Stochastic simulation - Gillespie's algorithm

Jana Fabriková

3.12.2007

The problem

- fixed volume V
- N chemical species (spatially uniform distribution)
- M possible reactions
- given $X_{1}(t), X_{2}(t), \ldots, X_{N}(t)$

$$
X_{1}(t+\tau), \ldots, X_{N}(t+\tau)=?
$$

Continuous + deterministic \times Discrete + stochastic
Collision rate \times Collision probability in unit time

Problems as $\delta t \rightarrow 0$
c_{μ} is stochastic reaction constant
$c_{1} d t=$ average probability that particular combination of S_{1}, S_{2} molecules will react due to R_{1} in the next infinitisemal interval $(t, t+d t)$
h_{μ} is function of $X_{1}(t), \ldots, X_{N}(t)$, number of all possible reactant combinations for reaction R_{μ}
$h_{\mu} c_{\mu} d t=$ probability of reaction R_{μ} occuring in the interval $(t, t+d t)$
fundamental hypothesis the existence of such constants c_{μ} (wellstirred system)
$P\left(X_{1}, \ldots, X_{N} ; t\right)$ is the probability that in time t there are X_{i} molecules of species S_{i}.
$k^{\text {th }}$ moment of P with respect to X_{i}

$$
X_{i}^{(k)}(t)=\sum_{X_{1}=0}^{\infty} \cdots \sum_{X_{N}=0}^{\infty} X_{i}^{k} P\left(X_{1}, \ldots, X_{N}\right)
$$

$X_{i}^{(1)}, X_{i}^{(2)}$ are useful

$$
\begin{gathered}
\Delta_{i}(t)=\left(X_{i}^{(2)}(t)-\left(X_{i}^{(1)}(t)\right)^{2}\right)^{\frac{1}{2}} \\
{\left[X_{i}^{(1)}(t)-\Delta_{i}(t), X_{i}^{(1)}(t)+\Delta_{i}(t)\right]}
\end{gathered}
$$

$a_{\mu} d t=$ probability that R_{μ} will occur in time interval $(t, t+d t)$ given the values $\left(X_{1}, \ldots, X_{N}\right)$ at time t

$$
a_{\mu}=h_{\mu} c_{\mu}
$$

$B_{\mu} d t=$ probability that system is at t in the state " $\left(X_{1}, \ldots, X_{N}\right)$ with one R_{μ} undone" and R_{μ} occures in ($t, t+d t$)

$$
\begin{gathered}
P\left(X_{1}, \ldots, X_{N}, t+d t\right)=P\left(X_{1}, \ldots, X_{N}, t\right)\left(1-\sum_{\mu=1}^{M} a_{\mu} d t\right)+\sum_{\mu=1}^{M} B_{\mu} d t \\
\frac{\partial}{\partial t} P\left(X_{1}, \ldots, X_{N}, t\right)=\sum_{\mu=1}^{M}\left(B_{\mu}-a_{\mu} P\left(X_{1}, \ldots, X_{N}, t\right)\right)
\end{gathered}
$$

Simulation - what do we need to know

- when will the next reaction occur?
- what reaction it will be?

The reaction probability density function $P(\tau, \mu)$
$P(\tau, \mu) d \tau=$ probability that, given the state $\left(X_{1}, \ldots, X_{N}\right)$ at time t, the next reaction in V will be R_{μ} and will occur in the infinitesimal time interval $(t+\tau, t+\tau+d \tau)$

Determining the probability density function

$$
\begin{gathered}
P(\tau, \mu) d \tau=P_{0}(\tau) a_{\mu} d \tau \\
P_{0}(\tau)=e^{-\sum_{\nu=1}^{M} a_{\nu} \tau} \\
P(\tau, \mu)= \begin{cases}a_{\mu} e^{-a_{0} \tau} & \text { if } 0 \leq \tau<\infty \text { and } \mu=1, \ldots, M \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

where $a_{\mu}=h_{\mu} c_{\mu}$ and a_{0} denotes $\sum_{\nu=1}^{M} a_{\nu}$

Simulation - random number generator

unit interval uniform random number generator (UNR)
r_{1}, r_{2} random numbers generated by UNR

$$
\begin{gathered}
\tau=\frac{1}{a_{0}} \ln \left(\frac{1}{r_{1}}\right) \\
\sum_{\nu=1}^{\mu-1} a_{\nu}<r_{2} a_{0} \leq \sum_{\nu=1}^{\mu} a_{\nu}
\end{gathered}
$$

$$
\begin{gathered}
P_{1}(\tau)=a_{0} e^{-a_{0} \tau} \\
P_{2}(\mu)=\frac{a_{\mu}}{a_{0}} \\
P_{1}(\tau) P_{2}(\mu)=P(\tau, \mu)
\end{gathered}
$$

Algorithm
Step 0.
Read $c_{1}, \ldots, c_{M}, X_{1}, \ldots, X_{N}$ from input.
$t \leftarrow 0, n \leftarrow 0$
Initialize the URN generator.
Step 1.
. $a_{1} \leftarrow h_{1} c_{1}, \ldots, a_{M} \leftarrow h_{M} c_{M}$
. $a_{0}=\sum_{\nu=1}^{M} a_{\nu}$

Step 2.

Generate r_{1}, r_{2}.
Compute τ, μ.

Step 3.

$t \leftarrow t+\tau$
Change the X_{i} values by "performing R_{μ} ".
$n \leftarrow n+1$
Repeat the algorithm from step 1.

