: Src:Spry
 // 3: Src:SpryP, 4: Src:SpryP:Cbl, 5: Src:SpryP:Grb
  // 6: Src:SpryP:Grb:Cbl, 7: Src:SpryP:Grb:Sos, 8: Src:SpryP:Grb:Sos:Cbl
  // phosphorylation of receptors (5)
  [] Frs \land Y653P=1 \land Y654P=1 \land Frs Fgfr=1 \land Y196P=0 → 0.2 : (Y196P'=1); // Y196
  [] Frs \land Y653P=1\land Y654P=1\land Frs Fgfr=1\land Y471P=0 \rightarrow 0.2 : (Y471P'=1); // Y471
  // dephosphorylation of Y196 (6) - remove Src if bound
            Frs \wedge FrsShp = 1 \wedge Y196P = 1 \wedge FrsSrc = 0 \rightarrow 12 : (Y196P' = 0);
  [src\_rel] Frs \land FrsShp = 1 \land Y196P = 1 \land FrsSrc > 0 \rightarrow 12 : (Y196P'=0) \land (FrsSrc'=0);
  // dephosphorulation of Y471 (6) - remove Shp2 since bound
  [shp\_rel] Frs \land FrsShp = 1 \land Y471P = 1 \rightarrow 12 : (Y471P'=0) \land (FrsShp'=0);
  // Src:FRS2→degFRS2 [8]
  [] Frs \land FrsSrc > 0 \rightarrow 1/(15*60) : (relocFrs2'=1);
  // Spru55p:Cbl+FRS2→Frs-Ubi [12]
  || Frs\landFrsSrc=4.6.8 \land FrsUbi=0 \rightarrow 0.00085 ; (FrsUbi'=1);
  // FRS2-Ubi→deaFRS2 [12]
  || Frs \wedge FrsUbi=1 \rightarrow 1/(5^{*}60) : (degFrs2'=1);
  // Grb2+Sos \leftrightarrow Grb2:Sos [14]
  [sos\_bind\_frs] Frs \land Frs Grb = 1 \rightarrow 1 : (Frs Grb' = 2); // Grb:FRS2
  sos_bind_{frs} Frs \land Frs Src = 5, 6 \rightarrow 1 : (Frs Src' = Frs Src + 2); // Grb: Spry P: Src: FRS 2
   sos\_rel\_frs] Frs \land Frs Grb = 2 \rightarrow 0.0001 : (Frs Grb'=1);
                                                                     // Grb:FRS2
  [sos\_rel\_frs] Frs \land Frs Src = 7, 8 \rightarrow 0.0001 : (Frs Src' = Frs Src - 2); // Grb: Spry P: Src: FRS2
endmodule
```

Specification of properties I

extension of Continuous stochastic logic (CSL)

Basic syntax

•
$$\varphi := tt \mid A \mid \neg \varphi \mid \varphi \land \varphi \mid \mathscr{P}_{\bowtie \rho}(\psi)$$

•
$$\psi := \chi(\phi) | \phi \mathcal{U} \phi | \phi \mathcal{U}^{\prime} \phi$$

Steady-state probabilities extension

Reward extension

•
$$\mathcal{R}_{\bowtie
ho}(\mathcal{F} \phi) \mid \mathcal{R}_{\bowtie
ho}(\mathcal{C}^{\leq T})$$

definition of rewards

Specification of properties II

•
$$\mathcal{P}_{=?}(ab = 0 \ \mathcal{U}^{[T,T']}(a = 0 \land ab = 0))$$

- $\mathcal{P}_{=?}(ab = 0 \ \mathcal{U}^{[T,T']}(a = 0 \land ab = 0))$
- What is the probability that the protein A degrades in the time interval [T, T'] and it has not bound to the protein B before?

•
$$\mathcal{P}_{=?}(ab = 0 \ \mathcal{U}^{[T,T']}(a = 0 \land ab = 0))$$

What is the probability that the protein A degrades in the time interval [T, T'] and it has not bound to the protein B before?

- $\mathcal{P}_{=?}(ab = 0 \ \mathcal{U}^{[T,T']}(a = 0 \land ab = 0))$
- What is the probability that the protein A degrades in the time interval [T, T'] and it has not bound to the protein B before?

What is the long-run probability that the protein A spends free

- $\mathcal{P}_{=?}(ab = 0 \ \mathcal{U}^{[T,T']}(a = 0 \land ab = 0))$
- What is the probability that the protein A degrades in the time interval [T, T'] and it has not bound to the protein B before?

- What is the long-run probability that the protein A spends free
- $\mathscr{R}_{=?}(\mathcal{C}^{\leq T})$ + definition of rewards

- $\mathcal{P}_{=?}(ab = 0 \ \mathcal{U}^{[T,T']}(a = 0 \land ab = 0))$
- What is the probability that the protein A degrades in the time interval [T, T'] and it has not bound to the protein B before?

- What is the long-run probability that the protein A spends free
- $\mathcal{R}_{=?}(\mathcal{C}^{\leq T})$ + definition of rewards
- What is the expected time that the protein A spends free, during the first T time units.

•
$$\mathcal{P}_{=?}(ab = 0 \ \mathcal{U}^{[T,T']}(a = 0 \land ab = 0))$$

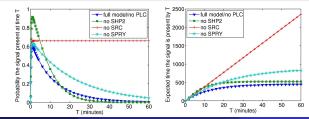
What is the probability that the protein A degrades in the time interval [T, T'] and it has not bound to the protein B before?

- What is the long-run probability that the protein A spends free
- $\mathcal{R}_{=?}(\mathcal{C}^{\leq T})$ + definition of rewards
- What is the expected time that the protein A spends free, during the first T time units.

$$\mathfrak{O} \ \mathcal{R}_{=?}(\mathcal{F} (a=0 \land ab=0)) + \text{definition of rewards}$$

- $\mathcal{P}_{=?}(ab = 0 \ \mathcal{U}^{[T,T']}(a = 0 \land ab = 0))$
- What is the probability that the protein A degrades in the time interval [T, T'] and it has not bound to the protein B before?

- What is the long-run probability that the protein A spends free
- $\mathcal{R}_{=?}(\mathcal{C}^{\leq T})$ + definition of rewards
- What is the expected time that the protein A spends free, during the first T time units.
- \mathfrak{Q} $\mathcal{R}_{=?}(\mathcal{F}(a=0 \land ab=0)) + \text{definition of rewards})$
- What is the expected number of times that the proteins A and B bind before A degrades


Results I

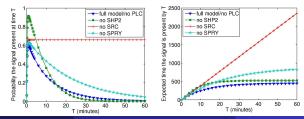
Size of the model

- 80 616 states
- 560 000 transitions

Some inspected properties

What is the probability that Grb2 is bound to FRS2 at the time instant T? - P_?(true U^[T,T] a_{grb2})

J. Heath, M.Kwiatkowska et al. (Birmingham) Model checking of biological pathways


Results I

Size of the model

- 80 616 states
- 560 000 transitions

Some inspected properties

- What is the probability that Grb2 is bound to FRS2 at the time instant T? 𝒫_{=?}(true
 ^[T,T] a_{grb2})
- ② What is the expected time that Grb2 spends bound to FRS2 within the first T time units? $\mathcal{R}_{=?}(C^{\leq T})$

J. Heath, M.Kwiatkowska et al. (Birmingham) Model checking of biological pathways

Results II

Long run and expected reachability properties

What is the long-run probability that Grb2 is bound to FRS2? – S=?agrb2

	probability	expected no.	expected time
	bound	of bindings	bound (min)
full model	7.54e-7	43.1027	6.27042
no Shp2	3.29e-9	10.0510	7.78927
no Src	0.659460	283.233	39.6102
no Spry	4.6e-6	78.3314	10.8791
no Plc	0.0	51.5475	7.56241

 Table 1. Long run and expected reachability properties for the signal

Results II

Long run and expected reachability properties

- What is the long-run probability that Grb2 is bound to FRS2? S=?agrb2
- ② What is the expected number of times Grb2 binds to FRS2 before degradation or relocation occurs? $\mathcal{R}_{=?}(\mathcal{F}(a_{src} \land a_{plc} \land a_{spry}))$

	probability bound	expected no. of bindings	expected time bound (min)
	bound	of bindings	bound (min)
full model	7.54e-7	43.1027	6.27042
no Shp2	3.29e-9	10.0510	7.78927
no Src	0.659460	283.233	39.6102
no Spry	4.6e-6	78.3314	10.8791
no Plc	0.0	51.5475	7.56241

 Table 1. Long run and expected reachability properties for the signal

Results II

Long run and expected reachability properties

- What is the long-run probability that Grb2 is bound to FRS2? S=?agrb2
- 2 What is the expected number of times Grb2 binds to FRS2 before degradation or relocation occurs? $-\mathcal{R}_{=?}(\mathcal{F}(a_{src} \land a_{plc} \land a_{spry}))$
- What is the expected time Grb2 spends bound to FRS2 before degradation or relocation occurs? - R_{=?}(𝓕 (a_{src} ∧ a_{plc} ∧ a_{spry}))

	probability	expected no.	expected time
	bound	of bindings	bound (min)
full model	7.54e-7	43.1027	6.27042
no Shp2	3.29e-9	10.0510	7.78927
no Src	0.659460	283.233	39.6102
no Spry	4.6e-6	78.3314	10.8791
no Plc	0.0	51.5475	7.56241

 Table 1. Long run and expected reachability properties for the signal

- created a model of a complex biological pathway of FGF
- calculated the exact quantitative measure of interesting properties
- illustrated the applicability of the probabilistic model checker PRISM

Thank you for your attention.